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In order to better approximate and understand the exchange-correlation functional in density
functional theory, the adiabatic connection curve is accurately calculated beyond the physical
interaction strength using a simulated scaling method. This is done for Hooke's atom, two
interacting electrons in a harmonic well potential. Extrapolation of the accurate curve to the
infinite-coupling limit agrees well with the strictly correlated electron hypothesis. The interaction
strength interpolation is shown to be a good, but not perfect, fit to the adiabatic curve. Arguments
about the locality of functionals and convexity of the adiabatic connection curve are examined in
this regime. ©2003 American Institute of Physic§DOI: 10.1063/1.1579465

I. INTRODUCTION constrained to yield a given density. Finding one electron
uniguely pins the others into position. Among other predic-

. . ) . .. tions, this SCE model says thak,. can also be expanded
tional method in solid-state physics and quantum ChemISt%bout the strong-interaction strength linfit—). Informa-

since it is both simple and reliable® Because of its wide ion from this infinite limit combined with the GHng_L
range of applications and its ability to handle large systemsIon rom this nfinite-imit combined wi € Sng—Levy

there is considerable interest in DFT and improving its accyxpansion about=0 leads to the suggestion of the interac-

racy. In DFT, the only part of the total energy to approximateli®n Strength interpolation(ISI) for the entire curve.
Exchange-correlation energies from the ISI are considerably

is the exchange-correlation energy functioigl[ n]. A for- ; ) i
mal and general expression for the exchange-correlation ef10re accurate than those using only the first two terms in the

Density functional theorfDFT) is a popular computa-

ergy is according to the adiabatic connection perturbation serie¥: _ _ _
. Another reason to consider large coupling strengths is
Exc[n]ZJ d\ U, [n](0), (1) thgt e_xpprox_lmate exchange-correlation energy functionals for
0 this limit might be more accuraté.It has long been known

that standard approximate density functionals, such as the

where U, [ n](\) is the exchange-correlation potential en- ) . .
«d NIV ¢ P local density approximatioiLDA) or the Perdew—Burke—

ergy of a densityn at coupling constanh [see EQ.(3)]. i g o
Analysis of the integrantll, [ n](\) leads to many rigorous EMZerhof(PBE) generalized gradient approximatiC@8GA,

relationships that the exact exchange-correlation energy sai€ Petter for exchange and correlation together than they are
isfies and approximate functionals should satisfy. For ex{Or €xchange alone. This is due to a cancellation of errors
ample, Goling and Levy obtained a perturbation series ex-PeWeen approximations to the exchange and correlation
pression for the exchange-correlation enérgy expanding energy:>*If this cancellation between exchange and corre-
about the weak-interaction limit. Another fruitful result is the 1ation grows with larger coupling constants, approximate
understanding of why hybrid functionals like PBERef. 6  density functionals in this regime will be more accurate.
and B3LYP(Ref. 7) perform so welf~1° The present work is a detailed study of some of these
Because the exchange-correlation energy is the area uftiggestions. We employ a simulated scaling procetiure,
der the adiabatic connection curve betwaerD and 1, most originally developed for the range=0-1, and extend the
interest inU,.(\) has been confirmed to this domain. How- simulated adiabatic connection curve to larger coupling con-
ever, there is no fundamental reason to restrict study to thistants. At some point along the adiabatic connection curve,
domain. In fact, certain exact properties of the adiabatic conthe simulating scale method is expected to break down. Nev-
nection curve outside this domain have been used to bett@rtheless, the curve can be extrapolated from there to the
approximate the curve betweer=0 and \=1.!! One ex- infinite-coupling limit. This analysis yields interesting new
ample is consideration of the strong-interaction limit:oc.  information about the strong-interaction limit.
A model for this strongly interacting limit is the strictly cor- We work with Hooke’s atom because it remains bound
related electron'SCE hypothesis' which states that, be- no matter how strongly the electrons interact. Hooke’s atom
cause of the strong Coulomb repulsion, the individual elecis the unpolarized two electron system described by the
trons distribute themselves as far apart as possible, but atéamiltoniart®
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electrons which still yield the physical density. In this limit,

, (2)  the integrand is finité? We can expandJ,.(\) about the
2l infinite limit:
wherek is the harmonic force constant; andr, are the _ /
position operators for each electron, afgl and V5 are the Usd N0V = Une () + Ui () -+ O,
Laplacian operators for each. Throughout, we use atomic N—o0, 5)
units @®>=#%=m,=1) so that all energies are in hartrees and
all lengths in Bohr radii. This is not just an exactly solvable
model with Coulomb interactions, but also an important
physical systemFor example, many authors have used thi
system to model quantum ddts!®

Although we could have performed calculations for the
Hooke’s atom at various harmonic well strengths, we will

1

H=—5(

k
V24 V3)+ E(r§+ 13+ ——

Iry

where U, [ n](») and U, [n](«) are the zeroth and first
terms in the expansion. It has been suggested that the elec-
trons behave in a strictly correlated manner at this Iirhit.
SThe electrons still produce a given density distribution, but
finding one electron determines the position of all the others.
Information about this limit can be incorporated into an in-
terpolation formula which reproduces both limits exactly and

fOeC:SS t%nggrii/férfgrfgllstisc pg&%ﬁggﬁﬁ?ﬁ’eﬂggg S‘f;tct)m ;ap'can be integrated analytically. An example is the interaction
P Y ’ strength interpolatioh?

value, the correlation energy is comparable to that of the For spherically symmetric two-electron systems in three

helium atom. . . . :
. - .. dimensions, the SCE model admits an exact solution for
The simulated curves indicate that the SCE predlct|on%XC(Oo) and provides one of two contributions ] (). %

for U,.() are correct. Next, assuming the validity of the . ked in thi is how | h -
SCE hypothesis, we generate a highly accurate simulation o?ne _que_st|on asked n this paper is how farge the missing
' contribution toU; () is. We will calculate the SCE limit

the entire curve. This allows us to calculate higher deriva—élnd art of the first correction term for Hooke's atok
tives of U,.(\) around key pointsA=0, 1, and~. This P '

information should be useful for the testing and improve—:1/4’ according to the expressions given by Seidl in Ref. 23.

L . : The final point—the relationship between coupling con-
ment of existing functionals. We also compare IS| with the b - P ping
. stant and scale factor—is important for the procedure we
accurate simulated result. . . . . .
used to simulate the adiabatic connection curve. A density

n(r) is scaled according to

— 3
II. ADIABATIC CONNECTION THEORY n,(r=y"n(yr), 0sy<e, (6)

. . .with y being the scale factor. The exchange-correlation en-
Three theoretical elements are vital to the content of this Y 9 g

. ) . ergy at a coupling constant and densityn(r) is simpl
paper. These are the adiabatic connection curve, the stronciegy e yn(r) 4

. e . . slated to the exchange-correlation ener at a scaled
coupling limit, and the relationship between scale factor an g 9y

; ensity?42°
coupling constant.
First, we review the adiabatic connection formalism. The EQC[n] =N2E [ Nyp - (7
integrand of Eq(l) is The integrand in Eq(L) is U,o(\)=dE\/d\. Under both
Uy NTON) = (MM v WYy — yln], (3)  coupling constant and scaling transformations, we can some-
) ~ times show how parts of the exact energy transform. For
where U[n] is the Hartree energy,.. is the electron— example

electron Coulomb interaction, an#y"™ is the wave func- .
tion that minimizeg( W™ T+ \V J ¥ ") and yields the Ex[n]=AEn] or EJn,]=yE{n]. ®
densityn(r). The functionalU,[n](\), as a function ok,  \we use this observation later to identify scale factors be-
makes up the adiabatic connection curvea0, Eq.(3) iS  tween two scaled densities.
just E,, the exchange energy evaluated at a given density.
Later, for convenience, we will subtract this contribution and
write U (N)=U,(\)—E,.

At small \, one may write the Gting—Levy perturba- In order to generate highly accurate adiabatic connection
tion serie§®?! plots, we use the procedure developed by Frydel, Terilla, and

U [NV =E[n]+ 2ES A+ O, -0, (4) Burkel® To find the adiabatic connection curve, we need

xe X ¢ ’ ' EXJn] for a set of\’s. For Hooke’s atom, we know the exact

whereE, is the exchange energy ai¥"[n] is the second- densities and the exa, at differentk values. Instead of
order contribution to the correlation energy. To get thechanging\, which is difficult, we use Eq(7). A small
exchange-correlation energy from Eg), we need to inte- change in the strength of external potential yields another
grate fromA=0 to 1. Unfortunately, there is no guarantee density, qualitatively similar to the original density, but on a
that the higher-order terms will be negligible and that thedifferent scale. If we can solve the system exactly at this
series will convergé? different external potential strength, we have an approxima-

Other exact properties dfl,. might be useful to help tion to the exchange-correlation energy for a scaled density
understand this curve. An interesting limit is wh&n-oo. (see Fig. L When the densities that do not qualitatively
This leads us to the second theoretical point, the strongehange shape much, this scheme is highly accurate. To find
coupling limit. This limit corresponds to strongly interacting U,.(\), we differentiate Eq(7) with this highly accurate

Ill. SIMULATED SCALING METHOD
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approximation to the exa@, [N, ]. Including a first-order ~TABLE I. Simulated scaling and\ equivalences using t1, scaling rule,
correction term increases the accuracy of this method: ~ E9-(10), to determine\.

k N k A
£, 1~Edn T+ [ & o nJ0n, (0 -n'(1)] - — — —
1/16 1.460 1 0.689
+0(8n)?, 9 1/64 2.151 4 0.478
1/256 3.197 16 0.334

wherev (r)=8En]/on(r) is the correlation contribution
to the Kohn—Sham potential. This method gives highly ac-

curate energies for Hooke’s atork=1/4) and for helium

whenA varies from 0 to 1. The error at=0 is 0.3 mhartree, ate the entire adiabatic curve, Fig. 2. The curve is shown as
and the estimated error fok close to 1 less than 1 g function ofu=1/\/\ so that the region € 1, % can appear
mhartree'® on a finite-sized plot.

For each simulated scaling, we must assign an appropri-  pPBE results for certain key values are listed in Table I.
ate scale factor, but which true scaled density does the apgsn explicit expressior(13) for the PBE functional ag.—0
proximately scaled density mimic? The original paper dis-is
cusses several possibilities. They all require knowing how a
chosen component of the energy changes with uniform den- pg _ PE 0.964
sity scaling. We use thE, method: rbXCE(w)[n]_f dr n(r)ex(n)( Fx )+ 1+y+y?2
A=1y=EJ[n]/En"]. (10) (11
wherey=0.2263?, s is the reduced gradient,(n) is the
exchange energy per particle of the uniform gas, k‘aﬁ%F(s)

See Table | foin-k associations. Since we ugg to assign,
the U,(e0) contribution toU,(«) necessarily scales prop- .
erly for all values of\, and so we show only.(\). IS ar\}vexchagge e_nhanc?mehnt faféfor.l he adiabat

In this paper, we examine the adiabatic connection curve e need a criterion for how far along the adiabatic con-
at large interaction strengths. This method only works for'€Ction We can trust the simulated density scaling to mimic

\>1 for systems that remain bound as the external potentia|'® (alxgctly scale_d de_nsit\)//._o_ur criterionhis to therminatg the
is weakened. Even with this restriction, the method musf!Mmu'ations atp=pe=1/NA;=0.4916 where the density

ultimately fail as \—. Specifically, for Hooke's atom, dualitatively changes shaé Even at this point, the first-
Cioslowski and Pernal showed that at a certain critica®de" correction in Eq(9) still improves upon the zeroth-
strength for the external potenti&d,=0.0016 (,=4.138), qrder simulation. This is a highly conservative estimate; it is
the density changes shape qualitativlgeyond this value, IKely that the curves are accurate to smajiés.

the simulated scaling might no longer be a good approxima-  1© 9ét & prediction folJ(.=0), we must extrapolate
tion to exact scaling. On the other hand, the method fails fof€ Simulation tou=0. This is done by fitting the simulated

He almost immediately as the two-electron ion unbinds afjata to amth-order polynomial and extrapolating this poly-
nuclear chargez=0.9 nomial tou=0. The third-order polynomial connecting four

To test this procedure and to develop a rule for its reli-Sample points best reproduces the anE(OO)' In Fig.

ability, we apply the procedure in a case where we alreadg’ we show the exactly scaled PBE functional and the poly-

know the correct answer; namely, with an approximate func_nomial interpolation. We see that the simulated curve is al-

tional. GGA mimics the complexity of the true functional MOSt on top of the exact curve. However, they do differ
better than, say, the local density approximation. Because gi9htly in the Uc(u=0) values. For the simulated curve,
its first-principles derivation and reliability, we use the pBE Yc(#=0)=—0.357, and the scaled result 150.363 from
approximation heré’ Since we have the analytic form for Eq. (12), a 6-mhartree error.

the PBE functional, we can scale the input density to gener-

UGPBE

-0.05 - simulated scaling N
exact scaling -------
01 1 exact PBE Limit - .
-0.15
2 2
&)
= -0.25

035

FIG. 2. PBE adiabatic connection curve for Hooke's atok¥ (/4):
FIG. 1. Simulated scaling of the density. We start with Hooke's atom at  Uc(u=1/y\). The solid line is generated using simulated scaling of the
=1/4. Then, we solve at various other coupling constants and use simulategdensity and the dashed curve by exactly scaling the known functional. The
scaling to return us as closely as possible tokhel/4 density. exact PBEU(u=0) limit is shown(short dashes
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: TABLE II. Higher derivatives ofU () with respect tqu for Hooke’s atom

0 T T
U —
STulated Sealing —— (k=1/4).
-0.05 + SCE limit ------—- B
Uc(u) Uc(u) Ue(w)
. T 0 ~0.228 ~0.235 ~0.156
2 1 -0.068 0.088 0.221
O 08T .
02} i
o5 L data points fromu=0.5 to 1 and including the SCHB (u«
0 02 04 06 08 1 =0) in the point set. We used a third-order polynomial, the
U order that best reproduced the adiabatic curve for the PBE

functional in Sec. Ill. This curve should be an excellent ap-
FIG. 3. Adiabatic connection curve for Hooke's atoi=(1/4): Uc(u). roximation to the exact curve. From the plot, we see that the
The solid line is the simulated curve. The SCE limit is shown as a dasheg) I . - '
line. derivative dU.(u)/du is positive everywhere along the
adiabatic curve. This implies thdtU.(\)/d\ is negative and
the adiabatic curve is convex. All calculatét.(\) curves
IV. EXTRAPOLATING TO THE for OA=<1 havedU.(\)/d\<0, but the inequality has
INFINITE-INTERACTION-STRENGTH LIMIT never been gradually proved. Our result extends this obser-
The simulated adiabatic connection curve for Hooke's 20" ‘f”‘?.l for this system. . .
Derivatives ofU.(u) are obtained from the coefficients

atomk=1/4 in Fig. 3 approaches the SQE.(x=0) limit. . . . . L
As in Sec. Il for the PBE functional, we reproduce the entire!” the polynomial extrapolation. Two higher derivatives of
' U.(u) with respect tqu are shown in Table Il. Seidl's model

curve by fitting the simulated points to a third-order polyno- RN )
mial. Since the simulated scaling method is only reliable/®" Yc(#=0)=0.281(Ref. 23 does not agree with the ac-

betweenu=1/2 and 1, we must extrapolate the curve overSUrateUc(x=0). This indicates that the missing contribu-
the domainu=0~-1/2 by a polynomial. The extrapolated pre- ;'O”Sh_to the SCEUC(;FCI)) .rt:entloned by Seidl are, at least
diction for U,(x=0), —0.206, is 22 mhartree from the or this sysltim,hnotdngg g e.bf ith

strictly correlated electron prediction ef0.228. We do not Seyera igher derivatives ofo(\) wit rgspect to\ are
expect as good agreement as in Sec. Il because theEtrue listed in Table Ill. Here, we need not restrict ourselves to a

functional is more complicated than a GGA, and we regaro(tjh'rd'orOIer pl_olynofmollal mte_rpolatlon Eecause Wi r_:_?]ve a
the result as consistent with the SCE hypothesis. ense sampiing o ata p0|_nts over the ranged—4. The
higher derivatives reported in terms pfare expected to be

highly accurate.

The 1SI, as originally formulatetf, is an interpolation
scheme for the entire adiabatic connection curve. It used ex-
In Sec. IV, we used an extrapolation scheme to completact values oh =0 and carefully chosen GGA values;at0.
the adiabatic curve. Here, we combine the simulated paNVe now ask how well the ISI with accurate inputs compares
with the SCE electron limit to produce a highly accurateto the simulated curve. The answer tells us how good the
adiabatic connection curve for all coupling strengths. Fronchoice of curve in the 1Sl is. For the inputs to the ISI, we use

this curve, we calculate the first terms in Taylor expansionshe exactE, and ES-?, which are derivable from the simu-
about bot\=0, 1, andu=0, 1. Using these new results, we lated curves in Ref. 15 and are given in Table IV. For
assess the accuracy of the ISI with accurate inputs. U,(0), we use the SCE prediction which, judging from the

The u<1 simulated adiabatic connection curve is shownresults in Sec. IV, we believe to be exact. Eg(x=0), we

in Fig. 4. The curve was generated by fitting the simulatednput two different values: the accurate simulated value and
Seidl's prediction. The results are shown in Table V. The ISI
interpolation does not perform exceptionally well with accu-
rate inputs as already noticed in Ref. 28. For example, the
magnitude ofU,.(1) is underestimated by 5 mhartree. This

V. SIMULATING THE ENTIRE ADIABATIC
CONNECTION CURVE

-0.05 T T T T

e 1 is perhaps a result of the way the (x=0) limit is included
- in the interpolation equation. For this system, incorporating
= s 1 the accurate value fdd/(x=0) in the ISI doesot greatly
= improve its accuracy.
02+ U -
Simulated Scaling
025 , i ISl TABLE IlI. Higher derivatives ofUc(\) with respect to\ for Hooke’s atom
0 02 04 086 08 1 (k=1/4).
s N Uc(h) uch)  uey  u@oy uloy
FIG. 4. Simulated adiabatic connection curve for Hooke’s atém 1/4): 0 0.000 —0.101 0.095 -0.107 0.124
Uc(u). The solid line is the simulated curve with the SOE(x=0). The 1 —0.0677 —0.044 0.032 —0.032 0.039

dashed curve is the ISI using exact inputs.
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TABLE IV. Accurate results for Hooke’s atom witk= 1/4 evaluated on the PBE vs. Exact Uxc
exact densities. 04 L B S S s —

Ex 2EEY”  Ec  Ug(p=1) Uc(u=0) Ug(n=0)

PBE —-0.493 -0.168 —0.051 -—-0.087 —0.363 0.561
Exact —0.515 —0.101 -0.039 —0.068 —0.228 0.235

Ugce(A)

In Fig. 5, we see how the PBE and LDA adiabatic con- P
nection curves compare to the accurate curve. The PBE "0 05 1 15 2 25 3 35 4
curve clearly crosses the accurate curve. Because its exact A

limit lim , U CA(w)=1.964:P* is below the SCE pre-

. K0 = xe X IG. 5. Adiabatic connection curve for Hooke’s atom using various func-
diction, the LDA curve must also cross the accurate one a{f e : o X _

. . . Ionals: The exact curve is the solid line, the PBE is the long-dashed line,

some larger interaction strength. Slnc_e both curves cross th@q the local density approximatidhDA) is the short-dashed line.
exact curve at some>1, the cancellation of errors between
exchange and correlation Bl will eventually grow smaller
beyond some critical interaction strength and become an ad-
dition of errors. It has been argued that because the exchang&KNOWLEDGMENTS
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