
Published on Web Date: June 25, 2010

r 2010 American Chemical Society 2124 DOI: 10.1021/jz1007033 |J. Phys. Chem. Lett. 2010, 1, 2124–2129

pubs.acs.org/JPCL

Accuracy of Electron Affinities of Atoms in Approximate
Density Functional Theory
Donghyung Lee,* Filipp Furche, and Kieron Burke

Department of Chemistry, University of California, Irvine, California 92697

ABSTRACT Most approximate density functionals do not bind small atomic
anions because of large self-interaction errors. Yet atomic electron affinities are
often calculated using finite basis sets with surprisingly good results, despite
positive highest occupied molecular orbital (HOMO) energies. We show that
excellent results (better than for ionization potentials) can be obtained using
standard approximate functionals evaluated on Hartree-Fock or exact-exchange
densities for which the extra electron is bound. Although these good results found
with limited basis sets are not accidental, we argue that thismethod cannot be used
in general. Thus a positive HOMO indicates that the total energy should not be
disregarded, only treated with caution.

SECTION Molecular Structure, Quantum Chemistry, General Theory

T reating atomic anions with density functional theory
(DFT) has long been controversial.1,2 The net negative
charge produces strong self-interaction errors (SIEs),3

resulting in such a large upward bump in the effective poten-
tial that the last electron is unbound.

In Figure 1, we show the exact Kohn-Sham (KS) potential
for Li-, found from the density of a highly accurate quantum
Monte Carlo (QMC) calculation with a zero-variance zero-bias
estimator,4 and by inversion of the KS equations. The highest
occupied molecular orbital (HOMO) is at ε2s = -A, with A=
0.62 eV, the electron affinity (EA).We also show theKS poten-
tial when the exchange-correlation (XC) contribution is eval-
uated using the local density approximation (LDA) on this
accurate density. The 2s orbital of this potential is a very sharp
resonance, at approximately 0.80 eV.

Formal theorists argue that approximate DFT does “not
apply to negative atomic ions if the orbital energy (is) not
negative.”5 Despite this, many have ignored these warnings,
calculated EAs within DFT, and found reasonable results using
reasonable basis sets.1 Because such calculations have positive
HOMO energies for the anion, many authors report EAs found
in this way with a note of caution. More than a decade ago,
these opposing views werewell expressed in refs 1 and 2, with
the latter arguing for why such calculations should be dis-
countedon formal grounds, and the formerdemonstrating that
nopractical problems arise, evenwith very large basis sets, and
that useful results can be found for many small molecules.6

The fact remains that a formally problematic procedure
yields physically meaningful results. This strongly suggests
that there is a systematic property to be explored. In the
present letter, we use DFTcalculationswith exact exchange to
elucidate that structure and show how the practical and
formal are reconciled. Our analysis suggests a new practical
solution to the problem that is as accurate as any existingDFT
method with fewer formal difficulties.

We begin with our notation and formalism. The KS equa-
tions for any atom or ion are

-
1
2
r2 þ vσSðrÞ

� �
φiσðrÞ ¼ εiσφiσðrÞ ð1Þ

where vS
σ(r) is a single, multiplicative spin-dependent KS

potential, and σ is a spin index (up and down spins). The KS
potential is written as a sum of three contributions:

vσSðrÞ ¼ vðrÞþ vH½n�ðrÞþ vσXC½nv, nV�ðrÞ ð2Þ
where v(r)=-Z/r for an atom, vH(r) is the Hartree potential,
and the XC potential is

vσXC½nv, nV�ðrÞ ¼ δEXC½nv, nV�
δnσðrÞ ð3Þ

Thus, for either the exact or someapproximateXC functional of
the (spin) densities, we have a self-consistent set of equations.

Far from a nucleus, the Hartree potential decays as N/r,
where N is the electron number. The exact XC potential decays
as

vXCðrÞ f -1=r, r f ¥ ð4Þ
which is apure exchangeeffect.7 For aneutral atom,ZequalsN,
and vS(r) approaches -1/r exactly. However, almost all local
and gradient-corrected functional approximations to vXC(r)
decay incorrectly with r, typically exponentially, as the density
decaysexponentially. Thishasonlya small effecton thedensity
itself, but leads to very poor HOMO levels in such calculations
(errors of several eV). These are all manifestations of the
infamous SIE.
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A well-known cure for this problem in DFT is to use the
optimized effective potential (OEP)method,8 which finds the
KS potential for an orbital-dependent functional. The simplest
case is to include exchange alone, often denoted EXX,
producing a KSpotential with the correct asymptotic behavior
and a HOMO energy that is close to -I for neutral systems.
A practical and accurate approximation to OEP, called loca-
lized Hartree-Fock (LHF), was developed by G€orling and co-
workers.9,10 The total energies of EXX are practically indis-
tinguishable from those of a standard Hartree-Fock (HF)
calculation.11

While awkward and embarassing for DFTenthusiasts, this
problem is not fatal for neutral atoms and cations, because
one extracts the total energy by applying the energy func-
tional to the self-consistent density, andneednever lookat the
orbital energies. Such total energies (and especially energy
differences) have been found to have chemically useful
accuracy.12 However, for anions, the problem does appear to
be fatal, since the exponential decay of the approximate
vXC(r) leaves a KS potential that behaves as

vSðrÞ f þ 1=r, r f ¥ ð5Þ
for an anion using an approximate XC functional. This pro-
duces a large positive bump in the potential, especially for
small systems, and usually raises theHOMOabove the zero of
the potential (value at ¥). As we show in Figure 1, the LDA
HOMO energy is 0.83 eV, and the last orbital is not an
eigenstate, but a very sharp resonance. The KS potential
decays slowly and the classical outer turning point is at 17 Å.
The true self-consistent ground state, using an approximate
functional, is found when a sufficiently large fraction of an
electron has escaped from the system (tunnelled to ¥), redu-
cing the HOMO energy to zero. We avoid this sorry fate in
Figure 1 by evaluating the LDA approximation to the KS
potential on the exact density, not a self-consistent density.
Note that hybrid functionalsmix about 25%of exact exchange
with a generalized gradient approximation (GGA). This reduces
the barrier by about 25%, but does not rectify the problem.

Long ago, Shore et al3 studied the LDA for the H- ground
state. They confined electrons in a cavity byadding a spherical
hard wall and calculated HOMO and total energies, varying
the position of the wall (RB). They found that there was a
plateau-like region of the energies in 15 au< RB < 30 au. To
obtain the asymptotic solution of H- as RB f ¥, they varied
the number of core electrons at r < 25 au and their wave
function to determine the energy minimum. The energy
minimum occurred when 1.7 electrons were localized near
the nucleus, 0.3 electrons were delocalized in the asymptotic
tail of the density, and the HOMOeigenvalue became zero. At
about the same time, Schwarz13 noted that both O- and F-

are unstable using XR14 (a precursor to LDA15) because
HOMO eigenvalues are positive.

Galbraith and Schaefer1 claim the applicability of approx-
imate DFT for negative ions. If basis sets such as Dunning's
augmented correlation consistent polarized valence double-ζ
(aug-cc-pVDZ) basis set16,17 or larger are used, DFT methods
with GGA and hybrid functionals can be applied to negative
ions such as F-, whose outermost electron has a positive
HOMO. Subsequently, R€osch and Trickey2 correctly point out
that exact DFT itself has no difficulty for anions, but that the
problem is with approximate functionals, as is clearly illu-
strated in Figure 1. They claim that there are no difficulties
with the physical significance of orbital eigenvalues, positive
values are permissible, and that problems can be masked by
finite basis sets. Although correct, none of this necessarily
implies that accurate numbers cannot be extracted fromfinite
basis sets. Later, careful calculations by Jarecki andDavidson5

showed that, for F-, there are two plateau regions of total
energyas a function of basis-set size. On the first plateau, both
total energy and HOMO appear to converge, the latter to a
positive value. Beyond that, the basis set probes the outside of
the barrier, some density leaks out, and the HOMO falls to
zero. However, the density change is so small that the total
energy barely changes. Eventually, the electron completely
escapes, and the HOMO falls even further.

A naive solution to this difficulty is to perform HF or the
DFT version, LHF, for such systems, which produce negative
HOMOs for the anions. However, for small anions, correlation
effects are large, so HF total energy differences are highly
inaccurate. In fact, from the total energies,manyof the anions
are unbound. One can also use Koopman's theorem, where I
is estimated as -εHOMO. While an improvement, the mean
absolute errors (MAEs, 0.5 eV) are much larger than DFT
methods including correlation with a basis set. An alternative
solution to the SIE problem is to perform self-interaction
corrected local spin density approximation (SIC-LSDA).18 In
ref 19, Cole and Perdew applied SIC-LSDA to calculate EAs for
atomic systems, Z<86, significantly reducing errors relative
to LSDA, but much less accurate than results produced here
with GGAs, hybrids, and meta-GGAs.

Our suggestion is to performcalculations that include exact
exchange (either LHF or HF) for self-consistent densities, but
evaluate an approximate functional on that density to obtain
the energy. Such a procedure has its own drawbacks, but
avoids all the pitfalls mentioned above.

In Table 1, we calculate EAs using HF densities for both
neutral and negative atoms. The B3LYP results were used in

Figure 1. Comparison of KS potentials of Li-. The black line is
essentially exact, using a density from QMC. The red (dashed)
line is the LDA potential on that density. The horizontal lines mark
the HOMO (2s orbital) energies.
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Figure 2. Our EAs are much more accurate than the corres-
ponding ionizationpotentials (typically by about a factor of 2),
with mean average errors below 0.1 eV. These results change
little when the basis set is expanded (either larger valence
space or more diffuse functions), and our newmethod, using
HF densities, has awell-defined basis-set limit. The traditional
method of limited basis sets (LBS) can only work until the
basis set probes the decay of the positive barriers of the type
shown in Figure 1. Similarly good results are found for the
PBE22 GGA and its hybrid, PBE0.23 The best results are with
the TPSS24 meta-GGA with HF densities. The results for all
functionals are better than those of ionization potentials for
these elements. They also follow the usual trends for approx-
imate functionals. The more sophisticated functionals reduce
errors by a factor of 2-5 relative to LDA.

In Figure 3, we repeat Figure 2, but now for the PBE
functional. Comparisonof the two shows themore systematic
(and often larger) errors of the nonempirical GGA versus
the empirical hybrid B3LYP. Interestingly, with our HFmethod
for neutral and negative atoms, PBE does as well as PBE0.
B3LYP and the meta-GGA, TPSS, give the best total MAE. We
find almost identical results if we use LHF instead of HF
densities.

Why do limited basis sets work? If the last electron is
unbound in a pure DFT calculation, one can reasonably ask
why limited-basis calculations yield sensible answers at all. To
confirm that they do work, in Table 2, we report the results of
using a limited basis set. The B3LYP and PBE numbers were
used in Figure 2 and Figure 3, respectively. Without addres-
sing the formal issues, these results are entirely sensible and
very close to those of Table 1. MAEs are almost the same
(slightly worsened), and individual differences are almost all
within theMAEof the given functional. Howcan such sensible
results and excellent agreement with Table 1 come from such
an apparently ill-defined procedure?

The original EXC defined by Kohn and Sham15 was for a
fixed particle number. This means that the KS potential is
undefined up to an arbitrary constant. The density is unaf-
fected by an arbitrary shift of the potential. Thus positive
orbital energies per se do notmean a density or total energy is
inaccurate. However, in real calculationswith approximateXC
functionals, we conventionally set vS(f ¥) to zero. Thus, the
electron is unbound if its orbital energy is positive, as in
Figure 1. Consider a model in which we add to the potential
Cθ(Rc- r), whereθ(r) is theHeaviside step functionandRc is a
very large fixed distance. As long as our basis sets do not
stretch out to Rc, the anion will appear perfectly stable and
have awell-defined limit for its density. IfC is largeenough, the
HOMO will be positive. In Figure 4, we have performed just
such a procedure for Li-, withC=1.42 eV, and choosingRc=
1000 Å, arbitrarily. This slightly inaccurate KS potential yields
essentially the exact anionic density, produces as accurate an
anionic energyas the approximate functional used to evaluate
it, but has a positive HOMO of 0.80 eV.

Table 1. Errors in EAs (eV)a

EA ΔEA

exp LDA PBE B3LYP PBE0 TPSS

H 0.75 0.13 -0.11 0.03 -0.17 0.01

Li 0.62 -0.04 -0.12 -0.14 -0.14 -0.05

B 0.28 0.36 0.26 0.04 0.17 0.12

C 1.26 0.45 0.23 -0.04 0.12 0.12

O 1.46 0.41 0.14 0.01 -0.14 -0.09

F 3.40 0.59 0.12 -0.04 -0.18 -0.07

MAEb 0.33 0.16 0.05 0.15 0.08

Na 0.55 0.04 -0.01 -0.05 -0.05 0.03

Al 0.43 0.17 0.13 -0.08 0.10 0.06

Si 1.39 0.21 0.11 -0.13 0.09 0.07

P 0.75 0.13 0.03 0.02 -0.03 0.03

S 2.08 0.27 0.06 0.01 0.00 0.01

Cl 3.61 0.36 0.08 0.01 0.03 0.02

MAE 0.20 0.07 0.05 0.05 0.04

total 0.26 0.12 0.05 0.10 0.06
a Total energies for both neutral and negative atoms are evaluated on

HF-SCF densities with the aug-cc-pVDZ basis set. bMean absolute error.

Figure 2. Comparison of errors (Δ) in ionization potentials and
electron affinities in first two rows of the periodic table. Energies
are evaluated with the B3LYP density functional20,21 evaluated
on HF densities and on self-consistent densities within the AVDZ
basis set.

Figure 3. Comparison of errors (Δ) in ionization potentials and
EAs (in eV). Energies are evaluated with the PBE density functional
evaluated on the AVDZ basis set, except the square symbols, where
the densities are found from an HF calculation.
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Now then the question becomes, do approximate func-
tionals, complete with SIE, really accurately mimic such a
shifted KS potential? The answer has long been known to be
yes,25 and we show this in Figure 5. Here we include only the
XC portion, in order to zoom in on the region where the exact
and approximate potentials differ. The LDA potential almost
exactly follows the shifted exact potential, once the outer shell
(2s) is reached. Does it converge to an accurate energy and
density?Theanswer is generally yes, if the functional is accurate
except for producing the wrong asymptote.

In Figure 6, we show that the errors in density for the Li-

anion are only a few percent, and are comparable for all
methods.

Finally,we investigate thedependenceofHOMOsand total
energies onbasis sets by addingmore diffuse functions for F-.

Moving from singly augmented to quadruply augmented
AVTZ basis functions, the HOMO drops from 1.57 eV down
to 0.75 eV, but the total energy of the anion changes by only
2 mH. We also checked the use of a logarithmic (diffusive)
grid, but this had effects only in the 50 μH regime.

In summary, we have suggested an alternative method for
calculating EAs of small anions that resolves the dilemma of
positive orbital energies and has awell-defined basis set limit.
By evaluating the energies on LHF or HF densities, in which
the last electron is properly bound with a negative HOMO,
accurate and sensible results are obtained. We have also
shown that the consistency and accuracy of using limited
basis sets for SCF calculations with approximate functionals
canbeunderstood, despite thepositiveHOMOenergies of the
anions. But an advantage of our method is that the basis-set
limit is always well-defined. Using limited basis sets could run
into difficulty if the self-interaction barrier becomes too
narrow or insufficiently high, making it impossible to find a
plateau region.Of course, by evaluating the potential with one
functional while evaluating the energy with another, various

Table 2. Errors in EAs (eV)a

EA ΔEA

exp LDA PBE B3LYP PBE0 TPSS

H 0.75 0.15 -0.07 0.06 -0.16 0.02

Li 0.62 -0.03 -0.11 -0.12 -0.13 -0.04

B 0.28 0.44 0.32 0.10 0.19 0.16

C 1.26 0.53 0.31 0.03 0.15 0.18

O 1.46 0.58 0.30 0.12 -0.07 0.03

F 3.40 0.74 0.28 0.06 -0.11 0.05

MAE 0.41 0.23 0.08 0.13 0.08

Na 0.55 0.07 0.01 -0.02 -0.03 0.04

Al 0.43 0.21 0.15 -0.04 0.11 0.09

Si 1.39 0.20 0.11 -0.12 0.08 0.07

P 0.75 0.25 0.09 0.09 0.00 0.07

S 2.08 0.31 0.10 0.04 0.01 0.03

Cl 3.61 0.35 0.09 0.02 0.02 0.02

MAE 0.23 0.09 0.06 0.04 0.05

total 0.32 0.16 0.07 0.09 0.07
a Total energies for both neutral and negative atoms are calculated

by the SCF procedure with the aug-cc-pVDZ basis set.

Figure 4. Shifted exact vS (r) potential (eV). The HOMO fromQMC
is-0.62 eV, and the HOMO from LDA/AV5Z is 0.80 eV. We shift the
exact vS by the difference between eigenvalues.

Figure 5. Shifted exact vXC (r) potential (eV) in Li-. The HOMO
from QMC is -0.62 eV, and the HOMO from LDA/AV5Z is 0.80 eV.
We shift the exact vXC by the difference between eigenvalues.

Figure 6. Plot of the radial density errors for Li- with various
approximations. SCF densities are obtained with AVQZ. The exact
density is from QMC.
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well-known complications arise, such as in the calculation of
forces. But these difficulties are far less subtle and challenging
than those of positive HOMOs.

Finally, we note that even our method will fail if the (L)HF
density is insufficiently accurate or the approximate func-
tional does not provide accurate energies. Thus we expect
comparable accuracy to that foundhere formolecular valence
anions, but the weakly bound states such as dipole- or higher
multipole-bound anions26 will bemuchmore challenging and
may require self-interaction-free energy functionals along
with a correct treatment of dispersion.

COMPUTATIONAL DETAILS

In all our calculations, the total energies of neutral atoms
and ions are calculated using the usual self-consistent unrest-
ricted HF, LHF, and KS-DFT. The approximate functionals in
DFT calculations are LDA (S-VWN5),27-29 PBE,22 hybrid
(B3LYP20,21 and PBE023), andmeta-GGA (TPSS24) functionals.
We use Dunning's augmented correlation-consistent pVXZ
(aug-cc-pVXZ, X = D, T, Q, and 5; AVXZ in this paper) basis
sets.16,17 For the LHF calculations for anions, we calculate the
Slater potential numerically everywhere to get accurate re-
sults. The calculations with basis sets are performed with
TUBOMOLE 6.2.30 For the special cases of H- and Li-, we
perform fully numerical DFTcalculations using anOEPcode31

to calculate vS(r), vXC(r), and the densities using EXX. Since
this code makes a spherical approximation, we do not use it
for nonspherical cases. To calculate approximate functionals
on HF densities, we perform unrestricted HF calculations on
both neutral and negative atoms. Then, we evaluate the total
energies of atoms usingHForbitals, so the kinetic energies are
those of HF.
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