Chapter 3

The Pair Density in Approximate Density Functionals:
The Hidden Agent

Neepa T. Maitra and Kieron Burke
Departments of Chemistry and Physics,
Rutgers University, 610 Taylor Road, Piscataway NJ 0885/

1. INTRODUCTION

In this chapter, we review the connection between density functional
methods [1] and wavefunction methods [2]. Simple models of the pair
density are shown to lead naturally to the local density approximation
for exchange and correlation. The rigorous basis for this approach is
exact density functional theory [1, 3-7]. We review recent advances from
a pair density perspective.

2. MODELLING (OR MUDDLING?) THE PAIR
DENSITY

Of crucial importance in many problems in chemistry is determin-
ing the electronic structure of the system of interest. Much research has
been directed towards finding the electronic ground state, which features
in a wide range of calculations: from determining static properties such
as molecular bond lengths and angles, to dynamical properties such as
rates of reaction within a Born-Oppenheimer approach. In particular,
the ground state energy as a function of nuclear coordinates is impor-
tant. Solving the many-electron Schrodinger equation for the ground
state is equivalent to the variational problem of minimizing the energy
over all antisymmetric normalized wavefunctions. The energy has three
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components; in atomic units (h = e = m = 1) the Schrédinger equation
for N electrons is

where T, Ve, and Vi, are the kinetic energy, external potential (e.g.
electron-nuclear attraction), and electron-electron repulsion operators
respectively. We use x to denote the spatial and spin variables, x = (r,0) .
Only the one- and two- particle density matrices appear in the energy:

!
E= —%/derI‘l(r';r)|rr:,.+/drvext(r)pl(r) —I—/dr'/dr%,
(2.2)
where

I'i(r;r) =N Z /drg...drN\I!*(r'Ul,x2...xN)\If(r01,x2...xN) (2.3)

01...0N
is the spin-less one-particle reduced density matrix;

N(N — 1)

pole',x) = =

Z /dr3...drN|‘I’(r<71,1"(72,)13...3(1\1)\2 (2.4)

01...0N

is the spin-less reduced pair density; and the (one-particle) density is

pi(r) = Ty (r;x) = % / dr'py(x', 1) . (2.5)

The pair density has the physical interpretation that po(r,r')drdr’
is half the joint probability of finding an electron in volume dr’ around r’
and one in a volume dr around r. If the electrons were independent, po
would just be half the product of the one-particle densities p;(r)p;(r')/2.
It is then intuitive to define the exchange-correlation potential hole pxc
through
pa(r',r) = p1(r) (p1(r') + pxo(r’, 1)) /2. (2.6)
Given that there is an electron at r, pxc(r',r) gives the difference be-
tween the true average density of electrons at r’ and that density if the
electrons were independent. In this sense, a non-zero pxc is due to ex-
change and correlation effects. Substituting this decomposition of the
pair density into the interaction energy expectation value, we get

Vee = U + Uxe, (2.7
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where
U= %/dr/dr’w (2.8)

r—r|

is the Hartree energy and

Uxc = %/dr/dr'w (2.9)

v —r'|

is the exchange-correlation potential energy.

Equations (2.2) - (2.4) hold out the hope that, with knowledge of
only the above one- and two-point functions, we can find the ground-
state energy by searching over all possible combinations and finding the
lowest value. Unfortunately, this hope is over-optimistic, as we must
still determine which such functions arise from a physically allowable
wavefunction. For example, appropriate one- and two-particle density
matrices must have appropriate normalizations and symmetry properties
related to the underlying wavefunction. This is a central difficulty in
using the one- and two-matrices in a calculation and is treated in other
chapters in this book.

Suppose, instead of calculating a full wavefunction, we give up the
variational principle and choose to make a model for the pair density
in terms of simpler quantities. How much can we glean about the pair
density from fundamental properties such as these? Is it enough to make
a plausible model for it for typical systems without ever calculating the
full wavefunctions? Rather, less ambitiously and more realistically, with
a view to estimating only the interaction energy Uxc we need only a
model for the spherical average of the hole px¢ [8], as defined by

dQu
PR ) = [ S peolr,r 4+ w). (2.10)

Then ©
Uxc = 27r/drp1(r)/ duupiP(r, u). (2.11)
0

First let us consider the simpler problem of exchange. That is, we
shall consider the generic non-degenerate case of a wavefunction that
is a single Slater determinant of occupied orbitals. In figures 3.1 and
3.2 we plot the exact spherically averaged exchange holes for the hy-
drogen atom and for the spin-unpolarized uniform electron gas. These
two cases are in a sense at opposite ends of the spectrum of systems
of typical interest in atomic and molecular and chemical physics: the
hydrogen atom with one electron being the smallest, having an expo-
nentially decaying wavefunction and the uniform electron gas with an
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Figure 3.1 Spherically-averaged exchange hole for hydrogen, piph(r, u), as a function
of separation u. The left figure shows the exact hole and two approximations at the
nucleus r = 0. The right figure shows the exact hole at various positions r indicated,
as well as a system-average, [ drp: (r)p" (r,u).

infinite number of electrons having plane-wave orbitals. Yet their spher-
ically averaged exchange holes have a remarkably similar shape, except
(i) when r is too far away from the nucleus in the case of H, and (ii) in
the tails of the uniform gas hole where there are small oscillations un-
derneath a decaying envelope. (The first oscillation is beyond the range
plotted in the figure). Because the electron density decays exponentially
away from the nucleus of the H-atom, the regions further out from the
nucleus are exponentially less heavily weighted in any energy calculation
(see Eq. (2.11)). Also the tails of the exchange hole, where there are
modulations in the exchange hole density for the uniform gas, contribute
significantly less due to the reduced amplitude there.

We now attempt to model this generic behavior of the spherically
averaged exchange hole considering only fundamental properties of the
underlying wavefunction. We arbitrarily choose a simple gaussian shape
as a function of u:

P (r ) = —A(r)em

(2.12)
Properties of a wavefunction-derivable pair density are naturally ex-
pressed in terms of the exchange-correlation hole, or, in the exchange
case, the exchange hole. Normalization of the wavefunction translates
into a normalization condition for the pair density which becomes a
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Figure 3.2 Spherically-averaged holes for the unpolarized uniform electron gas
at demnsity p1 = 2/m ~ 0.6366, as a function of separation u. Those labelled x
are the exchange holes (for the exact case and for our model), xc denotes the
exchange-correlation hole and xccc denotes the coupling-constant averaged exchange-
correlation hole. The programs for the exact calculations are on the web-site
http://www.crab.rutgers.edu/ ~ kieron.

sum-rule for the hole:

/drdr’pg(r,r') = w — /drpx(r,r') =-1. (2.13)

(The density is normalized as [ drp;(r) = N). This expresses the deficit
of the density everywhere else in the system if one electron is found at
r. Imposing condition Eq. (2.13) on our model Eq. (2.12) implies:

a(r) = m(A(r))%/3. (2.14)
Positivity of the pair density translates into the condition
px (T, I‘,) > _pl(r,) ) (2.15)

expressing that the hole cannot be dug deeper than the density itself.
We can get an upper bound on px(r,r’) in the case of exchange: when
the wavefunction is a single Slater determinant composed of orbitals ¢;,

[6]

! 2
_|F1(r ’r)| < 0
p1(r)

= bl

px(r,r') = (2.16)
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where I'; (', 1) = 37 oec. #7 (1) ¢i(r) . For our model, A(r) > 0 means the
inequality in Eq. (2.16) is satisfied everywhere. In fact we can identify
A(r) completely by considering the “ontop” exchange hole: from Eq.
(2.16)

2 2
r)+ r
pprmod(e = g) = PO EPL) o g)

p1(r)
where pi4(r) and pi (r) are the densities for spin-up and spin-down
electrons respectively at point r. Thus our model for the spherically

averaged exchange hole involves only the spin densities:

2.(r) + p? (r
pPhmod () = — A(r)e ™A () where A(r) = M_
p1(r)
(2.18)
In the fully polarized limit, for example for the hydrogen atom, we have
/
A (e, ) = —py () O (2.19)

In the unpolarized limit, for example for the unpolarized uniform elec-
tron gas,

piph,mod(r, 'll) =—p1 (r)e_ﬂ'(Pl (r)/2)2/3u2/2 . (220)

We considered above just some statements about the pair density
and its exchange hole arising from the fundamental properties of the un-
derlying physical wavefunction. Yet these, together with a rough guess
for the form of the exchange hole motivated by two extreme examples,
were enough to make a model for the spherically averaged exchange hole.
This model is crude and does not capture all the details of the spheri-
cally averaged exchange hole. For example, the exact hole in hydrogen
deviates from a gaussian form as r moves away from the nucleus, while
the hole of the uniform gas displays oscillations in its tail. But for the
purpose of finding the exchange energy, the crude model is not a bad
one. Qur model turns out to depend only on the local spin densities
and, consequently, the model exchange energy is a local spin density
functional. Because of constraints on the pair density, a local density
approximation should be of moderate accuracy; that is, electronic struc-
ture is “short-sighted” [9]. For example, in the spin-unpolarized case,
using Eq. (2.20) in Eq. (2.11),

1 r,r
mod __ pX( ) )
ymed  — E/drpl(r)/dr'ilr =

1\ 1/3 4/3 4/3
_ _(5) /drpl (r)z—0.794/drp1 (r). (2.21)
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o Topet | P ] Uxe | TR | U7
| He | -1.025 | -0.950 |-0.88335 | -1.103 | -1.202 | -1.064 |
| Be | -2.674 | -2.495 | -2.321 | -2.843 | -3.000 | -2.685 |
| Ne || -12.085 | -11.848 | -11.021 | -12.806 | -13.109 | -12.258 |

Table 3.1 Exchange and exchange-correlation potential energies for the first three
noble gas atoms, calculated exactly, in our model, and by LDA.

This gives a very simple formula for a reasonable estimate of the ex-
change energy. There is no need to know all the individual orbitals as
would be required in the exact calculation (the Hartree-Fock integral):

* ! 2
Ux _ _% za.: / drdr'| Zaocc. qsa,a(r )¢a,0(r)| , (222)

v — x|

where the sum goes over all occupied orbitals.

These arguments show that, simply because of constraints on the
exact pair density, and the fact that the ontop hole depends only on
the (spin) density at a point, a reasonably-shaped model for the spheri-
cally averaged exchange-correlation hole around that point, should yield
results of moderate accuracy. More importantly, this approximation
should be extremely reliable, as its derivation depends only on features
common to all electronic systems. Indeed, consider the first two columns
of table 3.1 which contain the exchange energy of the first three noble gas
atoms, calculated exactly and by our model. Our model gives a good es-
timate of the exact exchange energy with errors from 7% underestimate
for He to 2% underestimate for Ne.

Correlation can be handled in a very similar fashion. Both Eqgs.
(2.13) and (2.15) are true also for the full exchange-correlation hole
Pxc = px + pc for an interacting system; in particular, we have the cor-
relation sum-rule and exchange-correlation sum-rules:

/drpc(r,r') =0 (2.23)

and
/drpxc(r,r') =-1. (2.24)
Given the success of a simple gaussian model for the exchange case, we
try a gaussian also for pipch. Writing pipch’mc’d = —B(r)e_b(‘”)112 and using

Eq. (2.24), we find b(r) = #B%/3(r) . Unlike the exchange case we do not
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have an exact expression for the ontop exchange-correlation hole since
it is not so easy to find the form of the wavefunction for interacting sys-
tems as it is for the non-interacting case. We look instead towards the
uniform electron gas to provide an approximation for the ontop hole for
our model, which is very accurate due to the local nature of the ontop
hole [10]. The ontop pair density at any point in the system is largely
determined by the density at that point. (Indeed, the ontop uniform
gas hole was believed to be exact for many years [11] and only recently
proved not to be quite exact except in the exchange limit, fully-spin po-
larized limit and low-density limit [12]). The exchange-correlation hole
of the uniform gas has been accurately parametrized [13]; we consider
here the high-density limit only. This gives the first order correction to
the exchange hole due to correlation [14]. We have [10] for the spin-
unpolarized case,

B(r) = o (r,u = 0) = p1(r)(1 + axs(r)) /2, (2.25)

where r5(r) = (3/4mp; (r))'/3 is the Seitz radius and o = 0.769 is a pa-
rameter which we have fitted to noble gas data (see section 4). This
completes the model for the spherically-averaged exchange-correlation
hole for an unpolarized system. We notice again that it is a function of
only the local density. The exchange-correlation potential energy, Eq.
(2.11), obtained from this is again a local density functional:

1\ 1/3 3 1/3\ /3
mod _ _ [* 4/3
vgrt = (1) [ate (1+a(4ﬁpl(r)) )
1 1/3 4/3 a 3 1/3
(3) Jarlo-5(5)
~ Umed _0.126N), (2.26)

where we expanded around high-density in the second step. Our model
thus predicts the potential correlation energy is about 3eV per electron.
Again, despite the exchange-correlation energy involving non-local inter-
actions between particles, our model, derived from the basic property of
normalization, and with the help of a good local approximation for the
ontop hole, results in the exchange-correlation energy depending only on
the density. This is much simpler than the exact expression.

These results are essentially the physical reasons behind the success
of the X, method of Slater [15], from around the middle of the last
century. Our model is not accurate enough to perform state-of-the-
art quantum chemical calculations, but is simply meant to demonstrate
the plausibility that a local density functional, based on a picture of
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the exchange-correlation hole, can give reasonable results for electronic
structure calculations.

In Table 3.1 we list results for three noble gas atoms. As in the case
of exchange, our rough model gives a fair estimate of Uy, but now is an
overestimate rather than an underestimate, and the fractional errors are
larger. However, a much more appropriate approximation is the local
density approximation (LDA) [4], where the exchange and correlation
holes are taken from those of a uniform gas. This yields similar formulas
and similar results (see Table 3.1)):

ULPA = —%(3#2)1/3 /drn4/3(r) ~ —0.739/drn4/3(r), (2.27)
ULDA / dr ™ (n(r)) , (2.28)
where u™f(n) is the known potential correlation energy density of the
uniform electron gas [13]. Note that the fractional errors for Uy in LDA
are less than those for Ux. Correlation makes the hole grow deeper (with
the Coulomb interaction, all electrons try to avoid each other), so that
Eq. (2.24) implies that the exchange-correlation hole is more localized
than the exchange-hole. This is behind the characteristic cancellation
of errors between exchange and correlation contributions to the energy.
This is not the case for our rough model, whose success is somewhat
fortuitous: although the sum-rule property is built in, our model hole is
not the hole of a real system so other properties are violated. Moreover
the fitting of parameter « is somewhat ad hoc and will be discussed
further in the next section. The uniform gas is the only system for
which a local approximation is exact, and has the added justification that
the holes are being taken from another interacting quantum-mechanical
system. If there are further important universal rules of which we are
currently unaware, these might be built in, since such rules will also be
satisfied by the uniform electron gas. For example, the electron-electron
cusp condition [16] implies that the first derivative with respect to u of
the exchange-correlation hole is simply related to the ontop hole at that
point: 5
Sal PR = pi(e) + preleir). (229)
This is a universal condition, and so is satisfied by the local density
approximation. (Incidentally, Eq. (2.29) is not satisfied by our simple
gaussian model which rises from the ontop value as u? rather than u).
Thus any calculation within LDA is based on a model pair density which
exactly satisfies the electron-electron cusp condition. How many wave-
function calculations can you say that about? We describe LDA as a
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non-empirical approximation, because all inputs come only from prop-
erties of an ideal system, the uniform electron gas. On the other hand,
remember that the security of the variational principle is relinquished
once we make direct models for the pair density.

3. EXACT DENSITY FUNCTIONAL THEORY (DFT)

In the previous section, the pair density was crudely modelled by a
local functional of the spin-densities. Now we show how in principle an
exact theory can be constructed, in which the equations to be solved are
the non-interacting Kohn-Sham equations [4], rather than the far more
complex Schrédinger equation (1).

Hohenberg and Kohn in 1964 [3] had the revolutionary realization
that all properties of a time-independent, interacting system of many
identical particles are completely determined by the ground-state den-
sity. This was shown by proving that there is a unique correspondence
between the ground state density and the external potential for a given
interparticle interaction. Everything, including the ground-state energy,
excited-state energies, static response properties, is a functional of the
ground-state density. (We note that the Hohenberg-Kohn theorem can
be generalized to spin-densities, which is necessary when the external
potential is spin-dependent. In fact, modern DFT calculations use ap-
proximate spin-density functionals, which tend to be more accurate for
spin-polarized systems than their total density-functional counterparts
(even for spin-independent potentials).)

In particular, all the energy components of Eq. (1) are functionals
of the density:

E[p1] = T[p1] + Veelp1] + Vext[p1], (3.1)

and the exact ground-state density is found by minimizing this energy
with respect to p1, keeping the number of particles fixed:

SE[p1]
dp1(r)

where p is the chemical potential. If we could find accurate functionals
to implement this, a single equation directly for the density p; could
be solved for any electronic structure problem. Unfortunately, no suffi-
ciently accurate density functional approximation for the kinetic energy
is known. To get around this, Kohn and Sham showed that each in-
teracting system of N particles can be mapped on to a non-interacting
system of N particles, where, by solving a one-electron Schrodinger-like
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equation and occupying N orbitals, one obtains the same density as that
of the interacting system. The Kohn-Sham (KS) equations

(=922 +vs(lpi],v)) 6ir) = eii(x) (3:3)

must be solved self-consistently since the potential appearing in the equa-
tions is a functional of the density. The interacting (and non-interacting)
density is p1(r) = 3; occ. [#i(r)|?. In contrast to traditional wavefunction
techniques which typically scale rapidly with the number of particles,
density functional methods scale as & N? — N3 (or less, see Ref. [9, 17]).
The total energy of the interacting system is then rewritten as

E[p1] = Ts[p1] + Ulp1] + Exc[p1] + Vext[p1] (3.4)

where Ts[p1] = —1/2 [ dr Y occ. $F V24 is the kinetic energy of the non-
interacting system. U is the Hartree energy, Eq. (2.8), and Ex¢ is the
exchange-correlation energy whose potential part Uyxc we met in the
section 2 but now expressed as a functional of the density and whose
kinetic part describes the correction to the non-interacting kinetic energy
due to interactions. These three functionals are universal in that they
are the same for all Coulomb-interacting fermion systems no matter
what the external potentials are. Minimizing Eq. (3.4) we find the
Kohn-Sham potential is the functional derivative

vs([p1],r) = d(Vext [p1] ‘;;Jl[(Prl)] + Exclp1])

= Vext(r) + va([p1],r) + vxa(lpr]; 1), (3.5)

where vy([p1],r) is the Hartree potential as before, vexi(r) is the one-
body external potential, and vxc([p1],r) = 0Exc/dpi(r) is the exchange-
correlation potential. Eq. (3.5) is ezact and the first result of modern
density functional theory.

Our earliest lessons in quantum mechanics taught us that it is the
wavefunction that provides the complete description of the system, noth-
ing more, nothing less. Yet, it appears here that DFT has traded in
this function of 3N complex variables for the much simpler one-particle
density, a function of just three real variables. The complexity of the
problem is contained in the functional Exc[p1], for which in general,
approximations must be made.

What does the Kohn-Sham potential look like? As a simple ex-
ample, we have plotted the exact vg(r) for the Helium atom in fig-
ure 3.3. In the ground state, the two electrons occupy the same spa-
tial state with opposite spins. However this is not the ground state
of the potential vg(r) whose energy ¢, is indicated in the figure, nor
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Figure 3.8 The Kohn-Sham potential (thin solid line) for helium and the external
potential —2/r (dash-dotted line). The thick solid line is the ground-state density.
The dotted line is the lowest energy eigenvalue of the Kohn-Sham potential.

is its energy equal to 2¢,. vg(r) is a fictitious potential for the inter-
acting system, whose only defined connection with reality is that its
ground-state density for non-interacting electrons is equal to that of
the true interacting system. The true energy of the physical system is
E =3 & —Ulp1] — [drpi(r)vxc(r) + Exc[p1]-

The nature of the pair density is of particular importance for the
calculation of the ground state energy. We saw in section 2 how proper-
ties of the pair density were enough to determine an approximate density
functional for the exchange-correlation potential energy and potential.
For more sophisticated density functional approximations, these proper-
ties (and others) are a guide to their construction and effectiveness. So
although the density is the main player of DFT, the pair density plays
a very important hidden supporting role.

Other exact properties whose satisfaction indicates the accuracy
of density functional approximations include behavior under uniform
scaling to the high and low density limits [18] and the Lieb-Oxford bound
on the exchange-correlation potential energy [19].

The importance of ezact density functional theory as distinct from
the intuitive arguments given in section 2, is that it provides insight into
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how wavefunction knowledge can be translated into functional approx-
imations, for use in the field. It also tells us the limitations of Kohn-
Sham ground-state calculations. For example, the unoccupied orbitals
in the He figure are not the true excitations of the He atom, even though
they are of the KS system. (However, time-dependent DFT does tell us
how to correct these eigenvalues to turn them into excitation energies
[20).

As mentioned above, the exchange-correlation energy, defined to
make Eq. (3.4) exact, contains not only the potential contribution of
section 2, but also a kinetic contribution:

Exc[p1] = Tlp1] = Ts[p1] + Veelp1] — Ulp1], (3.6)

which arises from the small but significant difference between the ki-
netic energy in the true system T and in the Kohn-Sham analog Ts.
This would appear to require the difference of one-particle density ma-
trices to evaluate, yet our title focuses solely on the pair density. This is
because density functional methods have an extremely elegant way to in-
corporate these effects in a pair-density description, through the adiabatic
connection of DFT [21, 22, 11, 8]. Consider the following Hamiltonian

A =T+ AWVee + V2, (3.7)
where, V2, is a one-body potential adjusted to give the same ground-
state density as the parameter A is varied. The true interacting system
is obtained by taking A = 1, whereas the non-interacting exchange limit
corresponds to A = 0; thus this Hamiltonian provides a smooth pathway
between a non-interacting system and the true interacting system, with
V2, chosen to preserve the same density throughout the pathway. This
is called the adiabatic connection and A is called the coupling-constant.
Adiabatic connection can also be done of course in a wavefunction pic-
ture where one would follow the changing character of the wavefunction
as correlation is turned on. For example, there would be a dramatic
change in ¥ near A\ = 0 for systems with large static correlation [23]. In
DFT, rather than ¥ being the subject, the density p; is, and, in contrast,
this remains the same throughout the connection. It is the functionals
which change character.

Defining U*[p1] as the wavefunction for Hamiltonian H* which
yields the density p;(r) [22], we have

Exclol] = (T [p1]|T + Vee| T [p1]) — (T*=[p1]| T|T*=0[p1]) — Ulp1]

= [ @ lVel #or]) - U], (3.8)
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where, in the last step, we have invoked the Hellman-Feynman theorem
[22, 8] and the adiabatic connection has adsorbed the kinetic term in the
interaction energy into a potential-like term. Expressing Vee in terms of
the pair density (the last term in Eq. (2.2) but with ps being the pair
density at coupling-constant \) and therefore in terms of the exchange-
correlation hole (Eq. (2.6)), we arrive at

Excloi] = /d /d"’1 AV E UL (3.9)

Ir—r’l

where the coupling-constant averaged exchange-correlation hole is

1
Prole,t) = [ dARo(r). (3.10)
0

Note that p} is defined through the definition of the pair density at A,
pa(r, ') = p1(r)(p(r') + pd(r,r’'))/2 . The normalization and positivity
conditions become

[ dr'potr,r')) = -1 (3.11)

and
Pxo(r,r')) > —pi(r). (3.12)
4. OLD FAITHFUL: THE LOCAL DENSITY
APPROXIMATION

Recall the crude models of section 2. For the purposes of the
exchange-correlation energy calculation, we would model the spherically
averaged, coupling-constant averaged exchange-correlation hole, Again,
choosing a gaussian form, requiring normalization, and using the high-
density limit of the uniform gas to provide the ontop hole, we finally
arrive at

Emod — ymed _ 0 063N . (4.1)

So Emed — pmod 4 yymoed — gmod _ ymod j5 ahout 1.5 eV per electron.
Table 3.2 shows the results for the first three noble gas atoms. The
parameter « used for the ontop hole in the calculation of Egs. (2.26)
and (4.1) was obtained by minimizing the mean absolute error of our
model for EB94 for these three atoms. The fractional error is indeed
very small but it is not systematic. The point of our model was to
demonstrate the plausibility, from a wavefunction perspective, of func-
tionals which depend only on the density but its numerical success is
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| Bxe | BRe | B |
| He || -1.067 | -1.076 | -0.999 |
| Be | -2.770 | -2.748 | -2.546 |
| Ne | -12.478 | -12.478 | -11.763 |

Table 3.2 Exchange-correlation energies for the first three noble gas atoms, calcu-
lated exactly, in our model, and in LDA.

rather fortuitous. The hole we obtained was not the hole of any physical
system. Although it satisfied some fundamental properties suggested by
the underlying wavefunction, it violates other properties; moreover our
need for an empirical fitting of one parameter in Ex; and Uy is not
entirely satisfactory. It is more important to get reliable results and so
we embrace the local density approximation much more (see section 2
also).

Also listed in Table 3.2 are the energies from the local density ap-
proximation. This, or for spin-polarized systems, the local spin density
approximation (LSD), is the simplest density functional. The energy
functionals are those for the uniform electron gas, except with the con-
stant electron gas density pi1, replaced by the local density of the in-
homogeneous interacting system p;(r) (or, the constant spin-densities
replaced by the local pi4(r), p1y(r) in the case of LSD). The pair density,
or hole, of the inhomogeneous system is approximated by the hole of the
uniform electron gas with density that of the local density; because the
uniform electron gas is a physical system, its hole satisfies the conditions
Egs. (2.13), (2.15), (2.16), (2.23), (2.24) among others that physical
holes satisfy and therefore so does the LSD-approximated hole of the in-
homogeneous system. Regions where the density is not slowly-varying,
such as near the nucleus or in the tunneling tail, are unweighted by the
system average. These reasons, together with the fact that the details of
the hole are not important for the purposes of the energy calculation, as
long as its system and spherical average are reasonable, is a large part
of why this very simple approximation works quite well even for inho-
mogeneous systems. In figure 3.4 we have plotted the exact Kohn-Sham
potential for helium and the LSD potential. Notice that despite their
significant difference, the LSD energy and exact energy are very close.
This is a reflection of how integrated properties such as energies can be
very close even when originating from quite different functions.
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Figure 8.4 The exact Kohn-Sham potential (solid line) for helium and the LSD
approximation to it (dash-dotted line). Also shown are half the exact ground state
energy (dashed line) and half the LSD energy (dotted line).

Since the exact ontop exchange hole is a function of only the spin
densities (Eq. 2.17), the LSD ontop exchange hole is exact (when there is
no degeneracy in the Kohn-Sham system). The LSD ontop correlation
hole is not generally exact, but it is often a good approximation. It
is exact in certain limits: when the density is uniform, in the high-
density limit where exchange dominates [24], and in the low-density and
fully polarized limits where the electrons avoid each other. As discussed
earlier, some cancellation of errors from correlation and exchange result
in the local approximation improving through the adiabatic connection.

LSD gives pretty good results for Ex. for relatively little effort as
discussed above (much like the popular drug of the same name). Espe-
cially for larger systems and smoother densities, LSD performs increas-
ingly well and has long been the main-stay of solid-state calculations. Its
simple form is often not accurate enough when the system has significant
density gradients and in the next section we discuss gradient expansion
methods which have been developed to deal with this. Although LSD
is faithful to the normalization conditions required by the underlying
pair density, it violates other exact conditions. For example, the behav-
ior of the correlation energy under scaling to the high-density limit is
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incorrect [24] and it does not display the derivative discontinuity [25]
at integer changes of particle number. The LSD exchange-correlation
potential does not have the correct —1/r decay at large r for finite sys-
tems [26]. LSD also ails under self-interaction error as do typical local
functionals. The functionals may work well for many-electron systems
but embarrassingly fail to be exact for the simplest case of one electron.
Consider the terms making up the energy Eq. (3.4). One electron does
not interact with itself so Exc must exactly cancel the self-interaction
present in the Hartree term U:

Ulp1] + Ex[p1] =0, Ec[p1]=0  (one — electron), (4.2)
and similarly for the potentials

vu([p1];r) + vx([p1];r) =0, vo([p1];r) =0 (one — electron) .

(4.3)

However, most approximate functionals do not satisfy these conditions.

The self-interaction error for many systems is relatively small, but there

are some cases where the error is drastic, for example for the hydrogen

molecular ion, Hj [27]. Corrections to this are discussed in the next
section.

For more discussion on LSD and an excellent review of DFT see
Ref. [7].

5. IMPROVING ON THE LOCAL DENSITY
APPROXIMATION

In this section, we review the largely successful attempts to improve
upon LSD, mostly by improving its accuracy, while attempting to retain
its reliability. The non-empirical approached has been championed by
Perdew, while a pragmatic well-founded alternative has been champi-
oned by Becke. Kohn [1] points out that few functionals have been able
to systematically improve on LSD bond lengths.

5.1. Gradient expansions

A natural way to improve LSD for inhomogeneous systems was
already suggested in Ref. [4]. LSD is considered as the zeroth-order
term in a Taylor series for the functional about the uniform density, and
higher-order terms are then included. This (or, sometimes, just the two
leading terms) is the gradient expansion approximation (GEA) and has
also been interpreted as arising from a small-h expansion [28, 29]. The
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leading correction is at second order and yields

Vpis Vpio

ESE ot o) = ERSPlorr, o] + ) / drCoo (p1t:P11) 575 * —575 -
o,0’ P1o 1o’

(5.1)

(where we have suppressed the r-dependence in the spin-densities inside
the integrand to avoid cluttering). The coefficients Cyor (p1,1(r), p1,1)(r)
are slowly-varying functions of the densities [30, 31]. One can derive
them through perturbing the uniform electron gas with a weak, slowly-
varying perturbation, finding the linear response of the density, and
expressing the second-order reponse of the energy of interest in terms of
the change in the density alone [30].

The GEA improves somewhat the exchange energy estimate. How-
ever, except for systems of slowly-varying density (which is not the case
for typical atomic and molecular systems), GEA degrades the results for
the correlation energy and total exchange-correlation energy over that of
LSD. This failure is due [32] to the violation of the sum rules on the ex-
change and correlation holes (Egs. (2.13), (2.23)). Unlike the LSD hole,
the GEA hole is not the hole of any physical system, and so many of the
exact conditions that LSD satisfies are violated by GEA. p$FA(r, r + u)
and pSFA(r,r + u) tend to be more accurate at small separations u than
their LSD counterparts are, but are worse at large u where spurious be-
havior occurs. The long-range Coulomb interaction does not decay away
fast enough for the spurious behavior to be insignificant in an energy cal-
culation.

The failure of the gradient expansion for the exchange-correlation
energy motivated exploration into what are now called generalized gra-
dient approximations (GGA), where

B o puy) = [ def(pre(0), pue), Vous (), Vou (). (5.2

The first GGA was produced in Ref. [33] in an attempt to correct the
GEA correlation energy by fitting an E of a certain GGA form to known
correlation energies. The first non-empirical GGA was that of Langreth
and Mehl [34], motivated by the work in Ref. [35], which included a
wave-vector analysis of Eyxo. But because LM was constructed within
the random-phase-approximation, it does not reduce to LSD when the
gradient vanishes, and violates several other exact conditions. In the
same spirit, Perdew showed that the exchange hole oscillates without
damping at large separations u, violating the condition Eq. (2.16) and
the sum rule Eq. (2.13). This led to the PW86 functional [36] where
the exchange hole and exchange energy functional are that of GEA but
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with sharp real-space cut-offs chosen so that the inequality in Eq. (2.16)
and Eq. (2.13) are satisfied. The resulting numerically defined GGA is
then fitted to an analytic form. The PW86 correlation energy functional
involves the wavevector-space cutoff as in Ref. [34] but goes beyond the
RPA. PW86 correctly reduces to the uniform gas limits when gradients
vanish, but violates some scaling conditions and the Lieb-Oxford bound.
The PW91 GGA [37, 38] extends the real-space cut-off construction for
exchange to exchange-correlation by introducing another cut-off radius
to satisfy Eq. (2.23). Not only does PW91 satisfy the sum-rules on the
holes and reduces to the uniform gas limit appropriately, it also satisfies
many (but not all) of the scaling relations and the Lieb-Oxford bound.

In 1996, the PBE GGA was introduced [39], which has a much sim-
pler form than PW91. PBE was constructed by writing down a reason-
able functional form for the correlation and exchange energies involving
the density and its gradient, where the parameters are determined by
considering known exact behavior in certain limits e.g. where the gra-
dient vanishes or becomes infinite, uniform scaling to the high-density
limit, and satisfaction of the Lieb-Oxford bound. Numerically, PBE
gives practically identical results to PW91 for most systems, but with a
smoother potential.

Most of the gradient approximations above are non-empirical, be-
ing derived according to fundamental principles and knowledge of the
uniform gas limit. Alongside of this there has also been a more empir-
ical line of development. Becke-exchange (B88 [40]) is a GGA for the
exchange energy constucted with a parameter fitted to the exchange en-
ergies of atoms. This worked well, improving LSD results for atomic and
molecular systems. B88 is very similar to any of the Perdew exchange
functionals, but is a little more accurate for the exchange energies of
atoms. Often used with B88 is the the Lee-Yang-Parr correlation energy
functional [41]. The LYP correlation functional is a density gradient ex-
pansion based on the Colle-Salvetti orbital functional for E¢ [42], which
arose out of an empirically determined model for the pair density (see
below). In Ref. [42], correlation is introduced by approximating the
pair density as the non-interacting pair density multiplied by a corre-
lation factor. Through a series of approximations, the Colle-Salvetti
formula for the correlation energy was derived, involving the density,
non-interacting ontop pair density, and the Laplacian of the pair density
evaluated at zero separation, together with four constants which were
fitted to the Hartree-Fock orbital for helium. By expressing the non-
interacting pair density in terms of the density and first order density
matrix (c.f. Eq. (2.16)), one can express Eq in terms of the density
and non-interacting kinetic energy only; a density gradient expansion
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of the latter as described above then turns Eg into a density gradient
functional. This was the work of Ref. [41], which was later written more
usefully without the Laplacian [43]. This works well for small molecules
and systems with similar density gradients. For the uniform gas, it does
poorly, underestimating Es by as much as half, partly due to missing
parallel-spin correlation [44].

Although originally based on the Colle-Salvetti model for the pair
density, that model does not remain faithful to the properties that the
pair density (or equivalently exchange and correlation holes) must satisfy
[45]. For example, the correlation sum rule Eq. (2.23) is violated. In
fact the density itself is not normalized correctly. The reader is referred
to [45] for a recent detailed study of the Colle-Salvetti wavefunction and
these issues.

For an entertaining and enlightening discussion of the relative mer-
its of the empirical and non-empirical approaches, the reader is referred
to a comment on PBE [46] and the response [47].

5.2. Hybrids

The adiabatic connection suggests a way to improve over GGA’s.
The error at the A = 0 end of an approximate adiabatic connection curve
tends to be larger than the error at the A = 1 end. This is because cor-
relation squeezes the hole, making it deeper and more localized so that
LSD and GGA’s which use only local information become more accu-
rate. The error at the exchange end is a particular problem for systems
with large static correlation (e.g. when there are near-degeneracies in
the Kohn-Sham system), because the steep downward plunge of the true
adiabatic connection curve near A = 0 is difficult for GGA’s to capture
[48]. Since Ex¢ is given by the area under this curve, this effect worsens
the accuracy of GGA’s, which contain only dynamical correlation. This
motivates hybrid functionals: by trading a fraction of approximate den-
sity functional exchange with exact exchange (but only a fraction), this
error is reduced. The fraction to be mixed was first determined empiri-
cally by Becke [49], and later justified non-empirically [23, 50]. Recently,
the Perdew group has expanded this concept to approximate the A — oo
limit of the adiabatic connection curve using density functionals, and to
interpolate between it and the small-\ regime, to yield accurate cor-
relation energies [51]. In this way, they derive non-empirically results
comparable to the best hybrids.
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5.3. Weighted density approximation

The weighted density approximation (WDA) attempts to build non-
locality into the exchange-correlation energy in the following way: the
energy density, rather than being a function of the local density p;(r),
is modified to depend on densities in a neighborhood of r [52, 53]. First
note that in terms of the pair correlation function at A

A !
A ' ) (I‘, r )
gi(r,r') = —/————, 5.3
) = @) 53
the coupling-constant averaged hole is written as
1
ee(rx) = i) [ ar2g)ex) D). (5.4

WDA consists of approximating the true pair correlation function by
that of the uniform electron gas at a density p1(r) which is determined
by imposing the sum-rule

/ dr’ /0 " (2™ oy () — 1) ~ 1) (@) = 1. (5.5)

Note that the prefactor in Eq. (5.4) is still the true density p;(r') at
the distant point. WDA improves the exchange energy over LDA, but
correlation tends not to be improved. One can generalize the idea to
spin-polarized systems (WSDA) [54]. Often, producing accurate results
for a particular set of systems requires tailoring the model pair corre-
lation function in a way which makes it less accurate for others. The
strong non-locality introduced by the distant density seems contrary to
the “near-sightedness” principle of Kohn [9].

5.4. Self-interaction correction and meta-GGA’s

In Ref. [55] a method was introduced to correct for the self-interaction
error orbital by orbital (SIC). One subtracts the left-hand-side of Eqs.
(4.2) evaluated with the approximate density functional on the density
associated with each spin orbital individually, for every occupied spin
orbital, from the approximate density functional value of Ex and E¢
respectively on the total density. Unfortunately, the resulting orbital
functional is not invariant under unitary transformation among the or-
bitals. A special set of maximally localized SIC orbitals are often used
in calculations. The SIC effective potential correctly decays like —1/r
as r — oo in contrast to the exponential decay of the LSD or GGA po-
tentials. The advantages and disadvantages of SIC are discussed in Ref.

[27].
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Recently, both Becke [56] and Perdew [57] have proposed meta-
GGA’s. These functionals use the non-interacting kinetic energy density,
a slightly more non-local functional than the density, and its gradient
to improve upon GGA’s. In particular, it allows various self-interaction
errors to be corrected, and also allows the functional to distinguish be-
tween single bonds and multiple bonds.

6. NEW TECHNOLOGY

As computations get ever faster and the search for greater accuracy
broadens, new methods (beyond ground-state Kohn-Sham equations)
are developing.

6.1. The optimized effective potential

Although introduced almost half a century ago [58], the optimized
effective potential (OEP) method is now understood to be a way of solv-
ing the Kohn-Sham equations with an orbital-dependent energy func-
tional. In this sense, it is equivalent to exact DFT, as the exact KS
orbitals are implicit density functionals. In the same way that the KS
equations enabled the density-dependent non-interacting kinetic energy
term in the Euler equation to be evaluated exactly in terms of orbitals,
the OEP equations allow the density-dependent exchange term in the
KS equations to be evaluated exactly in terms of orbitals.

Modern interest in this subject was greatly enhanced by an ex-
tremely accurate approximate solution of the complex OEP equations,
introduced by Krieger, Li, and lafrate [59, 60], A thorough review of
this subject is given in Ref. [61]. An obvious application of OEP has
been to test the Colle-Salvetti orbital-dependent correlation functional,
but with disappointing results for molecules, presumably related to its
various violations illustrated in Ref. [45]. Very recently, OEP-type cal-
culations have been implemented both for solids [62] and for molecules
[63, 64]. A major open problem in DFT is to construct an accurate
and reliable orbital approximation for E., which can be used with exact
exchange, since present approximations include a cancellation of errors
between these two. Already meta-GGA'’s require OEP if their exchange-
correlation potential is to be calculated (typically, they are presently
used in a post-GGA evaluation of the energy).
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6.2. Time-dependent density functional theory

Exact DF'T demonstrates that all observables of a time-independent
system are functionals of its ground-state density. But some are more
easily approximated than others, such as the the ground-state energy in
atoms, molecules, and solids. Excited state energies are also functionals
of the density [65], but construction of good approximate functionals
for their evaluation has proven difficult. Other properties that are very
subtle functionals of the ground-state density are the van der Waals
forces between separated neutral species and also the stretched Hy bond.

A new route to these properties is rapidly emerging in the form of
time-dependent density functional theory (TDDFT). This is a separate
theory, constructed for electrons in time-dependent external potentials,
leading to time-dependent Kohn-Sham equations. In the linear response
regime, one can see how to handle dipole-dipole fluctuations in van der
Waals systems [66], fluctuations on long time scales in stretched Ho, and
how to correct the transition energies of ground-state Kohn-Sham po-
tentials into true excitations of the system. In all cases, time-dependent
functionals must be approximated, and this area is one of intensive and
ongoing research.

7. CONCLUSIONS AND ACKNOWLEDGMENTS

Modern DFT is an alternative approach to interacting quantum
systems, with an exact and rigorous foundation. The key aim is to trans-
late physical and chemical insight in traditional quantum mechanics into
approximate density functionals, so that advantage can be taken of the
computational simplification of solving the Kohn-Sham equations rather
than the coupled Schrodinger equation. Progress has been made both
with and without the use of empirical parameters. In particular, models
of the pair density have motivated many improvements in exchange-
correlation energy functionals. We hope that this chapter has given a
flavor of the rapid progress in developing good approximate functionals
for ground-state DFT.
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