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Accurate adiabatic connection curve beyond the physical
interaction strength
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In order to better approximate and understand the exchange-correlation functional in density
functional theory, the adiabatic connection curve is accurately calculated beyond the physical
interaction strength using a simulated scaling method. This is done for Hooke’s atom, two
interacting electrons in a harmonic well potential. Extrapolation of the accurate curve to the
infinite-coupling limit agrees well with the strictly correlated electron hypothesis. The interaction
strength interpolation is shown to be a good, but not perfect, fit to the adiabatic curve. Arguments
about the locality of functionals and convexity of the adiabatic connection curve are examined in
this regime. ©2003 American Institute of Physics.@DOI: 10.1063/1.1579465#
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I. INTRODUCTION

Density functional theory~DFT! is a popular computa
tional method in solid-state physics and quantum chemi
since it is both simple and reliable.1–3 Because of its wide
range of applications and its ability to handle large syste
there is considerable interest in DFT and improving its ac
racy. In DFT, the only part of the total energy to approxima
is the exchange-correlation energy functionalExc@n#. A for-
mal and general expression for the exchange-correlation
ergy is according to the adiabatic connection4

Exc@n#5E
0

1

dl Uxc@n#~l!, ~1!

where Uxc@n#(l) is the exchange-correlation potential e
ergy of a densityn at coupling constantl @see Eq.~3!#.
Analysis of the integrandUxc@n#(l) leads to many rigorous
relationships that the exact exchange-correlation energy
isfies and approximate functionals should satisfy. For
ample, Go¨rling and Levy obtained a perturbation series e
pression for the exchange-correlation energy5 by expanding
about the weak-interaction limit. Another fruitful result is th
understanding of why hybrid functionals like PBE0~Ref. 6!
and B3LYP~Ref. 7! perform so well.8–10

Because the exchange-correlation energy is the area
der the adiabatic connection curve betweenl50 and 1, most
interest inUxc(l) has been confirmed to this domain. How
ever, there is no fundamental reason to restrict study to
domain. In fact, certain exact properties of the adiabatic c
nection curve outside this domain have been used to b
approximate the curve betweenl50 and l51.11 One ex-
ample is consideration of the strong-interaction limitl→`.
A model for this strongly interacting limit is the strictly cor
related electron~SCE! hypothesis11 which states that, be
cause of the strong Coulomb repulsion, the individual el
trons distribute themselves as far apart as possible, bu
6960021-9606/2003/119(2)/696/5/$20.00
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constrained to yield a given density. Finding one electr
uniquely pins the others into position. Among other pred
tions, this SCE model says thatUxc can also be expande
about the strong-interaction strength limit~l→`!. Informa-
tion from this infinite limit combined with the Go¨rling–Levy
expansion aboutl50 leads to the suggestion of the intera
tion strength interpolation~ISI! for the entire curve.
Exchange-correlation energies from the ISI are considera
more accurate than those using only the first two terms in
perturbation series.12

Another reason to consider large coupling strengths
that approximate exchange-correlation energy functionals
this limit might be more accurate.13 It has long been known
that standard approximate density functionals, such as
local density approximation~LDA ! or the Perdew–Burke–
Ernzerhof~PBE! generalized gradient approximation~GGA!,
are better for exchange and correlation together than they
for exchange alone. This is due to a cancellation of err
between approximations to the exchange and correla
energy.10,14 If this cancellation between exchange and cor
lation grows with larger coupling constants, approxima
density functionals in this regime will be more accurate.

The present work is a detailed study of some of the
suggestions. We employ a simulated scaling procedur15

originally developed for the rangel50–1, and extend the
simulated adiabatic connection curve to larger coupling c
stants. At some point along the adiabatic connection cu
the simulating scale method is expected to break down. N
ertheless, the curve can be extrapolated from there to
infinite-coupling limit. This analysis yields interesting ne
information about the strong-interaction limit.

We work with Hooke’s atom because it remains bou
no matter how strongly the electrons interact. Hooke’s at
is the unpolarized two electron system described by
Hamiltonian16
© 2003 American Institute of Physics
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Ĥ52
1

2
~¹1

21¹2
2!1

k

2
~r1

21r2
2!1

1

ur12r2u
, ~2!

where k is the harmonic force constant,r1 and r2 are the
position operators for each electron, and¹1

2 and¹2
2 are the

Laplacian operators for each. Throughout, we use ato
units (e25\5me51) so that all energies are in hartrees a
all lengths in Bohr radii. This is not just an exactly solvab
model with Coulomb interactions, but also an importa
physical system. For example, many authors have used t
system to model quantum dots.17,18

Although we could have performed calculations for t
Hooke’s atom at various harmonic well strengths, we w
focus onk51/4. For this spring constant, Hooke’s atom ha
pens to admit an analytic solution.19 Furthermore, for thisk
value, the correlation energy is comparable to that of
helium atom.

The simulated curves indicate that the SCE predicti
for Uxc(`) are correct. Next, assuming the validity of th
SCE hypothesis, we generate a highly accurate simulatio
the entire curve. This allows us to calculate higher deri
tives of Uxc(l) around key points:l50, 1, and`. This
information should be useful for the testing and improv
ment of existing functionals. We also compare ISI with t
accurate simulated result.

II. ADIABATIC CONNECTION THEORY

Three theoretical elements are vital to the content of
paper. These are the adiabatic connection curve, the str
coupling limit, and the relationship between scale factor a
coupling constant.

First, we review the adiabatic connection formalism. T
integrand of Eq.~1! is

Uxc@n#~l!5^Cn
min,luV̂eeuCn

min,l&2U@n#, ~3!

where U@n# is the Hartree energy,V̂ee is the electron–
electron Coulomb interaction, andCn

min,l is the wave func-
tion that minimizeŝ Cn

min,luT̂1lV̂eeuCn
min,l& and yields the

densityn(r ). The functional,Uxc@n#(l), as a function ofl,
makes up the adiabatic connection curve. Atl50, Eq.~3! is
just Ex , the exchange energy evaluated at a given den
Later, for convenience, we will subtract this contribution a
write Uc(l)5Uxc(l)2Ex .

At small l, one may write the Go¨rling–Levy perturba-
tion series20,21

Uxc@n#~l!5Ex@n#12Ec
GL2@n#l1O~l2!, l→0, ~4!

whereEx is the exchange energy andEc
GL2@n# is the second-

order contribution to the correlation energy. To get t
exchange-correlation energy from Eq.~4!, we need to inte-
grate froml50 to 1. Unfortunately, there is no guarant
that the higher-order terms will be negligible and that t
series will converge.12

Other exact properties ofUxc might be useful to help
understand this curve. An interesting limit is whenl→`.
This leads us to the second theoretical point, the stro
coupling limit. This limit corresponds to strongly interactin
Downloaded 13 Jul 2003 to 128.6.71.63. Redistribution subject to AIP
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electrons which still yield the physical density. In this lim
the integrand is finite.22 We can expandUxc(l) about the
infinite limit:

Uxc@n#~l!5Uxc@n#~`!1Uxc8 @n#~`!/Al1O~1/l!,

l→`, ~5!

where Uxc@n#(`) and Uxc8 @n#(`) are the zeroth and firs
terms in the expansion. It has been suggested that the
trons behave in a strictly correlated manner at this limi11

The electrons still produce a given density distribution, b
finding one electron determines the position of all the othe
Information about this limit can be incorporated into an i
terpolation formula which reproduces both limits exactly a
can be integrated analytically. An example is the interact
strength interpolation.12

For spherically symmetric two-electron systems in thr
dimensions, the SCE model admits an exact solution
Uxc(`) and provides one of two contributions toUxc8 (`).23

One question asked in this paper is how large the miss
contribution toUxc8 (`) is. We will calculate the SCE limit
and part of the first correction term for Hooke’s atom,k
51/4, according to the expressions given by Seidl in Ref.

The final point—the relationship between coupling co
stant and scale factor—is important for the procedure
used to simulate the adiabatic connection curve. A den
n(r ) is scaled according to

ng~r !5g3n~gr !, 0<g,`, ~6!

with g being the scale factor. The exchange-correlation
ergy at a coupling constantl and densityn(r ) is simply
related to the exchange-correlation energy at a sca
density:24,25

Exc
l @n#5l2Exc@n1/l#. ~7!

The integrand in Eq.~1! is Uxc(l)5dExc
l /dl. Under both

coupling constant and scaling transformations, we can so
times show how parts of the exact energy transform.
example,

Ex
l@n#5lEx@n# or Ex@ng#5gEx@n#. ~8!

We use this observation later to identify scale factors
tween two scaled densities.

III. SIMULATED SCALING METHOD

In order to generate highly accurate adiabatic connec
plots, we use the procedure developed by Frydel, Terilla,
Burke.15 To find the adiabatic connection curve, we ne
Exc

l @n# for a set ofl’s. For Hooke’s atom, we know the exac
densities and the exactExc at differentk values. Instead of
changing l, which is difficult, we use Eq.~7!. A small
change in the strength of external potential yields anot
density, qualitatively similar to the original density, but on
different scale. If we can solve the system exactly at t
different external potential strength, we have an approxim
tion to the exchange-correlation energy for a scaled den
~see Fig. 1!. When the densities that do not qualitative
change shape much, this scheme is highly accurate. To
Uxc(l), we differentiate Eq.~7! with this highly accurate
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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approximation to the exactExc@n1/l#. Including a first-order
correction term increases the accuracy of this method:

Ec@ng#'Ec@n8#1E d3r vc@n8#~r !@ng~r !2n8~r !#

1O~dn!2, ~9!

wherevc(r )5dEc@n#/dn(r ) is the correlation contribution
to the Kohn–Sham potential. This method gives highly
curate energies for Hooke’s atom (k51/4) and for helium
whenl varies from 0 to 1. The error atl50 is 0.3 mhartree,
and the estimated error forl close to 1 less than 1
mhartree.15

For each simulated scaling, we must assign an appro
ate scale factor, but which true scaled density does the
proximately scaled density mimic? The original paper d
cusses several possibilities. They all require knowing ho
chosen component of the energy changes with uniform d
sity scaling. We use theEx method:

l51/g5Ex@n#/Ex@n8#. ~10!

See Table I forl-k associations. Since we useEx to assignl,
the Ux(`) contribution toUxc(`) necessarily scales prop
erly for all values ofl, and so we show onlyUc(l).

In this paper, we examine the adiabatic connection cu
at large interaction strengths. This method only works
l.1 for systems that remain bound as the external poten
is weakened. Even with this restriction, the method m
ultimately fail as l→`. Specifically, for Hooke’s atom
Cioslowski and Pernal showed that at a certain criti
strength for the external potential,kc50.0016 (lc54.138),
the density changes shape qualitatively.26 Beyond this value,
the simulated scaling might no longer be a good approxim
tion to exact scaling. On the other hand, the method fails
He almost immediately as the two-electron ion unbinds
nuclear charge,Z50.9.

To test this procedure and to develop a rule for its re
ability, we apply the procedure in a case where we alre
know the correct answer; namely, with an approximate fu
tional. GGA mimics the complexity of the true function
better than, say, the local density approximation. Becaus
its first-principles derivation and reliability, we use the PB
approximation here.27 Since we have the analytic form fo
the PBE functional, we can scale the input density to gen

FIG. 1. Simulated scaling of the density. We start with Hooke’s atom ak
51/4. Then, we solve at various other coupling constants and use simu
scaling to return us as closely as possible to thek51/4 density.
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ate the entire adiabatic curve, Fig. 2. The curve is shown
a function ofm51/Al so that the regionlP1, ` can appear
on a finite-sized plot.

PBE results for certain keyl values are listed in Table I
An explicit expression~13! for the PBE functional asm→0
is

Uxc
PBE~`!@n#5E d3r n~r !ex~n!S Fx

PBE~s!1
0.964

11y1y2D ,

~11!

wherey50.2263s2, s is the reduced gradient,ex(n) is the
exchange energy per particle of the uniform gas, andFx

PBE(s)
is an exchange enhancement factor.27

We need a criterion for how far along the adiabatic co
nection we can trust the simulated density scaling to mim
the exactly scaled density. Our criterion is to terminate
simulations atm5mc51/Alc50.4916 where the density
qualitatively changes shape.26 Even at this point, the first-
order correction in Eq.~9! still improves upon the zeroth
order simulation. This is a highly conservative estimate; i
likely that the curves are accurate to smallerm’s.

To get a prediction forUc(m50), we must extrapolate
the simulation tom50. This is done by fitting the simulate
data to annth-order polynomial and extrapolating this poly
nomial tom50. The third-order polynomial connecting fou
sample points best reproduces the knownUc

PBE(`). In Fig.
2, we show the exactly scaled PBE functional and the po
nomial interpolation. We see that the simulated curve is
most on top of the exact curve. However, they do dif
slightly in the Uc(m50) values. For the simulated curve
Uc(m50)520.357, and the scaled result is20.363 from
Eq. ~11!, a 6-mhartree error.

ted

FIG. 2. PBE adiabatic connection curve for Hooke’s atom (k51/4):
UC(m51/Al). The solid line is generated using simulated scaling of
density and the dashed curve by exactly scaling the known functional.
exact PBEUC(m50) limit is shown~short dashes!.

TABLE I. Simulated scalingk andl equivalences using theEx scaling rule,
Eq. ~10!, to determinel.

k l k l

1/4 1.000 1/4 1.000
1/16 1.460 1 0.689
1/64 2.151 4 0.478
1/256 3.197 16 0.334
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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IV. EXTRAPOLATING TO THE
INFINITE-INTERACTION-STRENGTH LIMIT

The simulated adiabatic connection curve for Hook
atomk51/4 in Fig. 3 approaches the SCEUc(m50) limit.
As in Sec. III for the PBE functional, we reproduce the ent
curve by fitting the simulated points to a third-order polyn
mial. Since the simulated scaling method is only relia
betweenm51/2 and 1, we must extrapolate the curve ov
the domainm50–1/2 by a polynomial. The extrapolated pr
diction for Uc(m50), 20.206, is 22 mhartree from th
strictly correlated electron prediction of20.228. We do not
expect as good agreement as in Sec. III because the truEc

functional is more complicated than a GGA, and we reg
the result as consistent with the SCE hypothesis.

V. SIMULATING THE ENTIRE ADIABATIC
CONNECTION CURVE

In Sec. IV, we used an extrapolation scheme to comp
the adiabatic curve. Here, we combine the simulated
with the SCE electron limit to produce a highly accura
adiabatic connection curve for all coupling strengths. Fr
this curve, we calculate the first terms in Taylor expansio
about bothl50, 1, andm50, 1. Using these new results, w
assess the accuracy of the ISI with accurate inputs.

Them,1 simulated adiabatic connection curve is sho
in Fig. 4. The curve was generated by fitting the simula

FIG. 3. Adiabatic connection curve for Hooke’s atom (k51/4): UC(m).
The solid line is the simulated curve. The SCE limit is shown as a das
line.

FIG. 4. Simulated adiabatic connection curve for Hooke’s atom (k51/4):
UC(m). The solid line is the simulated curve with the SCEUC(m50). The
dashed curve is the ISI using exact inputs.
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data points fromm50.5 to 1 and including the SCEUc(m
50) in the point set. We used a third-order polynomial, t
order that best reproduced the adiabatic curve for the P
functional in Sec. III. This curve should be an excellent a
proximation to the exact curve. From the plot, we see that
derivative dUc(m)/dm is positive everywhere along th
adiabatic curve. This implies thatdUc(l)/dl is negative and
the adiabatic curve is convex. All calculatedUc(l) curves
for 0<l<1 have dUc(l)/dl,0, but the inequality has
never been gradually proved. Our result extends this ob
vation tol>1 for this system.

Derivatives ofUc(m) are obtained from the coefficient
in the polynomial extrapolation. Two higher derivatives
Uc(m) with respect tom are shown in Table II. Seidl’s mode
for Uc8(m50)50.281~Ref. 23! does not agree with the ac
curateUc8(m50). This indicates that the missing contribu
tions to the SCEUc8(m50) mentioned by Seidl are, at lea
for this system, not negligible.

Several higher derivatives ofUc(l) with respect tol are
listed in Table III. Here, we need not restrict ourselves to
third-order polynomial interpolation because we have
dense sampling of data points over the rangel50–4. The
higher derivatives reported in terms ofl are expected to be
highly accurate.

The ISI, as originally formulated,12 is an interpolation
scheme for the entire adiabatic connection curve. It used
act values ofl50 and carefully chosen GGA values atm50.
We now ask how well the ISI with accurate inputs compa
to the simulated curve. The answer tells us how good
choice of curve in the ISI is. For the inputs to the ISI, we u
the exactEx andEc

GL2, which are derivable from the simu
lated curves in Ref. 15 and are given in Table IV. F
Uxc(`), we use the SCE prediction which, judging from th
results in Sec. IV, we believe to be exact. ForUc8(m50), we
input two different values: the accurate simulated value a
Seidl’s prediction. The results are shown in Table V. The
interpolation does not perform exceptionally well with acc
rate inputs as already noticed in Ref. 28. For example,
magnitude ofUxc(1) is underestimated by 5 mhartree. Th
is perhaps a result of the way theUc8(m50) limit is included
in the interpolation equation. For this system, incorporat
the accurate value forUc8(m50) in the ISI doesnot greatly
improve its accuracy.

d

TABLE II. Higher derivatives ofUC(m) with respect tom for Hooke’s atom
(k51/4).

m UC(m) UC8 (m) UC9 (m)

0 20.228 20.235 20.156
1 20.068 0.088 0.221

TABLE III. Higher derivatives ofUC(l) with respect tol for Hooke’s atom
(k51/4).

l UC(l) UC8 (l) UC9 (l) UC
(3)(l) UC

(4)(l)

0 0.000 20.101 0.095 20.107 0.124
1 20.0677 20.044 0.032 20.032 0.039
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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In Fig. 5, we see how the PBE and LDA adiabatic co
nection curves compare to the accurate curve. The P
curve clearly crosses the accurate curve. Because its e
limit lim m→0Uxc

LDA(m)51.964Ex
LDA is below the SCE pre-

diction, the LDA curve must also cross the accurate one
some larger interaction strength. Since both curves cross
exact curve at somel.1, the cancellation of errors betwee
exchange and correlation inExc

l will eventually grow smaller
beyond some critical interaction strength and become an
dition of errors. It has been argued that because the exch
correlation on-top hole grows more local as the interact
strength increases,10,29 local functionals forExc

l would work
better asl increases. This is certainly true for our system
the range 0<l<1; however, the adiabatic plots indicate th
asl grows, the energy depends on the density in an incre
ing nonlocal way. The accuracy of the on-top hole is le
relevant to the total energies in the strongly interacting
gion of the adiabatic connection curve. This is related t
self-correlation error as noted in Ref. 13. Both LDA a
GGA functionals rely on the LDA treatment of the unifor
gas, and the LDA cannot properly reproduce the Wig
crystallization limit due to this strong self-correlation error30

Meta-GGAs are self-correlation free and behave better in
limit.31

VI. CONCLUSION

In this work, we have extended the method of Ref. 15
simulate the adiabatic connection curve to interact
strengths greater than the physical value for a simple mo
system. In doing so, we kept in mind that the method m
fail at somemc as m→0 (m51/Al) and performed an ex
trapolation to the strong-interaction limit. This simulate
curve agreed with the SCE hypothesis. To generate a hi
accurate curve form50–1, we included the SCEUc(m
50) in the set of points and interpolated. Using this accur
adiabatic curve, we found higher derivatives at key coupl
constantsl50, 1, and̀ . Finally, we compared some popula
approximate functionals to the accurate curve. These res
will be useful in the formal analysis of the adiabatic conne
tion curve, the testing of approximate functionals, and
construction of new functionals in DFT.

TABLE IV. Accurate results for Hooke’s atom withk51/4 evaluated on the
exact densities.

EX 2EC
GL2 EC UC(m51) UC(m50) UC8 (m50)

PBE 20.493 20.168 20.051 20.087 20.363 0.561
Exact 20.515 20.101 20.039 20.068 20.228 0.235

TABLE V. Interaction strength interpolation results for Hooke’s atom w
k51/4. Accurateandmodelrefer to the value ofUc8(m50). The accurate
value is from our simulation and the model is from Seidl’s model Ref.~23!.

Method UC8 (m50) UC(l51) Error EC Error

ISI ~accurate! 0.235 20.063 8% 20.036 6%
ISI ~model! 0.281 20.060 11% 20.035 9%
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FIG. 5. Adiabatic connection curve for Hooke’s atom using various fu
tionals: The exact curve is the solid line, the PBE is the long-dashed
and the local density approximation~LDA ! is the short-dashed line.
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