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Abstract

Kohn-Sham density functional theory (DFT) is a standard tool in most branches of chemistry,
but accuracies for many molecules are limited to 2-3 kcal/mol with presently-available function-
als. Ab initio methods, such as coupled-cluster, routinely produce much higher accuracy, but
computational costs limit their application to small molecules. We create density functionals
from coupled-cluster energies, based only on DFT densities, via machine learning. These func-
tionals attain quantum chemical accuracy (errors below 1 kcal/mol). Moreover, density-based
∆-learning (learning only the correction to a standard DFT calculation, ∆-DFT) significantly
reduces the amount of training data required. We demonstrate these concepts for a single water
molecule, and then illustrate how to include molecular symmetries with ethanol. Finally, we high-
light the robustness of ∆-DFT by correcting DFT simulations of resorcinol on the fly to obtain
molecular dynamics (MD) trajectories with coupled-cluster accuracy. Thus ∆-DFT opens the
door to running gas-phase MD simulations with quantum chemical accuracy, even for strained
geometries and conformer changes where standard DFT is quantitatively incorrect.
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A long-standing question of overwhelming scientific importance is how to bridge the gap between
ab initio quantum chemistry and molecular dynamics simulations of molecules over long time scales.
Quantum chemistry provides highly accurate energetics for (almost) any configuration of the nuclei,
but at considerable computational cost. At the other extreme, classical molecular dynamics (MD)
employing relatively simple force fields is many orders of magnitude faster, but limited to configura-
tions where the force field is accurate, such as close to equilibrium positions. A proper description of
the dynamics of rare events, such as conformational changes or the making and breaking of chemical
bonds, requires both computational efficiency and chemical accuracy. Over thirty years ago, Car and
Parrinello [1] made a breakthrough by combining Kohn-Sham [2] density functional theory (KS-DFT)
calculations with MD simulations, allowing an on-the-fly quantum treatment of electrons in an MD
simulation. More recently, DFT-based Born-Oppenheimer MD simulations have found widespread
use for systems in the gas phase [3–10], despite these calculations being much more expensive than
classical force fields and less accurate than ab initio methods when using standard density function-
als. These applications would clearly benefit from using more accurate electronic structure methods,
but due to the high computational overhead, it has generally not been possible to perform such
“on-the-fly” studies at a high level of ab initio theory such as coupled-cluster (CC).

At the heart of this problem is the severe incompatibility of the formalisms of DFT and ab initio
methods. Both aim to deliver the ground-state energy of a molecule as a function of its nuclear
coordinates. Ab initio methods directly solve the Schrödinger equation in a systematic, controllable
fashion. But Kohn-Sham DFT buries all the quantum complexity into an unknown functional of
the density, the exchange-correlation energy, which must be approximated [11, 12]. Myriad different
forms for such KS-DFT approximations exist. Unfortunately, no practical route currently exists for
converting an approximation in one formalism to an approximation in the other.

The present work provides one pragmatic approach to bridging the gap between these two
disparate schools. By training on DFT densities and using CC energies as targets, a machine-learned
density functional can produce CC energies at DFT (or lower) cost. We illustrate the importance of
this framework by running gas-phase MD with this machine-learned functional, finding qualitatively
different trajectories due to the higher accuracy of the novel functional with comparatively moderate
computational effort.

This apparent miracle depends on insights from several different fields. Using age-old formalism
in the DFT literature, one can construct functionals of densities other than the exact density, but
that nonetheless yield the exact energy [13]. This bypasses the need for constructing coupled-cluster
densities to train upon.

With the recent rise in popularity of machine-learning methods, there have been many advances
in the prediction of properties of atomistic systems across chemical space [14–35] and the construction
of accurate force fields [36–50] for ML-based MD simulations. Unlike these methods, our model uses
the density directly, building on the successes of DFT over fifty years, and yielding densities as well as
energies. The basic principles of constructing density functionals using kernel ridge regression (KRR)
have been developed over several years [51–56]. One of the more recent and successful applications
avoided the need to solve the KS equations by machine learning both the Hohenberg-Kohn map
(ML-HK) from potentials to densities and the energy as a functional of the density [57]. In that
case, MD simulations were performed using maps trained on densities and energies for PBE, a widely
used density functional approximation [58]. Once trained, the ML maps find the solution of the
KS equations for arbitrary positions of the nuclei (within the training manifold) without the need to
solve them. The results merely reproduce the results of a PBE-MD simulation (albeit in a fraction
of the time). While there have been other recent machine learning methods for the prediction of
electron densities or density functionals [59–66], the ML-HK map uniquely facilitates the use of both
machine-learned densities and density functionals for MD simulations.

Since the ML recipe is identical no matter what the source of inputs, one could readily imagine
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training on a set of CC densities and energies. In practice, few quantum chemical packages yield the
CC electronic density, as it is not something that is needed to find a CC energy. We show that the
same basic result can be achieved more easily, by demonstrating a sequence of approximations that
simplify the calculation, both in human terms and in computational cost. The first such step is to
consider the CC energy as a functional of an approximate DFT density, such as PBE. This yields
a paradox, as an accurate energy functional usually determines an accurate density via the Euler
equation [67]. In fact, there is no requirement in approximate DFT that a self-consistent calculation
must always be performed, as shown by the recent successes of density-corrected DFT [68–70].
Moreover, the density in this case is only serving as a (very useful) label for the different potentials
and is an extremely useful representation for learning other properties, such as the energy itself. The
ML algorithm automatically trains to find the CC energy as a functional of the approximate density. In
the results section, we show that it is as easy to train to extract the CC energy from the DFT density
as it is to train the DFT energy itself, i.e., the self-consistency of an approximate DFT calculation
confers no special advantage in learning the map.

Furthermore, drawing from decades-old knowledge in machine learning [71], we found that one
can learn the difference between a DFT and a CC energy much more efficiently than one can learn
either separately. Using this we take a second step, in which we learn only the difference between the
DFT and CC energies as a functional of the DFT density. As CC energies are far more accurate than
standard DFT methods for the weakly correlated systems we study, we can refer to this as the error
in the DFT energy. We call this ∆-DFT. In fact, we show that the error in the training curve for
∆-DFT drops far faster than those for learning either the DFT or the CC energies themselves, i.e.,
the error in DFT is much more amenable to interpolation than the DFT energy itself. This, combined
with the use of molecular symmetry, conveniently reduces the amount of training needed to achieve
quantum chemical accuracy, allowing us to extract CC energies from standard DFT calculations, with
essentially no additional cost (beyond the initial generation of training data). We even find that we
can construct a sufficiently accurate ML-HK map from potentials to DFT densities to be used as
input into our ∆-DFT, so as to produce no significant increase in error. Thus, we have created a
DFT scheme that costs no more than standard DFT calculations, but yields CC accuracy, for cases
where many energy evaluations are required.

Our new theoretical tools are illustrated by application to the water molecule, as shown in Fig. 1a.
We use the same PBE density as a functional of the potential, n[v](r), as in Ref. [57], but now with
various ML maps of the energy as a functional of the density, E[n]. We refer to these combinations
using generic notation when describing the models, with the specific electronic structure methods (e.g.
using the PBE functional [58]) detailed in the Methods section. In our nomenclature, EDFT[nDFT]
denotes a standard DFT calculation, and a subscript ML indicates that the map is found via machine
learning. Thus Ref. [57] showed that, with sufficient training, EDFT

ML [nDFT
ML ] could be made sufficiently

accurate to run MD simulations, bypassing the need to solve the KS equations.
However, the EDFT energies of conformers sampled during finite-temperature MD simulations

do not reflect the potential energy surface determined by more accurate CC calculations, as shown
for water in Fig. 1b. The DFT energy errors are not a simple function of the energy relative to the
minimum energy geometry (see Supplementary Fig. 2), as short O-H bond lengths tend to be too high
in energy and stretched bonds are overstabilized. While MD trajectories based on CC energies are
prohibitively expensive without ML methods, the following sections demonstrate that self-consistent
sampling of the more accurate CC potential energy surface can be achieved by using a machine-learned
energy functional, even for molecules such as resorcinol, where the DFT energies near conformational
energy barriers are quantitatively incorrect.
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Figure 1: Illustration of density-based machine learning for water conformer energies. For all panels, DFT
energies (orange) are shown alongside CC energies (blue) for the same molecular conformers, with optimized
geometries indicated by open diamonds. a) The nuclear potential, represented by an approximate Gaussians
potential, is the input to a set of ML models that return the electron density [57]. This learned density is the
input for independent ML predictions of molecular energies based on DFT or CC electronic structure calculations,
b) Calculated energies for CC (dark blue) and DFT (dark orange) for 102 sample geometries relative to the lowest
training energy (top), along with the relative energy errors for DFT compared to CC for each conformer (bottom),
c) Average out-of-sample prediction errors for the different ML functionals compared to the reference ECC energies.
The MAE of the EDFT energies w.r.t. ECC is also shown as a dashed line, d) The potential energy surface of
symmetric water geometries for EDFT

ML (orange) and ECC
∆-DFT (blue) after applying the the ∆-DFT correction

(bottom). For this figure, DFT calculations use the PBE functional and CC calculations use CCSD(T) (see
Methods for more details).

Results

Theory

Routine DFT calculations use some approximate XC functional and solve the Kohn-Sham equations
self-consistently. But an alternative approach has long been considered (e.g., Ref. [13]), in which the
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exact energy, E, is found by correcting an approximate self-consistent DFT calculation:

E = EDFT[nDFT] + ∆E[nDFT], (1)

where DFT denotes the approximate DFT calculation, and ∆E, evaluated on the approximate density,
is defined to yield the exact energy. This is not the exact functional of standard KS-DFT, but can
be a more practical alternative. Thus one solves the KS equations within that approximation, but
corrects the final energy by ∆E. Moreover, using the results from the Supplementary Information,
one can in principle even construct the exact density from a sequence of such calculations.

CC accuracy from ML DFT

To demonstrate the methodology behind the map in Eq. (1), we begin with learning the CC energy
directly for 102 random water geometries (Fig. 1b and Supplementary Fig. 1). The mean absolute
error (MAE) of DFT energies relative to the CC energies (relative to the lowest energy conformer
in the training set) is 1.86 kcal/mol, with maximum errors of more than 6 kcal/mol. Details of
our approach are found in the Methods section. Briefly, after obtaining the predicted DFT density
coefficients uML [v] using the ML-HK map [57], we now use a second KRR model to predict energies
from a higher level of theory, in this case CC energies:

ECC
ML[nDFT

ML ] =

M∑
i=1

αik(uML[v],uML[vi]). (2)

Thus we create ECC
ML[nDFT

ML ], the chemically accurate coupled-cluster energy, as a functional of the
learned DFT density. (This corresponds to learning EDFT + ∆E in Eq. (1).)

The performance of the EDFT
ML [nDFT

ML ] and ECC
ML[nDFT

ML ] models was evaluated for training sets
with 10, 15, 20, 30, 40 or 50 geometries, while the test set consisted of 52 geometries (Fig. 1c). Due
to the small size of the dataset, we used cross-validation in order to obtain more stable estimates for
the prediction accuracy of the models. Details of the evaluation procedure are found in the Methods
section. As expected, the accuracy of each model improves with increasing training set size, but the
benefit of predicting CC energies compared to DFT energies is immediately obvious. For this data
set, the MAE of EDFT relative to ECC (used here as the ground truth) is reached by EDFT

ML [nDFT
ML ]

with 40 training geometries. Quantum chemical accuracy of 1 kcal/mol is obtained using slightly
fewer (30) samples for the energy functional ECC

ML[nDFT
ML ], and an improved MAE of 0.24 kcal/mol

with 50 training samples. Once constructed, the time to evaluate EML[n] is the same regardless of
which energy its trained on (for a fixed amount of training data). There is a clear benefit of training
the model on the more accurate CC energies as long as a good performance can be achieved with a
small number of samples from the more computationally expensive method.

Note that although all molecules used in this work are normal at equilibrium i.e., the energy
change due to replacing a PBE density with a more accurate density should be negligible, they might
not be when far from equilibrium. But this is irrelevant to the ML-CC energy map, as it learns the
accurate energy even as a functional of an inaccurate density, as in Eq. (1). In an abnormal case, use
of the CC density inside our ML-CC energy functional would make it (paradoxically) less accurate.

∆-DFT: reducing the CC cost

Inspired by the delta learning approach [72], we also propose a machine learning framework that is able
to leverage densities and energies from lower level theories (e.g. DFT) to predict CC level energies.
Specifically this is achieved by correcting DFT energies by using delta learning, which we denote as
∆-DFT. Instead of predicting the CC energies directly using our machine learning model, we can
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instead train a new map ∆ECC−DFT
ML [nDFT

ML ] that yields the error in a DFT calculation (relative to
CC) for each geometry (i.e., the second term in Eq. (1)). We define the corresponding total energy
as

ECC
∆-DFT[nDFT

ML ] = EDFT[nDFT] + ∆ECC−DFT
ML [nDFT

ML ]. (3)

Correcting the DFT energies in this way shows a dramatic improvement the model performance,
as seen in Fig. 1c. Remarkably, with only 10 training samples, the MAE of this ECC

∆-DFT[nDFT
ML ] model

is already lower than the error of ECC
ML[nDFT

ML ] trained with 50 samples; using 50 training samples
reduces the MAE of the ∆-DFT model to only 0.013 kcal/mol. The ∆-DFT correction is easier to
learn than the energies themselves, as illustrated in Fig. 1d for symmetric water geometries that were
not included in the previous data set. Although the optimized geometry differs slightly between DFT
and CC, the ∆-DFT approach provides a smooth map between the two types of electronic structure
calculations as a functional of the density. The comparison between the ∆-DFT and total energy ML
models is further explored with larger molecules in the following sections.

∆-DFT with molecular symmetries

The next molecule chosen to evaluate our ML model is ethanol, with geometries and energies from
the MD17 dataset [41, 42]. This molecule has two types of geometric minima, with the alcohol OH
in either an anti or doubly-degenerate gauche position, as well as a freely rotating CH3 group that
introduces additional variability into the possible geometries. Supplementary Fig. 4 shows the atomic
distributions of the ethanol dataset after alignment based on heavy atom positions. Adding nuclear
degrees of freedom makes the learning problem more difficult, so we expect that a greater number
of training samples is needed to achieve chemical accuracy for the range of thermally-accessible
geometries. The dataset contains 1000 training and 1000 test samples with both DFT and CC
energies. The ML-HK map incorporates equivalence for each element, but we can also exploit the
mirror symmetry of the molecule by reflecting H atoms through the plane defined by the three heavy
atoms, effectively doubling the size of the training set, as outlined in the Methods section below. To
differentiate the models trained on datasets augmented by these symmetries we add an s in front of
the machine learning model (e.g. sML).

Table 1 shows the prediction accuracies of the various sML models for ethanol compared to
some other state-of-the-art ML methods for the same dataset. The prediction error for DFT and
CC energies is roughly equal to that of ML models trained only on energies, although ML models
incorporating additional force data are superior. However, using the ECC

s∆-DFT[nDFT
sML ] functional to

correct low-cost DFT energies achieves a MAE for CC energies comparable to those of most accurate
force-based models. We also note that using only the original 1000 training geometries roughly doubles
the MAE of all ML models, e.g., the ECC

∆-DFT[nDFT
ML ] functional has a MAE of only 0.15 kcal/mol (see

Supplementary Table 1).

Optimization using ML functionals

Neither the training nor test configurations from the MD17 dataset [41, 42] include the minimum
energy conformers of ethanol. Using the ML models, we predicted the energy of the anti and gauche
conformers optimized using MP2/6-31G∗ or the electronic structure methods used to generate the
model energies. Although all training geometries have energies more than 4.5 kcal/mol higher than
the global minimum, the ML models are able to predict the energies of the minima with errors below
chemical accuracy (see Table 2).

In addition, the machine-learned potential energy surfaces are sufficiently smooth to optimize
ethanol using the ML models themselves. Calculations for each conformer start from geometries opti-
mized using MP2/6-31G∗, which are slightly different from both DFT- and CC-optimized geometries.
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Figure 2b shows that despite the sparsity of training data near the minimum energy configurations,
the ML models trained with different energies can differentiate between the DFT and CC minima
with remarkable fidelity.

Molecular dynamics using CC energies

The final molecular example of 1,3-benzenediol (resorcinol) illustrates the utility of learning both the
ECC

sML[nDFT
sML ] and ECC

s∆-DFT[nDFT
sML ] functionals for the same system. Combining the ECC

sML[nDFT
sML ] with

the more expensive and accurate ECC
s∆-DFT[nDFT

sML ] method, we demonstrate how to run self-consistent
MD simulations that can be used to explore the configurational phase space based on CC energies.

Resorcinol model performance

Resorcinol has two rotatable OH groups, two molecular symmetry operations, and many more degrees
of freedom than water or ethanol, making this a more stringent test of the ML functionals. The initial
data sets are generated from 1 ns classical MD simulations at 500 K and 300 K for the training and
test sets, respectively (details are found in the Methods section). This training set is augmented
with the two symmetries, resulting in an effective training set size of 4000 geometries. The molecular
geometries in the MD-generated training set have energies between 7 and 50 kcal/mol above the
equilibrium conformer, so the four local minima are also included using geometries from MP2/6-
31G∗ optimizations. These conformers, which differ in the orientation of the two alcohol groups, are
separated by a rotational barrier of ≈4 kcal/mol (See Supplementary Fig. 9). The maximum relative
energy error of the DFT energies compared to those from CC is 6.1 kcal/mol and 6.7 kcal/mol for
geometries included in the training and test sets, respectively.

As for water and ethanol, the ML model performance improves with expanding training set size
(see Supplementary Fig. 10). Table 3 shows the resulting MAE for the resorcinol dataset when training
on all 1004 training geometries (4004 training points). While the MAE of predicted energies is around
1.3 kcal/mol for both EDFT

sML [nDFT
sML ] and ECC

sML[nDFT
sML ], the error when using ECC

s∆-DFT[nDFT
sML ] is only

0.11 kcal/mol. There is some error attributable to using learned densities; The sML models have
lower prediction MAEs when using the true DFT densities, although there is essentially no difference
in model performance for the ∆-DFT approach.

CC-based MD trajectories

Although DFT energies may be sufficient for some molecules, the ability to use CC energies to
determine the equilibrium geometries and thermal fluctuations is a promising advance. For resorcinol,
the DFT energies differ significantly from the CC energies, particularly near the OH rotational barrier
that separates conformers. Conformational changes are also a rare event in the MD trajectories,
making it crucial to describe the transitions accurately. For example, the exploration of the OH
dihedral angles during 10 ps MD trajectories from DFT-based NVT simulations at 350 K are shown
in Supplementary Fig. 11. In this simulation, only one conformational change is observed, despite
several excursions away from the local minima.

Using the ECC
s∆-DFT approach, we could easily correct energies after running a conventional

DFT-MD simulation. However, as shown in Supplementary Fig. 12, for snapshots along a 1.5 ps NVE
simulation starting from a point near a conformer change, the MAE of DFT energies compared to CC
energies for each snapshot is 1.0 kcal/mol, with a maximum of just under 4.5 kcal/mol. Therefore,
a more promising use of the ML functionals is to run MD simulations using CC energies directly. An
example ECC

s∆-DFT[nDFT
sML ] trajectory starting from a random training point is shown in Supplementary

Fig. 13, with an MAE of 0.2 kcal/mol.
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Starting from a different point in the DFT-generated trajectory illustrates the importance of
generating MD trajectories consistent with coupled-cluster energies. As seen in Fig. 3 for NVE simu-
lations from the same initial condition, a DFT-based trajectory does not have sufficient kinetic energy
to traverse the rotational barrier, while the conformer switch does occur for trajectories based on
coupled-cluster energies. Astonishingly, the ECC

s∆-DFT[nDFT
sML ] trajectory has a MAE of only 0.18 kcal/-

mol relative to the true CC energies over a range of more than 15 kcal/mol.
As the ∆-DFT method requires a running DFT calculations at each step of the trajectory, we

can overcome this computational cost by combining the ML models. The middle panel of Fig. 3b
shows the CC trajectory using a reversible multi-timestep integrator [73] to evaluate energies and
forces primarily with the ECC

sML[nDFT
sML ] model, with periodic force corrections based on the more accu-

rate ECC
s∆-DFT[nDFT

sML ] every 3 steps (see Supplementary Information for more details). The resulting
trajectory has a MAE of 3.8 kcal/mol relative to the true CC energies, with the largest errors in
regions that are sparsely represented in the training set. This self-consistent exploration of the con-
figurational space with the combined ML models provides an opportunity to improve the sampling in
a cost-effective manner.

Discussion

DFT is used in at least 30,000 scientific papers each year [74], and because of its low cost relative to
ab initio methods, energies of large molecules can computed. For most such calculations, CCSD(T)
would be more accurate and reliable, but is unaffordable. In this work, we have established one
possible bridge between the two methods.

There are two distinct modes in which our results can be applied. With ∆-DFT, the cost of a gas-
phase MD simulation is essentially that of the DFT-based MD with a given approximate functional,
plus the cost of evaluating a few dozen CCSD(T) energies. No forces are needed for training, making
training set generation cheaper than other methods with similar performance. Compared to other
machine learning models, ∆-DFT is well-behaved and stable far outside of the training set, since
the zero-mean prior allows it to fall back on DFT results when far from the training set. Combining
∆-DFT with the ML models for DFT energies of Ref. [57], yields both the speed from bypassing the
KS equations and the accuracy of CCSD(T). While this yields perfectly accurate potential energy
surfaces within the training manifold, it occasionally yields inaccurate forces in an MD simulation,
which can be corrected with the ∆-DFT forces using the appropriate integrators, as shown above.

Clearly, our methodology can be applied to any gas-phase MD simulation for which CCSD(T) is
affordable for several dozen carefully chosen configurations. For larger molecules, recent schemes that
embed an ab initio heart within a larger DFT calculation could be treatable by this method, especially
if ∆-DFT need only be applied to the ab initio portion of the calculation. Even gas-phase MD has
many applications. Earlier studies focused on comparing equilibrium properties from simulations
excluding or including (via the Feynman path integral) nuclear quantum effects [3–6]. More recent
studies have focused on accurate spectroscopy and exploration of reactivity in small complexes and
clusters [7–10].

Another potential application might be in the optimization of molecular geometries at the
CCSD(T) level. Very often, when DFT energetics are tested against CCSD(T) energies, DFT ge-
ometries are used, due to the prohibitive cost of finding an optimum geometry at the CCSD(T) level.
For a large soft molecules, finding the geometry can require hundreds of evaluations of energies and
forces. But we have shown how relatively few energies are needed in ∆-DFT to produce an accurate
PES. Perhaps ∆-DFT can speed up such searches, producing CC geometries for molecules that were
previously prohibitive.

Machine-learning represents an entirely new approach to density functional construction, produc-
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ing density functionals that automatically avoid the biases built in to human-designed functionals. As
shown here, ML provides a natural framework for incorporating results from more accurate electronic
structure methods, thus bridging the gap between the CC and the DFT worlds while maintaining
the versatility of DFT to describe electronic properties beyond energy and forces such as the dipole
moment, molecular polarizability, NMR chemical shifts, etc. Along with these insights, the long and
successful history of KS-DFT suggests that using the density as a descriptor may thus prove to be
an excellent strategy for improved simulations in the future.

Methods

Machine learning model

In order to predict the total energy given only the atomic positions of a molecule, we can use the
ML-HK map introduced in Ref. [57], with the entire procedure being illustrated in Fig. 1a. Initially,
we characterize the Hamiltonian by the external nuclear potential, which we approximate using a
Gaussians potential v [75] as

v(r) =

Na∑
α=1

Zα exp

(
−‖r−Rα‖2

2γ2

)
, (4)

where r are the current coordinates of the spatial grid, Rα is a matrix containing the atom coordinates
and Zα are the nuclear charges of the atoms. This Gaussians potential then is evaluated on a 3D grid
around the molecule and used as a descriptor for the ML model. We will use v to refer to the vector
representation of the potential evaluated on a 3D grid. For each molecule, cross-validation is used to
determine the width parameter, γ, and the grid spacing used to discretize the resulting potential.

After obtaining the Gaussians potential, we use a kernel ridge regression (KRR) model to learn
the approximate DFT valence electron density. In order to simplify the learning problem and avoid
representing the density with a 3D grid, we use a Fourier basis representation of the densities, and
consequently learn the basis coefficients instead of the density grid points:

nML[v](r) =

L∑
l=1

u(l)[v]φl(r). (5)

In our case, using 12500 basis functions (25 per dimension) proved sufficient for good performance.
Using KRR to learn these basis coefficients makes the problem more tractable for 3D densities and
more importantly, the orthogonality of the basis functions allows us to learn the individual coefficients
independently:

u
(l)
ML[v] =

M∑
i=1

β
(l)
i k(v,vi), (6)

where β(l) are the KRR coefficients and k is the kernel function being used.
The independent and direct predicting the basis coefficients makes the ML-HK map more efficient

and easier to scale to larger molecules, since the complexity only depends on the number of basis
functions. Additionally, we can use the predicted basis coefficients to reconstruct the continuous
density at any point in space, making the predicted density independent of a fixed grid and enabling
computations such as numerical integrals to be performed at an arbitrary accuracy.
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As a final step, another KRR model is used to learn the total energy from the density basis
coefficients:

EML[nML] =

M∑
i=1

αik(uML[v],uML[vi]), (7)

where k is the Gaussian kernel.

Exploiting point group symmetries

Our machine learning model can be easily enriched using the point group symmetries. To extract the
point group symmetries and the corresponding transformation matrices we used the SYVA software
package [76]. Consequently, we can multiply the size of the training set by the number of point group
symmetries without needing any additional quantum chemical calculations simply by applying the
point group transformations on our existing data. We denote models trained on datasets augmented
by such symmetries by adding an s in front of the ML notation (e.g. sML).

Cross-validation and hyperparameter optimization

Due to the small number of training and test samples, when evaluating the models on the water
dataset, the data was shuffled 40 times, and for each shuffle a subset of 50 geometries was selected
as the training set, with the remaining 52 being used as the out-of-sample test set. For the smaller
training sets, a subset of the 50 training geometries was selected using k-means sampling.

The hyperparameters for all models were tuned using 5-fold cross-validation on the training set.
For the ML-HK map from potentials to densities, the following 3 hyperparameters were optimized
individually for each dataset: the width parameter of the Gaussians potential γ, the spacing of the
Gaussians potential grid, and the width parameter σ of the Gaussian kernel. For each subsequent
density to energy map E∗

ML[n], only the width parameter of the Gaussian kernel needs to be chosen
using cross-validation. Specific values are reported in the Supplementary Information.

Classical molecular dynamics

Training and test set geometries for resorcinol (1,3-benzenediol) were selected from classical MD sim-
ulations. The four local minima were optimized using MP2/6-31g∗ in Gaussian09 [77]. Symmetric
atomic charge assignments are from a RESP fit [78] to the HF/6-31g∗ calculations for the three dis-
tinct geometries, with Boltzmann weights determined by the relative MP2 energies. All other standard
GAFF parameters [79] for the MD simulations were assigned using the AmberTools package [80]. To
generate resorcinol conformers, classical isothermal MD simulations were run at 300 K and 500 K us-
ing the PINY_MD package [81] with massive Nosé-Hoover chain (NHC) thermostats [82] for atomic
degrees of freedom (length = 4, τ = 20 fs, Suzuki-Yoshida order = 7, multiple time step = 4) and
a time step of 1 fs.

For the resorcinol training set, we selected 1000 conformers closest to k-means centers from the
1 ns classical MD trajectory run at 500 K. The test set comprises 1000 randomly selected snapshots
from the 1 ns 300 K classical MD simulation. Data sets are aligned by minimizing the root mean
square deviation (RMSD) of carbon atoms to the global minimum energy conformer.

DFT molecular dynamics

Resorcinol Born-Oppenheimer MD simulations were run using DFT in the QUICKSTEP package [83]
of CP2K v. 2.6.2 [84]. The PBE exchange-correlation functional [58] was used in the Gaussian
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and plane wave (GPW) scheme [85] with DZVP-MOLOPT-GTH (m-DZVP) basis sets [86] paired
with appropriate dual-space GTH pseudopotentials [87, 88]. Wave functions were converged to 1E-
7 Hartree using the orbital transformation method [89] on a multiple grid (n = 5) with a cutoff of
900 Ry for the system in a cubic box (L = 20 bohr). For the NVT simulation, a temperature of
350 K was maintained using massive NHC thermostats [82] (length = 4, τ = 10 fs, Suzuki-Yoshida
order = 7, multiple time step = 4) and a time step of 0.5 fs.

ML molecular dynamics

We used the Atomistic Simulation Environment (ASE) [90] with a 0.5 fs timestep to run MD with
ML energies . For the NVT simulation, a temperature of 350 K maintained via a Langevin thermostat
with a friction value of 0.01 atomic units (0.413 fs−1). Atomic forces were calculated using the finite
difference method with ε = 0.001 Å .

Electronic structure calculations

Optimizations for ethanol conformers were run using MP2/6-31g∗ in Gaussian09 [77]. DFT calcu-
lations for the ML models were run using Quantum ESPRESSO code [91] with the PBE exchange-
correlation functional [58] and projector augmented waves (PAWs) [92,93] with Troullier-Martin pseu-
dopotentials describing the ionic cores [94]. Molecules were simulated in a cubic box (L = 20 bohr)
with a wave function cutoff of 90 Ry. All coupled-cluster calculations were run using Orca [95] with
CCSD(T)/aug-cc-pVTZ [96] for water or CCSD(T)/cc-pVDZ [96] for resorcinol.

Data availability

Data sets will be made available upon publication.
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Molecule/Model EDFT
SchNet [25] EDFT

SchNet(with forces) [25] ECC
sGDML [42] ECC

sML[nDFT
sML ] ECC

s∆-DFT[nDFT
sML ]

Ethanol 0.93 0.08 0.05 1.10 0.09

Table 1: Mean average errors (kcal/mol) of the sML maps for ethanol trained on 1000 samples, compared to
other published state-of-the-art ML models. Previously published results with DFT energies are shown where CC
energies were not available.

MP2 minima DFT minima CC minima
anti gauche anti gauche anti gauche

EDFT
sML [nDFT

sML ] 0.22 0.44 0.30 0.55 0.04 0.58
ECC

sML[nDFT
sML ] 0.12 0.49 0.19 0.62 0.13 0.66

ECC
s∆-DFT[nDFT

sML ] 0.06 0.01 0.06 0.02 0.01 0.01

Table 2: Energy errors (kcal/mol) of the sML-HK maps for ethanol at conventionally-optimized geometries.
MP2 and PBE have gauche as the global minimum, but CCSD(T) global minimum is anti. However, the energy
differences between the minima are smaller than model errors, except for the case of ∆-DFT.

Figure 2: Molecular geometries of ethanol from the ML training set and optimizations. a) 1000 unique configura-
tions used for training, along with the anti and gauche minima optimized using conventional electronic structure
methods b) the configurational space near the minima. Starting from MP2 geometries, the EML-based optimiza-
tions reproduce the subtle differences in DFT- and CC-optimized geometries. For this figure, DFT calculations
use the PBE+TS functional and CC calculations use CCSD(T) (see Refs. [41, 42] for more details).

Model EDFT
sML ECC

sML ECC
s∆-DFT

[nDFT
sML ] 1.26 1.37 0.11

[nDFT] 0.94 0.99 0.11

Table 3: Mean absolute errors (kcal/mol) of the ML models trained on different electronic structure energies for
densities learned by the ML-HK map and true densities as inputs.
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Figure 3: Resorcinol dynamics from an initial condition near a conformational change showing a) the atomic
positions explored during 100 fs NVE MD trajectories run with standard DFT (dark orange), ECC

sML[nDFT
sML ] with

RESPA-corrected forces (light blue), and ECC
s∆-DFT[nDFT

sML ] (blue), b) the conformer energy along each trajectory
(solid lines), with the error relative to CC shown as a shaded line width, and c) the evolution of the C-C-O-H
dihedral angle for each trajectory with dashed grey lines indicating the barrier between conformers. For this
figure, all DFT calculations use PBE and all CC energies are from CCSD(T).
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1 Molecular Information

Water

The water molecule has three internal degrees of freedom, two O-H bonds and the H-O-H angle, with
bond lengths of 0.97 Å and a bond angle of 104.0◦ (1.82 radians) for the geometry optimized with
the PBE functional. A preliminary dataset composed of 1000 molecular geometries was generated by
uniformly sampling O-H bond lengths and H-O-H angles. The 102 geometries for the training set
were selected based on the minimum energy conformer of the 1000 structures (1.6 kcal/mol above the
optimized geometry), with bond lengths in the range 0.97 ± 0.25 Å and the bond angle in the range
of 115 ± 26◦ (2.00 ± 0.45 radians). In order to simplify the learning problem, the molecules were
aligned in the xy-plane with the bisector of the H-O-H angle along the y-axis and the longer O-H
bond in the same quadrant. The resulting geometries are shown in Supplementary Fig. 1.
∗Contributed equally.
†To whom correspondence should be addressed.

M.E.T.(email:mark.tuckerman@nyu.edu), K.B.(email:kieron@uci.edu), K.-R.M.(email:klaus-robert.mueller@tu-
berlin.de)
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Supplementary Figure 1: Distribution of 102 water molecule geometries included in the dataset, with bond
lengths in the range of 0.72 to 1.22 Å and bond angles in the range of 93.4 to 140.7◦ (1.63 to 2.46 radians).
a) Darker circles indicate the minimum energy conformer of the training set (black) and the geometries after
optimization with PBE (orange) or CCSD(T) (blue), b) The extent of the symmetric water test set is shown in
green with bond lengths in the range of 0.90 to 1.05 Å and bond angles in the range of 88.5 to 119.5◦ (1.54 to
2.08 radians).

The conventional coupled cluster calculations were run in Molpro Quantum Chemistry Software [1]
or Orca v.3.0.3 [2] using CCSD(T)/aug-cc-pVTZ [3]. For all water geometries in this work, using a
single reference wave function is appropriate (T1 diagnostic < 0.02).

The model is trained on total calculated energies, but there is a shift in the energy range due
to the differing bonding energy between electronic structure methods. Therefore, we report relative
energies in Fig. 1b based on the lowest energy in the grand training set. These relative energy errors
are also shown in Supplementary Fig. 2 and are used to calculate the MAE reported in Fig. 1c. The
potential energy surfaces in Fig. 1d are shown relative to the lowest energy conformer for each energy
method.
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Supplementary Figure 2: Relative energy errors (CC-DFT) for the 102 water geometries in the grand training
set plotted against the relative energy as calculated using CC.

The symmetric water data set was constructed for the range of bond lengths and angles sampled
during a DFT-MD simulation at 300 K using deviations of 3σ from the average value. The resulting
bond range is 0.97 ± 0.075 Å and the angle range is 104.0 ± 15.5◦ (1.81 ± 0.27 radians). For the
symmetric water conformers, the errors for predicted relative energies are qualitatively and quantitatively
different for the direct ML energy functionals and the ∆-DFT approach, as shown in Supplementary
Fig. 3. The errors in the direct methods reflect the overlap between the training set geometries and
the out-of-sample test set, with the largest errors for small angles on the edge of the training set
(coordinate range shown in Supplementary Fig. 1). The ∆-DFT errors are significantly smaller and
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qualitatively different, as they depend much more strongly on the bond length than the bond angle.
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Supplementary Figure 3: The relative energy errors for symmetric water geometries compared to the values
calculated using traditional electronic structure methods using EDFT

ML [nDFT
ML ] (top, PBE), ECC

ML[nDFT
ML ] (middle,

CCSD(T)), and ECC
∆-DFT[nDFT

ML ] (bottom, CCSD(T)) . The optimized geometries are indicated by open diamonds
for each method.
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Ethanol

Training and test set data for ethanol is from the MD17 dataset [4,5]. The 1000 unique geometries in
the training set are aligned with the three heavy atoms defining a reflection plane for the symmetry-
augmented data set. Supplementary Fig. 4 shows the atomic distributions of the ethanol datasets
after alignment and inclusion of symmetry-generated training points.

(a) (b) (c)

Supplementary Figure 4: Distribution of ethanol geometries included in the dataset, including geometries of
a) the original 1000 training set, b) the 2000 point training set generated using mirror symmetry, and c) the 1000
point test set.

The specific data generation methods are reported in Refs. [4, 5]; Briefly, the conformers were
generated using DFT-MD at 500 K (PBE+TS) and the coupled cluster energies use CCSD(T)/cc-
pVTZ. For all ethanol coupled cluster calculations, the T1 diagnostic is below 0.02. In addition
to DFT- and CC-optimized structures, we also optimize each local minima using MP2/6-31g∗ in
Gaussian09 [6]. All geometries are similar, with the largest difference seen for the C-O bond length
(DFT > MP2 > CC), as shown in Fig. 2. We report relative energies for ethanol based on the lowest
energy minima for each electronic structure method (anti for CC by 0.08 kcal/mol and gauche for DFT
by 0.10 kcal/mol). These relative energy errors are shown in Supplementary Fig. 5, with maximum
relative energy errors of 5.6 kcal/mol and 5.9 kcal/mol for geometries included in the training and
test sets, respectively.

(a) (b)

Supplementary Figure 5: Relative energy errors (CC-DFT) plotted against the relative conformer energy
calculated using CC for a) the 1000 unique ethanol geometries in the training set and b) the 1000 ethanol geometries
in the test set.
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The local minima of ethanol differ most clearly in the dihedral angle of the alcohol OH, but the
optimized geometries also differ in the C-C-O angle. The training set shown in Fig. 2a is also shown
in Supplementary Fig. 6 sorted by OH dihedral angle.
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Supplementary Figure 6: Ethanol training geometries sorted by conformer so that all structures with the
alcohol OH in the anti (gauche) basin are shown in green (purple). The open diamonds show the location of the
corresponding DFT-optimized geometries.

Dataset/Model EDFT
ML [nDFT

ML ] ECC
ML[n

DFT
ML ] ECC

∆-DFT[n
DFT
ML ]

No symmetries 1.73 1.92 0.15
With symmetries 0.99 1.10 0.09

Supplementary Table 1: Mean average errors (kcal/mol) of the ML maps for ethanol trained on 1000 samples,
comparing errors with and without augmenting the dataset using symmetry operations.
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Resorcinol

Resorcinol data set

In order to construct the ML functionals, the resorcinol data sets were generated using standard
classical MD simulations. To sample more extreme geometries, training set points were selected from
a 500 K trajectory, while the test set was taken from a 300 K simulation. After aligning the molecules
to have all C atoms in one plane, the root mean squared deviation (RMSDC) is 0.045 Å for the 300 K
data set and 0.053 Å for the 500 K data set. Supplementary Fig. 7 shows the geometries and C-C-O-H
dihedral angles in the original training set, the training set with symmetry operations applied, and
the test set. The finite temperature classical MD simulations primarily sample geometries around
the minimum energies, but all conformers are more than 7 kcal/mol higher in energy than the global
minimum. The all-electron CCSD(T)/cc-pVDZ [3] calculations were run using Orca v.3.0.3 [2], and
the single reference wave functions have a maximum T1 diagnostic of 0.012 for all conformers.

(a) (b) (c)

Supplementary Figure 7: Sampled geometries for resorcinol showing atom distribution (top) and distribution
of the dihedral angle of the two -OH groups (bottom) for the 1004 point training set (a), 4004 point training set
generated with molecular symmetry operations (b), and 1000 point test set (c). The minimum energy conformers
are shown as sticks and open black diamonds.
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(a) (b)

Supplementary Figure 8: Relative energy errors (CC-DFT) plotted against the relative conformer energy
calculated using CC for a) the 1000 unique resorcinol geometries in the training set (additional four minima not
shown) and b) the 1000 resorcinol geometries in the test set.

Resorcinol rotational barrier

The sparse sampling of geometries away from the minima is due to an energy barrier for each OH
group rotation. For an optimized geometry, rotation of a single OH requires crossing an energy barrier
of almost 4 kcal/mol based on CC calculations, as shown in Supplementary Fig. 9. The barrier height
based on PBE energies is even larger, but can successfully be corrected using the ∆-DFT approach.

Supplementary Figure 9: Relative energies for DFT and CC showing the difference in the OH rotational
barrier between the two methods, along with the energy predicted by the ECC

s∆-DFT[nDFT
sML ] energy map.

Resorcinol model performance

Supplementary Fig. 10 shows the MAE of the different models for different training set sizes of the
resorcinol dataset. All training set sizes are counted with the symmetric points obtained by applying
the symmetry operations, making the number of unique geometries 1/4 of the total number of training
samples.
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Supplementary Figure 10: Comparison of the out-of-sample prediction performance for the DFT, CC, and
∆-DFT energy prediction models for different training set sizes (sample counts include symmetries).

Resorcinol DFT-based MD

For a DFT-based MD simulation, resorcinol samples two different conformational basins during a
10 ps NVT simulation at 350 K. The aligned atomic positions and C-C-O-H dihedral angles are shown
in Supplementary Fig. 11.

(a)

(b)

Supplementary Figure 11: DFT-based MD for resorcinol at 350 K samples two conformational basins with
a) atomic coordinates after alignment for the 10 ps trajectory, and b) the C-C-O-H dihedral angles during the
trajectory, with the portion of the trajectory that crosses the rotational energy barrier highlighted with open
circles and local minima shown as open diamonds.

Starting from an initial condition close to the barrier crossing event, a DFT-based MD simulation
was run using NVE for 1.5 ps. The relative CC energy for snapshots along this trajectory are shown
in Supplementary Fig. 12 along with the relative energy errors of the DFT calculations themselves
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(relative to CC).

Supplementary Figure 12: Relative energy errors (CC-DFT) plotted against the relative conformer energy
calculated using CC for an NVE DFT-based MD trajectory for resorcinol starting from an initial condition near
the barrier crossing.

Resorcinol ML MD

The ECC
s∆-DFT[nDFT

sML ] model can be used to generate a self-consistent MD trajectory, as seen in
Supplementary Fig. 13. Starting from a random training point, the 150 fs trajectory has a MAE of
only 0.2 kcal/mol relative to the true CC energies. There is no drift in energy error as the trajectory
proceeds, indicating that the ∆-DFT approach is stable for a range of conformers.

Supplementary Figure 13: ECC
s∆-DFT[nDFT

sML ] energy along the self-generated trajectory is shown in the top
panel. The MAE relative to CC is 0.2 kcal/mol, which is smaller than the linewidth, so the energy error is shown
separately in the bottom panel.

Resorcinol Multiple time-step MD

The ECC
sML[nDFT

sML ] model can also be used to generate a self-consistent MD trajectory. Starting
from an initial condition (atomic positions and velocities) from the DFT-based NVT simulation, the
ECC

sML[nDFT
sML ] trajectory explores a region of phase space outside of the training set, as seen in the

error relative to CC shown in Supplementary Fig. 14a. The sparsity of training data near this initial
position leads to uncertainty in the model. This issue can be mitigated by correcting the forces every
few steps using the ECC

s∆-DFT[nDFT
sML ] model (see Supplementary Information Section 6) to prevent

excursions into high energy regions. Correcting the forces every fifth time step (m = 5) using the
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ECC
s∆-DFT[nDFT

sML ] model already improves the conformer sampling (Supplementary Fig. 14b), with a
similar performance seen for a m = 3 trajectory (Supplementary Fig. 14c). The trajectories shown in
Supplementary Fig. 14c and d are the same as in Fig. 3b.

Supplementary Figure 14: For NVE trajectories starting from the same initial condition, ECC
sML trajectory

energies are shown in the top panels (with errors relative to the true CC energies shown as shaded regions)
and conserved quantities in the bottom panels for a) a simulation run with ECC

sML[nDFT
sML ] energies and forces,

b) a ECC
sML[nDFT

sML ] simulation where the ECC
s∆-DFT[nDFT

sML ] is used to correct the forces every fifth time step, c) a
ECC

sML[nDFT
sML ] simulation where the ECC

s∆-DFT[nDFT
sML ] is used to correct the forces every third time step, and d) a

ECC
s∆-DFT[nDFT

sML ] simulation.
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2 Using non-self-consistent densities

Our model appears to violate one of the basic results of density functional theory, as it produces
CCSD(T) energies from PBE densities. Hohenberg and Kohn [7] showed that, for any given approximate
energy functional, one can minimize the energy functional to find a self-consistent formula for the
density. The Kohn-Sham scheme is defined [8] to find that density when only the exchange-correlation
contribution to the energy is approximated. The purpose of this section is show how the self-consistent
density could be found, at least in principle, and also to argue that the energetic consequences of
using the PBE density would be negligible here.

There is an exact formula for extracting the energy from any approximation for the ground-state
energy for a given external potential [9]:

n(r) =
δE[v]

δv(r)
(1)

where E[v] is the ground-state energy associated with one-body potential v(r). This could be used to
extract a density pointwise from any such approximation: Add a small narrow Gaussian centered at r0

to v(r), and note the corresponding change in energy. In the limit of infinitely narrow, infinitely weak
perturbations, this yields the density at r0. Of course, such a procedure is highly impractical in a
standard basis set of atom-centered Gaussians, but could be easily employed to find specific moments
of the density. If the perturbation is a weak static electric field, the prescription yields the dipole
moment, as can be seen by multiplying both sides by r and integrating over all space.

Almost all electronic structure calculations in chemistry and materials science are aimed at finding
accurate ground-state energies and the many properties that can be derived from them, such as
geometries and barriers. The error in any DFT calculation can be split into two contributions, the
functional error and a density-driven error (the energy error due to an incorrect density) [10]. In most
DFT calculations (including all those given here), the self-consistent density is so accurate that the
energy error is dominated by the functional error [11]: using the exact density in the approximate
functional has negligible effect on the energy error. Recent arguments that attempt to distinguish the
quality of functionals by constructing metrics of density errors [12] have not held up when analyzed in
terms of energies [11].

We can use Supplementary Eq. (1) to analyze the present situation. We know it must be satisfied
by the PBE density and energy functional. Thus the difference between the PBE and CCSD(T)
densities is simply

∆n(r) =
δ∆EPBE[v]

δv(r)
. (2)

This will be a very small energy for normal systems. The fact that the energy difference is easier
to learn than the PBE energy itself suggests a smoothness of energy difference with respect to the
potential, making density differences tiny.

We also note an additional twist on this question in the context of machine learning. Long ago,
Görling and Levy [13] and others pointed out that one could define an exact energy functional on an
approximate density, such as the HF density. In fact, as was noted by Li et al. [14], to learn accurate
energies, a very crude representation of the density suffices, so long as it forms a sufficiently useful
feature for the energy. In a prototype problem (particle in a box with potential well), with even a very
small grid (far too coarse to find accurate solutions to the Schrödinger equation) and essentially exact
energies, one could still use kernel ridge regression to find a highly accurate ML functional.

Thus use of PBE densities to find CCSD(T) energies is both practical and theoretically allowed
and well understood. On the practical side, it completely avoids the need to extract CCSD(T) densities
to train upon. Because the density is not needed to perform a CCSD(T) calculation, it is not available
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from many CCSD(T) codes. On the theoretical side, we know (a) the errors in energies will be very
small, (b) how to correct them if need be, and (c) that the kernel ridge regression has no difficulty
learning on the PBE density (and might also be fine on a much cruder density).

On the other hand, use of non-self-consistent densities breaks the standard relation between
energies and forces from the Hellmann-Feynman theorem, and small errors in energies do not
automatically imply small errors in forces. Since we use numerical derivatives of energies throughout
this paper, we extract the correct forces, but there will be corrections if analytical derivatives are
attempted. Whether or not these are significant is beyond the scope of the present work.
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3 Kernel ridge regression

Kernel ridge regression (KRR) [15] is a powerful machine learning method for non-linear regression.
Non-linearity is achieved by incorporating the kernel trick into Kernel ridge regression, extending
linear ridge regression, which finds the optimal linear mapping from the inputs to the labels under
`2 regularization, by exploiting the kernel trick to map the inputs to a high-dimensional non-linear
feature space. Let x1, . . . ,xM ∈ Rd be the training data points and let Y = [y1, . . . ,yM ]

T be their
respective labels. The KRR model for a new input sample x∗ is then given by:

y∗ =

M∑
i=1

αjk(x∗,xi), (3)

where k is a kernel function and α = [α1, . . . , αM ]T are the model weights. The model weights are
obtained by solving the following optimization problem:

min
α


m∑
i=1

∣∣∣∣∣∣yi −
m∑
j=1

αjk(xi,xj)

∣∣∣∣∣∣
2

+ λαKα

 (4)

where λ is a regularization parameter and K is the kernel matrix with Kij = k(xi,xj). The analytical
solution to the minimization problem is then given by

α = (K + λI)
−1

Y. (5)

In this paper we use the Gaussian (radial basis function) kernel

k(x,x′) = exp

(
−||x− x′||2

2σ2

)
, (6)

where the kernel width σ is a model parameter that needs to be tuned using cross-validation.

4 Decomposability of the ML-HK map

When using the ML-HK map to predict electron density, the contributions of the prediction error to
the cost function are given by

err(β) =

M∑
i=1

‖ni − nML[vi]‖2L2

=

M∑
i=1

∥∥∥∥∥ni −
L∑
l=1

u
(l)
ML[vi]φl

∥∥∥∥∥
2

L2

.

(7)
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By writing the density in terms of its basis representation and assuming orthogonality of the basis
functions we obtain

err(β) =

M∑
i=1

∥∥∥∥∥
L∑
l=1

u
(l)
i φl −

L∑
l=1

u
(l)
ML[vi]φl

∥∥∥∥∥
2

L2

=

M∑
i=1

∥∥∥∥∥
L∑
l=1

(
u

(l)
i − u

(l)
ML[vi]

)
φl

∥∥∥∥∥
2

L2

=

M∑
i=1

∫ L∑
l=1

(
u

(l)
i − u

(l)
ML[vi]

)
φl(r)

L∑
l′=1

(
u

(l′)
i − u(l′)

ML[vi]
)
φ∗l′(r)dr

=

M∑
i=1

L∑
l,l′=1

(
u

(l)
i − u

(l)
ML[vi]

)(
u

(l′)
i − u(l′)

ML[vi]
)∫

φl(r)φ∗l′(r)dr

=

M∑
i=1

L∑
l=1

(
u

(l)
i − u

(l)
ML[vi]

)2

=
M∑
i=1

L∑
l=1

u(l)
i −

M∑
j=1

β
(l)
j k(vi,vj)

2

.

(8)

The resulting equation shows that the error can be decomposed into the independent error
contributions for each of the basis coefficients. By viewing the errors independently we obtain L
separate KRR minimization problems, and analogously to equations 4 and 5 we obtain the analytical
solutions

β(l) =
(
Kσ(l) + λ(l)I

)−1

u(l), l = 1, . . . , L, (9)

where for each basis function φl, λ(l) is a regularization parameter, u(l) is a vector containing the
training set coefficients for the l-th basis function and Kσ(l) is a Gaussian kernel matrix with width
σ(l).

5 Cross-validation

All hyperparameters used in the model are estimated solely on the training set. The width γ and
spacing ∆ hyperparameters for the artificial Gaussians potential as well as the kernel width σ and
the regularization parameter λ were optimized individually for each molecule. In both cases the
hyperparameter optimization was performed using cross-validation [16] on the training set. After
training and cross-validation, the model is fixed and is applied unchanged on the out-of-sample test
set. The optimal hyperparameters for the artificial potentials grid selected using the cross-validation
procedure are given in Supplementary Table 2. In order to speed up the search for hyperparameters
for the KRR models, we use a fixed regularization hyperparameter value of λ = 2.22 ∗ 10−16, while
only optimizing the kernel width σ. While this may not yield optimal results, in our experience it does
not affect the performance significantly, while greatly speeding up the computation time required for
cross-validation. Supplementary Tables 3, 4, and 5 show the resulting optimized values for the kernel
width σ across the different models and molecules.
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Parameters/Molecule Water Ethanol Resorcinol
Grid spacing 0.33 0.19 0.20
Gaussian width γ 0.60 0.36 0.42

Supplementary Table 2: Hyperparameter values for the artificial Gaussians potential selected by cross-validation
for every molecule.

Water
Parameter/Model nDFT

ML EDFT
ML ECC

ML ECC
∆-DFT

Kernel width σ 7.98 20982 30738 49397629

Supplementary Table 3: Kernel width parameters selected by cross-validation for the different KRR models
for the water dataset.

Ethanol
Parameter/Model nDFT

ML EDFT
ML ECC

ML ECC
∆-DFT

Kernel width σ 423.9 126976.19 126976.19 409446.22

Supplementary Table 4: Kernel width parameters selected by cross-validation for the different KRR models
for the ethanol dataset.

Resorcinol
Parameter/Model nDFT

ML EDFT
ML ECC

ML ECC
∆-DFT

Kernel width σ 302.74 160793.66 345085.9 955296.68

Supplementary Table 5: Kernel width parameters selected by cross-validation for the different KRR models
for the resorcinol dataset.
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6 Multiple time-step molecular dynamics in the ML frame-
work

The generation of a molecular dynamics (MD) trajectory via numerical solution of the equations of
motion Ṙα = Pα/Mα, Ṗα = Fα, possibly also coupled to a thermostat, where α = 1, ..., N indexes
the N atoms, Mα is the mass of the αth atom, Pα is its momentum, Rα is its position, and Fα is
the force on this atom. In DFT, if the true external potential is vext(r,R), where R denotes the full
set of atomic coordinates, then the force is given by

Fα = −
∫

dr n(r)∇αvext(r,R) + Fα,NN

≡ F(elec)
α + Fα,NN (10)

where Fα,NN is the force due to the nuclear-nuclear electronic repulsion. The first term refers to the
force originating from the electron-nuclear interaction. In the machine-learning framework, the nesting
of functional dependencies, leading to the progression R → v → n → E, such that the electronic
force is given by

F(elec)
α = −

∫
dr dr′

δEML

δnML(r)

δnML(r)

δv(r′,R)
∇αv(r′,R) (11)

In a standard MD calculation, the numerical integration algorithm for generating P steps of MD
using a time step ∆t, is structured according to the pseudocode shown below:

for i in range(P )

for α in range(N)

Pα ← Pα + ∆t ∗ Fα/2
Rα ← Rα + ∆t ∗Pα/Mα

Update Forces

Pα ← Pα + ∆t ∗ Fα/2 (12)

The obvious bottleneck in an MD calculation, which often restricts the value of P , i.e., the time
scale that can be accessed, is the computational overhead associated with the force calculation, as
each step requires a full calculation of Fα. The computational time required to generate an MD
trajectory can be reduced if the force can be subdivided into a component that has a low computational
overhead and a correction that varies on a slower time scale and carries most of the computational
overhead of the full force calculation. Denoting the former of these as a reference for F(ref)

α and
the correction as δFα, the full force is then Fα = F

(ref)
α + δFα. With this force decomposition, a

reversible, symplectic multiple time-step integration algorithm can be constructed [17] based on the
assumption that the correction δFα only needs to be updated every m steps, where typically m ∼ 5,
which, if the computational overhead of the reference force calculation is negligible compared to the
correction, will reduce the computational cost of the calculation by a factor of m. The algorithm,
called the reversible reference system propagator algorithm (reversible RESPA), has the same structure
as that shown in Supplementary Eq. (12) with the following provision: In each step, the default is to
use F

(ref)
α in place of Fα in each step, and the force update is only an update of the reference force;

every m steps, however, one uses the force F
(ref)
α +mδFα, and the force update requires calculation

of both the reference force and the correction.
In our ∆-machine learning approach, a natural force decomposition arises from the expression for
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the energy

ECC[n] = EDFT[n] + ∆EML[n]

= ECC
ML[n] +

(
EDFT[n] + ∆EML[n]− ECC

ML[n]
)

≡ ECC
ML[n] + δEML[n] (13)

where the density n(r) is either the explicit PBE density or the density from the Hohenberg-Kohn map.
Note that, in the second line, we have added and subtracted the direct CCSD(T) ML model. We,
thus, associated the force obtained from EML[n] with the reference force F

(ref)
α , the computational

overhead of which is quite low. We then associate the correction δFα with the energy correction
δEML[n]. As this term requires a full DFT calculation, its computational overhead is significantly
higher, and the overall reduction in computational time is very nearly equal to the value of m.
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