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Abstract

We discuss the relationship between modern time-dependent density-functional theory and earlier time-periodic versions, and why the
criticisms in a recent Letter [Chem. Phys. Lett. 433 (2006) 204] of our earlier analysis [Chem. Phys. Lett. 359 (2002) 237] are incorrect.
� 2007 Elsevier B.V. All rights reserved.
The idea of a formulation of density-functional theory
(DFT) applied directly to Floquet states has attracted
much attention over recent years (see e.g. Refs. [1–3]). Such
a method would benefit from the favorable system-size
scaling of density-functional approaches as well as the nat-
ural treatment of time-periodic intense field processes that
Floquet approaches provide. Underlying any DFT is a
one-to-one mapping between densities and applied poten-
tials, which depends on both the particle statistics and
the particle interaction. In static DFT, this mapping exists
only for the ground-state density [4]. In time-dependent
DFT (TDDFT), established by Runge and Gross [5], this
mapping depends on the initial state.

However, the Floquet density-functional theory (Flo-
quet DFT) proposed in earlier work [1,3] is based on a
one-to-one mapping between densities and potentials, with-
out initial-state dependence. In a recent Letter [6] (hence-
forth MB), we showed that this mapping does not exist,
so that the time-periodic density of an arbitrary many-elec-
tron Floquet state does not uniquely determine the poten-
tial in which it evolves. If analyzed within the framework of
TDDFT, one can construct a one-to-one mapping, but it
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depends on the initial state of the system [6]. This proof
does not exclude the possibility that a mapping might exist
for some specified state, a hope on which some of the
original works were based.

A recent Letter [7] (henceforth SH), incorrectly claims
that MB overlooked important points and that in fact Flo-
quet DFT is well-founded and valid. There are at least four
simple errors in SH:

(1) The concept of a ‘ground Floquet state’ used in SH
implies the existence of an adiabatic theorem for
Floquet states. This is known not to exist in general
[12–19]. But, even if it did, the subject of MB was
TDDFT applied to any Floquet state, under periodic
fields of any field strength, weak or strong, as formu-
lated and applied in Ref. [3]. SH considers only
‘ground Floquet states’, and implicitly their work
applies only to weak fields (see also point (2)).

(2) The minimal principle for the quasi-energy that SH
use holds only for weak, off-resonant driving. In par-
ticular, it does not hold for strong-fields.

(3) Time-dependent DFT (TDDFT), as formulated by
Runge and Gross [5], can be applied to Floquet
states, in contrast to what is claimed in SH.

(4) The example in MB is valid, and SH’s criticism of it is
incorrect.
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Points (1) and (2) are errors that stem back to the origi-
nal Letter of Deb and Ghosh [1] where, although the limi-
tations of the proposed Floquet DFT are acknowledged in
their footnotes and references, they not explicitly discussed.
Ref. [1] was the basis of the Floquet DFT of Telnov and
Chu [3], where it was however used for strong-field applica-
tions, and for general Floquet states, i.e. far beyond its
regime of validity.

Before explaining the points in detail, we first remark on
a fundamental problem when attempting to connect Flo-
quet theory with (TD)DFT [8–10]. Floquet states are only
guaranteed to exist [9] in systems with a discrete spectrum
(which may be infinite or finite), yet the theorems of den-
sity-functional theory are based on the full Hilbert space,
including any continuum. Therefore, adapting any kind
of variational theorem in Floquet theory to density-func-
tional theory requires careful inspection, and is likely inva-
lid for systems which do not have a purely discrete
spectrum, i.e. the vast majority of systems to which DFT
is applied. Our Letter MB showed that even when Floquet
states do exist, there is no one-to-one mapping between
their densities and the potentials, as was assumed in the
Floquet DFT’s in the earlier literature [3,1].

We now explain points (1)–(4) above in detail.

(1) The most important conceptual error is that a
‘ground Floquet state’ can be uniquely defined by
adiabatically tracking the unperturbed (field-free)
ground-state as the time-periodic field is turned on.
But there are significant, and well-recognized, prob-
lems with defining such a state. First, there is no adi-
abatic limit when a complete infinite set of basis states
is included [18,16,17,12,15,19]. For example, in Ref.
[12], it is stated ‘Demonstration of the existance of
a set of quasiperiodic solutions for an adiabatically
switched harmonic potential is somewhat problem-
atic in general’, going on to cite Refs. [16,13,14]. In
Ref. [17], the need for conditions on the ‘ineffective-
ness of resonances’ is discussed.
Essentially the problem stems from having an
increasingly dense spectrum [15,17,20,18], as eigen-
values are squeezed into a zone of width x, the driv-
ing frequency. There is a weakly avoided crossing
near every point in the zone as a function of the
strength of the applied periodic potential, k. Quoting
from Ref. [18], ‘the structure of the exact states and
quasienergy spectrum is remarkably irregular. . ..the
familiar quasienergy ‘dispersion’ curves as functions
of k. . .become discontinuous everywhere. One conse-
quence. . .is the absence of a true adiabatic limit; there
is no unique final state to which the system tends as
the periodic perturbation is switched on arbitrarily
slowly’. In summary, there is in general no adiabatic
limit for Floquet states within a complete infinite Hil-
bert space.
Several works have nevertheless derived types of
modified adiabatic theorems for Floquet states, but
each require some further assumption or approxima-
tion [20,18,16,19]. Often truncation to a finite basis
and studies of convergence of Floquet states with
respect to basis size are made. Ref. [18] argue that
the effects of interactions with the environment are
likely to restore an adiabatic theorem for open sys-
tems. For these reasons, the usual Floquet methods
apply in many physical situations.
Finally, there is ambiguity in SH regarding how their
‘ground Floquet state’ is defined: for example, shortly
after Eq. (7) in SH, is the statement that ‘Here the
‘ground-state’ refers to a steady-state having the low-
est quasienergy’. But the ‘lowest’ depends on the
choice of zone; in this definition, any state may be
chosen as the ‘ground-state’ by simply shifting the
zone boundary. The quasi-energies are defined mod-
ulo x, the driving frequency, so may be chosen to
lie in the zone [x � x/2,x + x/2), where x is any real
number [11]. In other parts of SH, however, the
ground Floquet state is defined as that obtained by
adiabatically ramping up the field, beginning in the
unperturbed static ground-state.

(2) SH argue that a one-to-one density-potential map-
ping holds, based on an energy minimum principle
[12,1]. However, use of a minimum principle implies
existence of a complete set of Floquet states but, as
discussed above point (1), their existence is called into
question when the spectrum of the system possesses a
continuum component. Even if there is no contin-
uum, the proofs of the minimum principle [12]
depend on adiabatic turn-on, and so hold only for a
basis truncated to a finite number of dimensions.
Yet, even if we now restrict to systems with a purely
discrete finite spectrum, the minimum principle holds
only when the driving frequency x ‘is chosen to
insure transitions to excited states cannot occur’
[12]. For linear response, this means that x must
not be one of the resonant frequencies of the system.
For increasingly intense fields, this means that the
minimum principle holds only for an increasingly
small frequency-region (as explained in footnote 80
of Ref. [12]). A one-to-one density-potential mapping
for Floquet states adiabatically ramped from the
unperturbed ground-state has been argued to exist
[1] only under the following approximations: (a) trun-
cation of the problem to a finite basis, and (b) only
for weak, off-resonant driving. Point (b) appears to
be recognized in some places in SH for linear
response, but on the other hand, SH do not discuss
the severe restriction that this imposes for strong-
fields, making it inapplicable to Ref. [3].
One may ask whether the problems of adiabatic
ramping may be bypassed by simply choosing a zone
for the quasi-energies and considering a minimal
principle based on the lowest quasi-energy in that
zone. But this approach would require a ‘zone-depen-
dence’ in any functional; if the zone is shifted even
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slightly, the state with the lowest quasi-energy may be
completely different. Moreover, if the field strength is
altered even slightly, the ‘minimal’ state may hop
from the bottom of the chosen zone to the top, and
another completely different state be minimal.

(3) None of these problems occur within the full TDDFT
framework of Runge–Gross (RG) [5], as used in MB.
There the one-to-one mapping depends on the initial-
state of the system. The initial time may be chosen to
be any time, in particular, once the time-periodic Flo-
quet state is established. SH correctly point out adia-
batic turn-on is excluded from the RG theorem, but
incorrectly deduce that this invalidates the use of
TDDFT for Floquet phenomena. SH incorrectly
state that ‘the steady-state solutions are obtained by
an adiabatic switching of the periodic potential’. This
is not true: Floquet states are defined as quasi-peri-
odic solutions to the Schrödinger equation for time-
periodic potentials [11], independent of any adiabatic
switching. This is particularly important in light of
point (1). When one applies RG TDDFT to a Flo-
quet state, one assumes the system is already in the
Floquet state. As in TDDFT applied to a general
problem, the initial time and initial-state may be cho-
sen to be any time at which the interacting and
Kohn–Sham wavefunctions are known [5,23]. But
the initial-state dependence of RG implies that the
density-functionals are different from those that are
almost always used in TDDFT applications today,
i.e. when the system starts from a ground-state.

(4) We now turn to the discussion in SH of the example
of MB. The authors claim that ‘. . .Maitra and Burke
are incorrect on two counts. First, they consider a
system in steady-state solution that is supposed to
have been obtained by an adiabatic switching’. We
never state this and, as discussed above, one cannot
assume adiabatic switching in the general case with-
out further assumptions. SH concludes then that
RG is not applicable to this system, but this is incor-
rect as explained in point (3). SH devote a long dis-
cussion to the similarity of Floquet states with
excited states in time-independent problems, and the
problems with uniqueness of mappings for excited
states, claiming MB ‘fail to make’ this connection.
This is however well-recognized in several works
(e.g. [4,22,23,21]) containing explicit examples.
Indeed one of the examples discussed in detail in
SH is, up to a trivial change in parameter, identical
to that of the uncited Ref. [23]!

We close by noting that the example of the periodically
driven harmonic oscillator in MB is an exceptional case
from the point of view of adiabatic turn-on, since the
quasi-energies monotonically increase as a function of the
driving strength, but with discontinuities arising solely
from each quasi-energy being knocked down from the
top to the bottom of the chosen quasi-energy-zone. For this
special case, it may be argued that the state without spatial
nodes could be called a ‘ground-Floquet state’. This exam-
ple is nevertheless used correctly in MB to simply show the
non-uniqueness property, i.e. that one may find different
Floquet states that evolve with the same time-periodic den-
sity in different time-periodic potentials. It is clear that
examples may be constructed in the same way for more
generic potentials whose quasi-energy spectra display the
more typical discontinuities discussed in Ref. [18]. e.g.,
‘kicked rotor’ (driven free-particle in a box).

Finally, we note that within the approximate finite-basis
methods implicit in the numerical treatment of many linear
response approaches, as in Refs. [25,24] a Floquet
approach is redeemed, as the problems discussed above
are bypassed.
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