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Within the adiabatic approximation, time-dependent density functional theory yields only single
excitations. Near states of double excitation character, the exact exchange—correlation kernel has a
strong dependence on frequency. We derive the exact frequency-dependent kernel when a double
excitation mixes with a single excitation, well separated from the other excitations, in the limit that
the electron—electron interaction is weak. Building on this, we construct a nonempirical
approximation for the general case, and illustrate our results on a simple mod@D0&American
Institute of Physics.[DOI: 10.1063/1.1651060

I. INTRODUCTION tion energies from the Fourier transform of a real-time cal-
culation where the system is subjected to a weak
Ground-state density functional theaFT) is an effi-  perturbation:!~*3
cient and popular calculational method in solid-state physics In any of these schemes an adiabatic approximation is
and quantum Chemistfly_The one-to-one mapping between usually used, in which the kernel is local in tinter, in the
densities and potentials gives rise to a Kohn—Sh#g)  frequency domain, frequency-independemtost often it is

system of noninteracting electrons, whose equations can s&mMPply the functional derivative of the ground-state xc po-
solved much faster than the fully interacting Sairger tential used in the calculation of the bare KS transitions. The

equation, and which yields in principle all the properties oanatrg( formulation of ;—[_)DFT v(\j/lthdan ad'abat'(;] functlfna:j
the true interacting systefi. In practice, approximations as been programmed in stan ar quantu.m_c emical codes,
leading to hundreds of calculations of excitatigsse, e.g.,

must be made for the unknown exchange—correlatian e

d i h the devel t of .Ref. 14 for many referencigsin many cases, the transition
energy, and recen years. a\éle_ﬁseen' N eye opmgn ot equencies are remarkably accurate. However the errors are
creasingly accurate functionals; applied to increasingly generally not well understoodalthough, see Ref. 15 for

complex systeméTime-dependent DFTTDDFT) is an ex-  some recent progressThe accuracy of the ground-state
tension of the ground-state theory to time-dependenfnctional used, especially its asymptotic behavior, has been
potentials’ Today this is most widely used in the linear re- explored in, for example, Refs. 16 and 17, but much less is
sponse regime, where excitations and oscillator strengths ®&nown about the validity of the adiabatic approximation for
atoms, molecules, and solids are calculated. The excitatiorthe xc kernef-®=?* this understanding is needed in order for
of the ground-state KS system are not those of the true sy§-DDFT to be used for calculations of excited states with as
tem, but in principle, all excitations of the system may bemuch confidence as DFT is used for ground-state properties.
obtained exactly from them using the xc kernel through an ~ This paper concerns the TDDFT treatment of double ex-
integral equatiofl, or in a matrix formulatiod® The xc  Citations, an issue of great practical importance in quantum

kernel describes the change in the time-dependent xgNEMIistry, and yet one that has been puzzled over and not
potenl when 2 perurbation is applied to the system BRSSO B IR ApRRGE B B L I
PrelNol(rr",t=t%) = 5UXC(rt)/6n(rt_ )|_”0’ |ts' Fourier understand the role and importance of double excitations is
transform to the frequency domain is what is needed fol, merely of academic interest. The low-lying electronic
these calculations. Alternatively, one may obtain the excitagigtes of many conjugated molecules exhibit significant
double  excitation character in  wave function

aElectronic mail: nmaitra@hunter.cuny.edu treatment$32427-3% classic example is the family of poly-
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enes. The lowest-lying singlet state of all polyenes is not dier, . yc[No](r,r",w)=Ffy(r,r')+fxc[Nol(r,r',»); the
simple one-electron excitation from the highest occupied tHartree kernel is the density-functional-derivative of the
the lowest unoccupied orbital of the ground state, but has @artree potential,f(r,r')=1/|r—r’|. Transition frequen-
large zeroth-order contribution from a doubly excited detercies of the true system lie at the poles xfr,r’,w), and

minant. The two-photon absorption characteristics of thesescillator strengths may be obtained from the residues. The
systems support an interpretation of these states as larggiples of y4(r,r’,w) are at the KS single excitations; these
“doubly excited.”*! As discussed in Sec. Il, exact linear re- are shifted to the true excitations through the action of the
sponse TDDFT in principle produces transitions to excita-Hartree-exchange—correlation kernel. So, Bg.enables us
tions of any number, but the integrédr matriy equations to obtain the interacting excitation energies and oscillator
yield simple corrections to the KS response, which containgtrengths from the KS susceptibility and the Hartree-
poles at only single excitations. How are the “extra” poles of exchange—correlation kernel. In principle, the exact spec-
the true system generated in the formalism? We show thatum of the interacting system is obtained; in practice, ap-
the exact xc kernel has strong frequency dependence in thgoximations must be made féa) the xc contribution to the
vicinity of double excitations that enables TDDFT to gener-ground-state KS potential, ar{tl) the xc kernelf yc(w).
ate more poles and include transitions to states with double |n the Lehman representation,
excitation character. These cannot be captured when an adia-
batic approximation is used. FIOFF(r') FF(rF(r")

In Sec. lll, we derive the exact frequency-dependent xc X(rr’iw)=2> — —
kernel within a dressed single-pole framework, for the fol- " lomo 0T ot o +i0

lowing case: whgn one double-excitation mixes with awhere,F,(r):<O|ﬁ(r)|I>With A(r) being the one-body den-
nearby single excitation, well separated from all the otheky, gperator,l labels the excited states of the interacting
excitations in the system, in the limit that the electron—gystem andy, is their transition frequency. This expression
electron interaction is weak. We build on this result to con-gis4 holds for the KS susceptibility where the excited states
struct a nonempirical approximation that goes beyond thgye excited Slater determinants and the transition frequencies
weak-interaction limit: this, and its generalization to casesy e orpital energy differences.

when more than one single excitation is neatbgives a Due to the one-body nature of the density operai@)
practical scheme for including double excitations in TDDFT;, the numeratory, has poles only asingleKS excitations.

linear response. We discuss when an adiabatic TDDFEq; the interacting system, where exact eigenstates may be
(ATDDFT) calculation provides a reasonable approximationyixires of single, double, and higher-multiple excitations,

for states with a double excitation component. Although weyne susceptibility contains poles at states dominatedriy

focus on double excitations, since these are of most practic@l,mper of excitations. So, in the bound spectrypg,has

interest, the same ideas can be applied to excit{:\tions of af¥wer poles thary. The failure of ATDDFT to generate more

number. Our results are demonstrated on a simple modelyjes and produce double excitations is most easily seen in

syste_zm in S_ec. IV:_two _fermions ina c_me-dimen_sional har-casida’s matrix formulatiof® Letq=(i,a) be an index rep-

monic well interacting via a delta-function repulsion. resenting a single excitation: a transition from an occupied

KS orbital ¢; to an unoccupied one,, and letw, be the

II. THEORY difference in the KS orbital energies,=€,— €. Then, the

, , i squares of the true transition frequenci@s= a)|2 are the
Given a system oN interacting electrons, the ground- eigenvalues of the matrix

state KS potential is defined as the one-body potential in

which N noninteracting glectrons live S0 as to produce the Q(w)qqu5qq/w§+4m[Q|foc(w)|Q'], 3)

exactground-state densitpy(r) of the interacting system.

Excitations of this KS system amot however those of the where

interacting system. Instead, the linear response theory of

TDDFT provides a route to obtaining excitation energies and

oscillator strengths of the interacting system, from knowl-

edge of only the ground-state KS potential. , . .
Applying a small perturbing potential to a ground state, X Phxe( 1) dir(r) ¢, (1), (4)

and measuring the density response defines the susceptibili

or density—density response functioy ng](r,r’,t—t")

= 5vex[(rt)/5n(r’t’)|n0. The susceptibility of the true inter-

@

[Q|foc(w)|Q’]=f dr dr’ ¢ (r) da(r)

téS’sciIIator strengths of the true system are related to the
eigenvectors? Because the matrix in E¢3) spans only the

i ) . : . KS single excitations, if 4xc is frequency independent, the
acting system is related to that of its noninteractingn,mber of eigenvalues of the matrix is equal only to the
Kohr)—,Sham counterpart, y[no](r,r',t—t")=dvy(rt)/  hymper of single excitations: multiple excitation information
on(r't )|n0, through an integral equation, written in the fre- -5nnot be gained in the adiabatic approximatn.

quency domain ds Before resolving this problem we note that a useful ap-
(1) proximation for the true transition frequencies is obtained by
. expanding the linear response equation, @g.around each
Here the Hartree-exchange—correlation kerfiglc(w) is  KS transition frequency>® This “single pole approxima-
the sum of the Hartree kernel and the xc kernel defined eation” (SPA) can alternatively be derived from neglecting the

¥ @)= 15 Yw)~ fuxc(w).
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off-diagonal terms in Casida’s matrix and assuming the cor-
rection due tof yxc is small compared with the bare Kohn—
Sham value. One finds

w=wq+2[q|fuxc(wg)|a]. 5

The SPA corrects the single excitations of the KS system
toward the true ones, and, in many cases, especially those of
atoms and molecules where the transitions are “well
separated.® the SPA value lies very close to the full
TDDFT value.

Consider the situation of a KS single excitatios,
— ¢4, of frequencyw,=e€,—¢;, close to a double excita-
tion, and well separated from all other levels. Let the truef!G- 1. Frequency d?g’e”dence near a double excitésies the tet Near
excitations ¥ ,, ¥, , near this frequency be mixtures of the a single excitationyg “(w) (upper dashed linehas one zero at the KS

. . transition wy, which an adiabatic kerndl}, shifts tow [Eq. (12)]. Fre-
single and double, such that as the electron—electron interaggency degendence of E6L1) gives the exacl *(w) (solid line) two

tion strengthA—0, zeroes at the transition frequencieg,w, of the true mixed single and
double states.
_ 2
V,=mPp+J1-m-d,,

\Ifb=\/1—mz(I>D—m<I>q, o<m<1, ——
W W~ W Wy

where®, and @, are the wave functions of the KS single 2[a|frxc(@)[a]= (0= wg) + (0—w') (11)

and double excitations, respectively. The fractiondeter- S o )
mines how much double excitation character the true excita/herew(w’) averages the true excitations weighted toward

tions have: fom?>1/2, we may say tha¥’ , is predomi- the predominantly sing{elouble excitation:
nantly doublésingle, and vice-versa. We wish to construct ®' =mMw,+(1-m)wy,

(6)

the exact xc kernel at frequencies near this multiplet. For ) 5 (12)
frequencies nean,, the Lehman sum ity is dominated by 0=(1-m")w,+ M wy.
Dy Equation(11) is exact: it shows the behavior of the exact xc
' kernel as a function of frequency, at frequencies negr
A(r,r'; w) L . o
xs(rr'; o)y~ ————, (7)  when a double excitation interacts with an otherwise isolated
W™ q single. This is illustrated in Fig. 1. The first term on the

where the matrixA(r,r’;w) is only very weakly frequency right-hand side of Eq(11) is frequency independent and de-
dependent: A(r,r';w)=¢* (1) da(r) i(r') ¢ (r')+O(w sgribgs e>_<c.hange and a frequen_cy-avergged correlation con-
— wy). For the interacting system at nearw, (and\—0), tr.|but|on; it is of the order of th(=T interaction strengthland .
) ) highep. The second term contains the rest of the correlation
oo . (1—m m ) effects, and is of ordex? and higher: this is strongly fre-
x(r,r';o)=A(r,r';m) +
1) quency dependent.

ATDDFT approximates only the first term in E@L1): at
best, it yields the weighted average toward the state of pre-
dominantly single excitation charactes, For states that in-

: . S ._clude only a small fraction of double excitations, ATDDFT
give the behavior of the exact susceptibilities at frequenueﬁerforms well but as the double excitation component in-

nearwg. The oscillator strength of the KS single excitation creases, it begins to deviate. For example, if the two levels

|s'shared between the two mteraptmg Ie;vel;, In a ratio Oleteré\re 50:50 mixtures of single and double, then ATDDFT gives
mined by how much double excitation is mixed[see Eq.

. . . ) i one energy approximately halfway between the true energies.

@] W'th the predominanily single state being brighter. Welf the true energies are close then ATDDFT will appear to
now define alressedSPA(DSPA) as give a good estimate for the state which has significant
w=wq+2[q|fuxc(w)|a], 9) double excitation character, just because it is close to the

. ] ) single-dominated state. However, when there is strong mix-

where here frequency dep_endence is retained in the_xc kernglg and the levels are not close to each other, then ATDDFT
[ct. Eq. (5)]. Using Eq.(1) in the DSPA Eq(9), we write does not give accurate results for either excitation. Use of

— — . 8
W, W~ Wy
Both interacting states in the multiplet contribute %o
whereas only the single excitation of the KS multiplet con-
tributes toy, as discussed earlier. Note that E¢B.and(8)

W+ 2 —1141_ ~1q7). 10 this model provides a better understanding of the results in
w=wq+2([alxs "|lal—[alx *laD) 10 o 53 and 25,
Substituting now Eqs(7) and (8), and requiring that the The frequency dependence of Efjl) is a central result
solutionsw equal the true interacting frequencieg andwy, , of this paper: substituting it in the DSPA E®) recovergby

determines that the matrix element[qg|A|q]  construction the exactinteracting transition frequencies of

=[drdr’A(r,r',w) ¢ (r)pa(r)¢i(r')ps(r')=2. Equa- states that are mixtures of a single and a double. Equation
tion (10) then tells us that for frequencies neagy, fyxc has  (11) shows the frequency-dependent behavior that the exact
frequency dependence given by xc kernel must have when a double excitation is close to a
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single excitation, well separated from all others. We next  (iii) Finally we now replace the frequency-independent
derive the xc kernel for this situation, to be used in the vi-term by the SPA, using an adiabatic kerrﬁé&,
cinity of these states, that uses only input from an adiabatic
TDDFT calculation and becomes exact in the weak-
interaction limit. where w,=¢€,— € and[q|f|q] is defined as in Eq(4). In
this way we recover the exchange—correlation of ATDDFT
in the limit of weak coupling to the double excitation. We
lll. THE FREQUENCY-DEPENDENT KERNEL: WEAK thus obtain an expression for the xc kernel for frequencies
INTERACTION LIMIT AND BEYOND nearwg, of the form of the DSPA Eq(9), with

Consider a situation where one has a KS singly excited A [Hgpl?
state®, and a doubly excited statp much closer in en- 2[q|fxc(@)q]=2[q|fxc(wq)|q]+ ©—(Hpp—Hog)
ergy to each other than to all the other states. In terms of the (15)
KS single-particle orbitalsp, is a Slater determinant replac-
ing one orbitalg; occupied in the ground state with an un-
occupied onep,. ® replaces two orbitals occupied in the
ground state¢;, ¢, with two unoccupied,¢p,, ¢.. The

Haq—Hoo— @q+ 200l fu+ el al,

This is the second main result of this paper. It is exact for
well-separated poles in the weak-interaction limit and there
are no empirical parameters. The kernel of Edp) is to be
. : used as ara posteriori correction to ATDDFT: one would
orbital energies are such thgi+e.— €;— e,~€;— € . : . . : :
g AF Eo™ €~ &= €a € first perform a TDDFT calculation using an adiabatic kernel,

We shall now derive, in three steps, a honempirical apth the KS sinal itati i it th f
proximation for the frequency-dependent xc kernel that cap- en scan the singie excitations 1o see 1t the sum ot any

tures both the interacting states which are mixtures of the Kéwo lies close to any of the smgles. I S0, one WOUId re-
double and single states. Our result is exact in the wea go_mpute the t.ransmon frequencies only of th|s_part|cular pair
interaction limit. using Eq.(15) in Eq.(9). |I’.1 another paper, we will show how

(i) Diagonalizing the Hamiltonian in this»2 block, we thls idea may_be generahzed.to the case where more than one
find single excitation interacts with the double excitatfénye

are thus able to capture the significantly doubly excited
Eeh [Hqol? 2' A, states of butadiene and hexatriene.
T EHpy
where Hqq=(®4|H|®,) is the expectation value of the IV. DEMONSTRATION ON A SIMPLE MODEL
HamiltonianH =T+ Vgt Vey taken in the KS singly excited
state®,. Here, T is the kinetic energy operatov, is the
two-body electron—electron interaction [(4/~r5,|), andVy
is the external potential on the electrons due to the nucle
attraction. SimilarlyHpp is the expectation value taken in
the doubly excited stateH.p is the matrix element 1( d?2 d? 1,
(®4|H|®p). (Note that if a double excitation mixes strongly ~ H=—5| 5+ [+ Sk(X{+X3) + N 6(X1—Xp).
- a . . 2 dx¢ dx3] 2

with several singled? one would fold into Eq(13) the row L 2 (16)
and column of the double into the basis spanned by the
singles: this amounts to a “partitioning” technique known in Transforming to center of mass and relative coordin&tes
configuration-interaction methotfy =(X11X2)/2, U=X;—X,, the Schrdinger equation de-

This gives the exact energies when the single and doubleéouples into two separate equations: thatRins a simple
pair are truly isolated from all the other excitations in the harmonic oscillator, and that imcan be solved numerically.
System_ It also gives tl"ﬂxactenergies when the pair is well The exact eigenstates are characterized by the quantum num-
separatedalbeit not infinitely so from the other excitations bers of excitation in thé&r and u coordinates{Jj} respec-
in the limit of weak electron—electron interaction strengthtively. Note that the energy of any puReexcitation{JO} is
A—0: in this limit, the matrix elements are those of the ~given by the harmonic oscillator expressigh(J+1/2); that
+\(Vee—vp—vx), Wherev,, is the Hartree potential, and for a pureu excitation{0j} is larger thanyk(j +1/2) due to
vy is the exchange potential. In that case, Ftp) agrees the inter-particle repulsion. We consider here only singlet
with Gorling—Levy perturbation theofy 3" when applied to ~ States, which meanjsis even(since withj odd, the spatial
near-degenerate stat¥s. state is antisymmetric The multiplet structure of the levels

(i) SubstitutingE=w+Hq, in Eq. (13), whereHy, is  is found by grouping together the singlet states that are de-
the expectation value of the Hamiltonian in the KS groundgenerate when the interaction is turned @f#0). In the first
state, then yields an expression for the transition frequencgolumn of Fig. 2, we plot the transition frequencies to the
For consistency,Hy, is subtracted rather than the true lowest five excited state§10},{02},{20},{12},{30}), for inter-
ground-state energy so as not to unbalance the errors arisiggtion strengti\=0.2.

13

Here, we demonstrate our results on a simple, exactly

solvable model system: two one-dimensional fermions in a

arabolic external potential, interacting via a delta-function
epulsion of strengti:

from correlation resulting from the original truncation ldf From the exact ground-state density, we find the exact
in the 2x2 basis. This would give KS potential by inverting the KS equation for the two elec-
5 trons; in the ground state they both occupy the lowest spatial
[Hapl (14)  orbital. We solve for all the excited KS orbitals numerically;

©=(Hgq—Hod + — = : :
a9 0 »—(Hpp—Hoo) the frequencies to these levels are shown in the second col-
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tiplet contains a KS single excitation into the third excited
000 o 2974 3006 | KS orb?tal, and a doyble ex_citation into the fi.rst and s_ecqnd
=060 o YT K_S orbitals. A weak mte_ractlon couples thelszlng!e excitation
: with the double, producing one sta{80}, of 55 mixture of
- . single to double, and the other state}, of 3 mixture. The
SPA yields one state of frequency approximatimgvith m
—%_{9%_&% ------- =1/\/3. Again, our DSPA recovers both of the true levels
' 1.9232 19621 very accurately.
L . In this example, we chose<1 to ensure that the system
is weakly correlated, and that perturbation theory is accurate.
|._10000 . 09616 .. 1004 Lood | The important point of our results is that DSPA provides as
accurate results for the mixed states as ATDDFT does for
Bxact kS SpA DSPA single excitations. In fact, as—0, both become exact in

. - . their own domains, but only DSPA can accommodate double
FIG. 2. Transition frequencig@n hartreeg of the lowest three excited mul- itati Th DSPA is th t lizati f
tiplets of our test system witk=1 (see the tejt at interaction strength excnations. us 1S € correct generalization o

N=0.2. First column: exact transition frequencies of the stéted, {0,2, ATDDFT to include mixtures of single and double excita-
{2,0}, {1,2}, {3,0}, in ascending order. Second column: KS levels with single tions.

excitations solid, and doubly excited states dashed. Third column: SPA using

exact-exchange corrects the KS singles toward the weighted average of the

true multiplet(see the teyt and loses the distinction between the two statesv DISCUSSION AND CONCLUDING REMARKS
in each multiplet. Fourth column: our frequency-dependent DSPA approxi-

mation, Eq.(15), recovers all states with good accuracy. In recent work* transitions to states of significant

double-excitation character in linear polyene oligomers were

found to be better approximated using ATDDFT than in a
umn in Fig. 2. The solid lines correspond to single excita-configuration-interaction singles calculation. It was also rec-
tions where, in ascending order, the first, second and thir@gnized there that the calculations underestimated the lowest
excited KS orbital are singly occupied. The dashed lines arsinglet single excitation and results were basis dependent.
double excitations: the lower dashed line is when both théur results show the severe frequency-dependence in the xc
fermions occupy the first excited orbital and the higherkernel that is needed to yield a consistent treatment of exci-
dashed line is when both the first and second excited orbitaktions in this system. We have tested our approximation on
are occupied. The dashed lines do not appear in the KS line#ie lowest excitations of butadiene and hexatrénaroduc-
response as discussed earlier. The levels in the second ing much improved(and consistenttransition frequencies
and third excited multiplets are thus mixed single and doubldor the lowest excitations.

excitations. In summary, in order to describe states of double excita-
The third column contains the results from an adiabatidion character accurately, frequency dependence is essential
SPA calculation. Because the interaction strenigth small, in the exchange—correlation kernel of TDDFT. We have

we approximate y- by exact exchange, neglecting any cor- shown exactly what this frequency dependence is in the vi-
relation (fy is of the order of\, butf is of the order oi?). cinity of a double excitation mixing with a single excitation
For two electrons, and derived, and successfully tested, an approximation for it.
It is proposed that future calculations could proceed as fol-
(17) lows: (i) solve the linear response equations using an adia-
batic kernel(ii) determine whether double excitations mix in
The SPA using this kernel is almost exact for pure singlesby, for example, scanning the KS single excitations to see if
because the interaction is weak and KS multiplets are wefihe sum of any two of them lies close to any of them, and
separated, as demonstrated by its accuracy for the first eli) then apply our DSPA correctidiftg. (15) in Eq. (9)] just
cited state. to the single that is coupled to the double. This should pro-
The SPA fails for the second and third excited multipletsvide accurate approximations to states of double excitation
due to the mixing of the KS single and double in each casecharacter, when a KS double mixes closely with one single,
producing only one level in each multiplet. The interactionand is well separated from the other levéds conditions in
couples each pair of KS states in the multiplet. Consider th&ef. 15 for the SPA while leaving the treatment of largely
second excited multiplet, containing two KS states: a singléingle excitation states unchanged from ATDDFT. Although
excitation into the second excited KS orbital, and a doubléresented here in a single-pole framework, our kernel can be
excitation into the first excited KS orbital. The interaction generalized to the case when several single excitations lie
transforms each into a 50:50 mixture of a single and &lose to and mix with a doubfé.
double, in thex—0 limit. Only one level, which approxi-
mates the weighted average [Eq. (12)] can be obtained
using ATDDFT, as shown here in the SPA column: this level
lies almost in the middle of the two true levelsi{=0.5). We thank the National Science Foundati@rant No.
Our DSPA of Eq.(15) in the fourth column recaptures both CHE-9731634, the Petroleum Research Fund, and the Of-
levels, approximating the true levels closely. The third mul-fice of Naval ResearcliGrant No. NOOOO14-01-1-1061

fﬁXC%fHXZEfHZE (X1 —Xp).
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