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Accuracy of density functionals for molecular electronics: The Anderson junction
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The exact ground-state exchange-correlation functional of Kohn-Sham density functional theory yields the
exact transmission through an Anderson junction at zero bias and temperature. The exact impurity charge
susceptibility is used to construct the exact exchange-correlation potential. We analyze the successes and
limitations of various types of approximations, including smooth and discontinuous functionals of the occupation,
as well as symmetry-broken approaches.
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I. INTRODUCTION

Since the pioneering experiments of Reed and Tour on
dithiolated benzene,1 there has been tremendous progress in
the ability to both create and characterize2 organic molecular
junctions. But accurate simulation of these devices remains
a challenge, both theoretically and computationally.3 The
essential physics has been well understood since the ground-
breaking work of Landauer and Büttiker4,5 in the context of
mesoscopic devices, including both Coulomb blockade and
Kondo effects.6,7 Calculations with simple model Hamiltoni-
ans demonstrate such effects at a qualitative level.8 On the other
hand, organic molecules connected to metal leads9 require
hundreds of atoms and thousands of basis functions for a
sufficiently accurate calculation of their total energy, geometry,
and single-particle states. Such conditions are routine for
modern density functional theory (DFT) calculations,10 but the
ability of present functional approximations to predict accurate
currents remains an open question.11

The standard DFT method for calculating current through
such a device is to perform a ground-state Kohn-Sham (KS)
DFT calculation12 on a system upon which a difference
between the chemical potentials of the left and right leads has
been imposed (the applied bias) and calculate the transmission
through the KS potential using the Landauer-Büttiker formula.
But there is nothing in the basic theorems of DFT that directly
implies that such a calculation would yield the correct current,
even if the exact ground-state functional were used.

The limit of weak bias is more easily analyzed than the
general case because the Kubo linear response formalism
applies.13,14 In that case one finds that, in principle, there
are exchange-correlation (XC) corrections to the current in
the standard approach,15 but little is known about their
magnitude.16,17 Even without these corrections, one can ask
if the standard approximations used in most ground-state
DFT calculations (i.e., generalized gradient approximations18

and hybrids of these with Hartree-Fock exchange19,20) are
sufficiently accurate for transport purposes. The answer
appears definitively no. Because of self-interaction errors,
such approximations are well known21 to produce potentials
with incorrectly positioned KS eigenvalues, both occupied and
unoccupied. These errors become severe when the molecule is
only weakly coupled to the leads.22,23 Calculated transmission

can be too large by several orders of magnitude due to this
incorrect positioning of the levels. Recent calculations24 using
beyond-DFT techniques to correctly position the levels show
greatly improved agreement with experiment.

But this progress returns us to the earlier concern: Even with
an exact ground-state XC functional, are there XC corrections
to the Landauer-Büttiker result? The answer appears to be
yes in general,15 but in a previous work25 we argued that,
under a broad range of conditions applicable to typical
experiments, such corrections can vanish. This result was
shown by exact calculations on an impurity model (Anderson
model) employing the exact XC functional. Similar results
were achieved independently by other groups at about the
same time.26,27 In the present work, we analyze different
approximate treatments, applied to the Anderson junction, and
calculate their errors. The implications for DFT calculations
of transport in general are discussed.

The Anderson model28 is a single interacting site (C)
connected to two noninteracting electrodes (L,R). The
Hamiltonian of the system is H = HC + HT + HL,R. Each
lead is represented by a noninteracting Fermi gas, HL,R =∑

kσ∈L,R εkσ n̂σ , with chemical potential μ, and the central
interacting site is HC = ε(n̂↑ + n̂↓) + Un̂↑n̂↓, where n̂σ =
d†

σ dσ is the number operator for spin σ and U is the charging
energy representing on-site interaction. HT is the tunneling
between leads and the central site. The tunneling width �

is a constant in the broad-band limit. A schematic is shown
in Fig. 1. Real molecules can be mapped onto the Anderson
model.29,30

In a previous work,25 we calculated the exact relation
between occupancy on the central site and on-site energy ε

for an Anderson junction, using the Bethe ansatz (BA).31 We
showed that exact KS DFT yields the exact transport at zero
temperature and in the linear response regime, although the
KS spectral function differs from the exact one away from the
Fermi energy. This is because the Anderson junction has only
one site and transmission is a function of occupation number
due to the Friedel-Langreth sum rule.32,33 The connection to
transport was pointed out in Refs. 24 and 34. Thus, for this
simple model, all failures of approximate XC calculations of
transmission can be attributed to failures to reproduce the exact
occupation number; i.e., there are no XC corrections to the
standard practice of applying KS DFT to the ground state
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FIG. 1. (Color online) A cartoon of the Anderson model. The
model consists of two featureless leads and a central region with
on-site interaction U . � is the tunneling width. Two many-body levels
of the central region are shown.

and finding transmission through the single-particle potential.
On the other hand, the standard approximations in use in
DFT calculations of transport have a variety of shortcomings.
The most prominent one, as we shall see, is the lack of a
discontinuity in the XC potential with particle number.35

II. PARAMETRIZATION OF XC POTENTIAL

Before studying approximations, we refine our previous
numerical fit of BA results, using analytic results from
many-body theory. We reintroduce28 reduced variables y =
�/U , which measures the ratio of lead coupling to the
on-site Coulomb repulsion, and x = (μ − ε)/U , which is
the difference between the leads’ chemical potential and the
on-site level energy, in units of U . For x < 0, the central site
is above the chemical potential; at x = 0 they match.

The occupation in the KS system is given by a self-
consistent solution of the KS equation for occupation:

〈nC〉 = 1 + 2

π
arctan

(
μ − εS(〈nC〉)

�

)
, (1)

where the KS level is written as

εS(〈nC〉) = ε + U

2
〈nC〉 + εXC(〈nC〉), (2)

with the second term being the Hartree contribution and the
third being the XC contribution (in fact, only correlation, as
exchange is zero for this model), which is a function of the
occupation. Considered in reverse, this is a definition of the
exact εXC, if the occupation is known, as it is from the BA
solution. The KS transmission is then

T (E)E=μ = sin2

(
π

2
〈nC〉

)
(3)

and matches the true transmission in the many-body system
by virtue of the sum rule. The exact ground-state functional
yields the exact transmission, including the Kondo plateau at
zero temperature and weak bias.25,36
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FIG. 2. (Color online) Dimensionless susceptibility χ̃c = Uχc(1)
as a function of y = �/U for the Anderson junction [exact, [5, 6]
Padé fit (see text), RHF, and UHF].

As shown in Ref. 25, the XC potential can be very accurately
parametrized with the form

εXC

U
= α

2

[
1 − 〈nC〉 − 2

π
tan−1

(
1 − 〈nC〉

σ

)]
. (4)

The tan−1 term jumps by π as 〈nC〉 passes through 1, leading
to discontinuous behavior with occupation. Thus σ determines
the width of this region, while α determines its strength.
Both σ and α are functions of y = �/U and were extracted
numerically by fitting to the exact solution and were roughly
fit by simple Padé approximations there.

However, we can greatly improve the fit of σ . A central
object in the Anderson junction is the charge suscepti-
bility, χc(〈nC〉) = d〈nC〉/dμ. At half-filling, this is known
analytically:37,38

χ̃c = 1

π

√
2

y

∫ ∞

−∞
dt

e−πyt2/2

1 + [(2y)−1 + t]2
, (5)

where χ̃c = Uχc(1) is dimensionless and is plotted in Fig. 2.
This curve can be readily fit to a [5, 6] Padé form:

χ̃mod
c (y) =

5∑
k=1

aky
k

/ 6∑
k=0

bky
k, (6)

whose 11 independent coefficients are chosen to recover the
Taylor expansion around y = 0 (strongly correlated limit)39

exactly to 5 orders and around y → ∞ to 6 orders and are given
in Table I. The weak-correlation limit can also be extracted via
the Yosida-Yamada perturbative approach.40–42 The quantity

TABLE I. Coefficients in the [5, 6] Padé approximation [Eq. (6)].

k ak bk

0 π 3(π 6 + 6π 4 − 225π 2 + 675)
1 8π 2 −12π 2(π 6 + 54π 4 − 945π 2 + 3105)
2 −576π (8π 4 − 120π 2 + 405) 12π (π 8 − 30π 6 + 555π 4 − 6525π 2 + 29700)
3 64(π 8 − 36π 6 + 153π 4 + 135π 2 + 8910) 96(π 8 − 80π 6 + 975π 4 − 2925π 2 + 1350)
4 256π (4π 6 − 204π 4 + 1530π 2 + 945) 48π (π 8 − 30π 6 − 225π 4 + 3375π 2 + 8100)
5 128π 2(π 6 − 42π 4 + 315π 2 + 135) 576π 2(π 6 − 50π 4 + 375π 2 + 225)
6 πa5/2
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FIG. 3. (Color online) (top) Transmission as a function of x =
(μ − ε)/U , (middle) occupation as a function of x, and (bottom) KS
potential as a function of occupation. Results are shown for Bethe
ansatz or exact KS DFT (exact), Hatree-Fock (HF), and discontinuous
approximation [disc, Eq. (10)]. U = � in all cases.

χ̃c has the physical meaning of the slope at the particle-hole
symmetry point in the 〈nC〉 vs (μ − ε)/U curve (see Figs. 3 and
4). It has a maximum at about y = 0.291, and as y varies from
∞ (weakly correlated limit) to 0 (strongly correlated limit),
the slope at the symmetric point increases at first. Beyond
the maximum value, the slope decreases, and the Coulomb
blockade plateau gradually develops.
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FIG. 4. (Color online) (top) Transmission as a function of x =
(μ − ε)/U , (middle) occupation as a function of x, and (bottom)
KS potential as a function of occupation. Results are shown for
Bethe ansatz or exact KS DFT (exact), RHF, UHF, and discontinuous
approximation [disc, Eq. (10)]. U = 10� in all cases.

By taking derivatives on both sides of Eq. (4), the two
coefficients α and σ are constrained by χ̃c:

σ = 2α

π (2/χ̃c − yπ + α − 1)
. (7)

Retaining the simple form of Ref. 25, a [0,1] Padé, α = 1/(1 +
5.68y), we determine σ from the Padé fit to the susceptibility
and Eq. (7). This yields highly accurate occupations, KS
potentials, and transmissions, including the Kondo plateau.
It agrees very well with the numerical fit to the BA results of
Ref. 25 and matches more closely than the simpler analytic fit
used there.

III. PERFORMANCE OF APPROXIMATIONS

We now move on to the central topic of this work, which
is the accuracy of approximate functional treatments. In such
treatments, εXC is approximated as a function of 〈nC〉 in Eq. (2),
and the resulting Eq. (1) is solved self-consistently for 〈nC〉.
The simplest such approximation is to simply set εXC = 0,
i.e., the Hartree-Fock (HF) method, and should be accurate
when correlation is weak. In Fig. 3, we plot several quantities
for U = �, both exactly and in HF, showing that HF is very
accurate here. We find28

χ̃HF
c = 2

1 + yπ
, (8)

which is correct to leading order in y−1:

χ̃c → 2/(πy) − 2/(πy)2 + 2γ /(πy)3 + · · · y → ∞, (9)

where γ = 3 − π2/4 exactly but γ = 1 in HF. Thus we regard
U � � as the weakly correlated regime. On the other hand,
in Fig. 4, we show the same plots for U = 10 �. Now,
in the exact occupation, the slope near x = 0.5 is much
weaker, leading to a transmission plateau (the Kondo plateau)
for 0 � x � 1. The plateau effect is missed entirely by HF
because of the too smooth dependence (in fact, linear) of
its KS level on occupation (see bottom panel). Note that
at temperatures equal to or above the Kondo temperature,
the Kondo effect is destroyed, and the central plateau in
transmission is replaced by two Hubbard peaks around x = 0
and 1. Then the behavior of the HF curve is exactly as
qualitatively predicted in Ref. 15, smearing out the two sharp
features into one peak midway between them. This is because
the KS level shifts linearly with occupation in HF, instead
of more suddenly with occupation in the exact solution.
More generally, all smooth density functionals, such as the
local density approximation12 and the generalized gradient
approximation,18 suffer from the same qualitative failure and
so would produce incorrect peaks centered at x = 0.5. All
these errors arise from the approximations to the functional; the
exact ground-state functional reproduces the exact occupation
by construction and so yields the exact transmission.

There have thus been several suggestions to incorporate
the discontinuous behavior with occupation into approxima-
tions in transport calculations. At the practical level, Toher
et al.22 showed in a model calculation how self-interaction
corrections would greatly suppress zero-bias conductance
in local density approximation calculations for molecules
weakly coupled to leads. More recently, the Bethe ansatz
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local density approximation (BALDA),43 developed for the
one-dimensional Hubbard model, was used to investigate the
transport properties of the Anderson model;44 a smoothing of
the derivative discontinuity was also introduced,44 but with a
different functional form than Eq. (4). For simple models, all
of these can be considered as LDA+U -like. The methodology
of LDA+U 45 has become increasingly popular in recent
years, especially for those focused on moderately correlated
systems such as transition metal oxides, for which LDA and
generalized gradient approximation (GGA) often have zero
KS band gap. In some fashion, a Hubbard U is added to some
orbitals of a DFT Hamiltonian. Sometimes U is regarded as an
empirical parameter, while others have found self-consistent
prescriptions. In any event, despite not fitting in the strict DFT
framework, it is a method borne of practical necessity for many
situations.46

To gain a qualitative understanding of the effects of such
models, we define a very simple XC potential that has a
discontinuity. To do this, we simply take the Hartree form,
symmetrize it around the half-filled point, and replace U by a
screened Ũ . We find that a simple fit Ũ = U/(1 + 0.25/y)
works well. Ũ being different from U and particle-hole
symmetry guarantee an explicit derivative discontinuity of εS

with respect to occupation number. This yields

εS[n] = 1

2
Ũnθ (1 − n) +

[
U + 1

2
Ũ (n − 2)

]
θ (n − 1), (10)

where θ (x) is the Heaviside θ function and, for simplicity, n

is just 〈nC〉.
While this model does contain a discontinuity and yields the

exact result as y → 0, curing the worst defects of HF, it misses
entirely the finite slope of the KS potential at half-filling for
finite U , which is determined by the susceptibility. The explicit
derivative discontinuity is exact in the strongly correlated limit
with infinite U/� but should be “rounded” in finite U/�

(Refs. 25 and 49) or in finite temperature.27 To see this for finite
(but very large) U/�, in Fig. 5, we show similar results as in
Figs. 3 and 4, but with U = 100�, and we only show the region
around 〈nC〉 = 1 at x = 0, where the rounded derivative dis-
continuity occurs. The transmission is accurate both for weak
and strong correlations but is not so everywhere in between. In
particular, it is overestimated for 〈nC〉 just above 0 (and just be-
low 1) for U = 10� because of this lack of a finite slope. This
is where we expect the greatest errors in such models, but the
region of inaccuracy (on the scale of x) shrinks as U/� → ∞.

IV. BREAKING SPIN SYMMETRY

Finally, we discuss a different class of approximations.
A well-known (and much debated) technique for mimicking
strong correlation is to allow a mean-field calculation to break
symmetries that are preserved in the exact calculation. Perhaps
the most celebrated prototype of such a calculation is for HF
applied to an H2 molecule with a large bond distance. At a
crucial value of the bond distance (called the Coulson-Fischer
point), an unrestricted calculation, i.e., one that allows a
difference in spin occupations, yields a lower energy than the
restricted one. This remains the case for all larger separations,
and the unrestricted solution correctly yields the sum of atomic
energies as R → ∞, whereas the restricted Hartree-Fock
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FIG. 5. (Color online) (top) Transmission as a function of x =
(μ − ε)/U , (middle) occupation as a function of x, and (bottom) KS
potential as a function of occupation. Results are shown for Bethe
ansatz or exact KS DFT (exact), unrestricted Hartree-Fock (UHF),
and discontinuous approximation [disc, Eq. (10)]. Also shown in the
top panel are UHF results for transmission using (incorrect) spin
densities [UHF(SB), with symmetry breaking], and 〈m〉 = 〈n↑〉 −
〈n↓〉 for UHF as a function of x is shown as an inset in the middle
panel. U = 100� in all cases, and only the region near 〈nC〉 = 1 and
x = 0 is shown.

(RHF) solution dissociates to unpolarized H atoms with the
wrong energies. This is the celebrated symmetry dilemma:
with a mean-field approximation, for large separations, one
can either get the right symmetry (RHF) or the right energy
[unrestricted Hartree-Fock (UHF) solution], but not both.
The same issues arise in approximate DFT treatments of
this problem.47 Of course, the exact functional manages to
get the correct energy with the correct symmetry, and there
have been many attempts to reproduce this with various more
sophisticated approximations. But a more pragmatic approach
is to accept the results as they are, interpreting the good
energetics as the result of applying the approximate functional
to a frozen fluctuation of the system. The true ground-state
wave function fluctuates between configurations with one spin
and then the other (left and right localized for stretched H2),
and the true ground-state density has unbroken symmetry. But
the approximate functionals give most accurate energies when
applied to the frozen fluctuations. Thus, one can interpret both
the total density and energy as being accurate from such a
calculation, but not the individual spin densities. In fact, an
alternative approach is to interpret another variable, such as
the on-top pair density, as being accurately approximated in
such treatments.47

We apply the same reasoning to the Anderson junction,
just as was done by Anderson when creating the model we
are using.28 The symmetries are different, but the principle is
the same. We allow the mean-field calculation to break spin
symmetry if this leads to lower energy on the central site, with
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spin equations

〈n↑〉 = 1

2
+ 1

π
arctan

(
μ − ε − U 〈n↓〉 − εXC(〈n↑〉,〈n↓〉)

�

)
(11)

and the reverse for 〈n↓〉 and 〈nC〉 = 〈n↑〉 + 〈n↓〉. Again, the
simplest calculation is UHF, where εXC = 0. The solutions are
identical to those found in the original problem by Anderson.28

For y > 1/π , i.e., U < π�, there is no spontaneous symmetry
breaking, and UHF = RHF. But beyond that critical value, the
spin-density difference becomes finite, and the unrestricted
solution differs. Define the density difference as 〈m〉 = 〈n↑〉 −
〈n↓〉 in UHF, which satisfies

tan

(
π

2
〈m〉

)
= 〈m〉

2y
. (12)

This equation is valid for 〈nC〉 = 1, and similar relations can be
derived for other 〈nC〉. For y > 1/π , 〈m〉 = 0, but otherwise,
a solution with finite 〈m〉 exists. In all cases, we take only the
total density from the UHF calculation, and we know the true
〈m〉 = 0 always. In particular, as y → 0 (strong correlation),
χ̃c → 0 with the correct linear term:

χ̃c → (8/π )y + (96γ /π2)y2 + · · · y → 0, (13)

where γ = 1 in the exact solution but γ = 1/3 in UHF. So
UHF recovers the leading term. The green curve in Fig. 2 shows
the UHF value of χ̃c, demonstrating both its accuracy for both
strongly and weakly correlated systems and the discontinuous
change at 1/π .

Even beyond the Coulson-Fisher point of 1/π , the sym-
metry breaking only occurs for 0 � 〈m〉 � 1; i.e., outside this
region, the UHF solution is that of RHF, as can be seen in
the inset in the middle panel in Fig. 5. But the density is very
accurately given by UHF (considering the scale of horizontal
axis), and the KS potential develops the correct derivative
discontinuity as y → 0.

To demonstrate this accuracy, we plot the corresponding
transmissions in Figs. 4 and 5, using Eq. (3). Figures 4 and
5 show how the transmission using 〈nC〉 from UHF is almost
exact (considering the scale of horizontal axis). To demonstrate
the error in ignoring the fact that the UHF produces incorrect
spin densities, we also plot the transmission through such a
solution, which is completely wrong (see dark red curve in
the top panel of Fig. 5; only one peak is present because
only the region near x = 0 and 〈nC〉 = 1 is shown there).
Our results are consistent with those of Ref. 28, justifying
the use of the broken-symmetry solution to deal with strong
correlation.

V. CONCLUSIONS

To summarize, we have studied approximate treatments of
the zero-temperature weak-bias conductance of the Anderson
junction. RHF and approximate DFT treatments work well for
weak correlation but fail for moderate and strong correlation
because of the smooth dependence of their KS potentials
on occupation numbers. Imposing an explicit discontinuity
consistent with particle-hole symmetry can yield a discontinu-
ity with occupation which guarantees correct behavior in the
strong-correlation limit. This also greatly improves results for
moderate correlation but still contains errors. Finally, simple
symmetry breaking in UHF produces remarkably accurate
conductances, once the transmission is calculated as if the
symmetry had not been broken.
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