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In density-functional theory, the exchange-correlation functional can be exactly expressed by the adiabatic
connection integral. It had been noticed that as �→�, the �−1 term in the expansion of W��� vanishes. We
provide a simple derivation of this exact condition in this work. We propose a simple parametric form for the
integrand, satisfying this condition, and show that it is highly accurate for weakly correlated two-electron
systems.
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In density-functional theory �DFT� �1�, the exchange-
correlation functional EXC�n� is exactly expressed by the
adiabatic connection �2,3� formula

EXC�n� = �
0

1

d�W�n���� , �1�

where � is a coupling constant that connects the Kohn-Sham
system ��=0� to the true system ��=1�, while keeping the
density n�r� fixed. The integrand, W���, contains only poten-
tial contributions to EXC. The shape of W��� has been much
studied in DFT �4�. For example, the success of hybrid func-
tionals that mix some fraction of exact exchange with a gen-
eralized gradient approximation �GGA� can be understood
this way �5�. There is ongoing research to use the low density
��→�� limit as information in construction of accurate
models of W��� �6–8�. Recently, the adiabatic connection
formula has been used directly in functional construction �9�.

The expansion of W��� in the high-density �weak cou-
pling� limit for finite systems is known to be �7�

W��� = W0 + W0�� + ¯ as � → 0, �2�

where W0�=2EC
GL2, with EC

GL2 the second-order coefficient in
Görling-Levy perturbation theory �6,10,11�. The expansion
in the low-density �strongly correlated� limit is believed to be
�7,12�

W��� = W� + W���−1/2 + ¯ as � → � , �3�

where W�� is defined as the coefficient of �−1/2 in the expan-
sion above, and W� can be calculated from the strictly cor-
related electron �SCE� limit �13�. In addition to these expan-
sions, by definition the exact W�n���� is known to satisfy the
following scaling property �7�:

W�n���� = �W1�n1/�� , �4�

where n1/��r� is the scaled density, defined by n��r�
=�3n��r�, 0����. In the equations above, one can show
that W0=EX, the exchange energy, and that W� is finite �6�.
The dependence on �−1/2 in the low-density limit is because
correlation dominates here, and the Thomas-Fermi screening
length is proportional to �F

−1/2.
In practical DFT calculations, W��� must be approxi-

mated. However, any approximate W��� should satisfy sev-
eral exact conditions, such as Eqs. �2�–�4�. In the erratum to
Ref. �7�, Seidl et al. concluded that for the interaction-

strength interpolation �ISI� model �see below�, the spurious
�2 ln � term in EC�n�� is due to the �−1 term in the expansion
of W��� as �→� �Eq. �3��. In a recent work �12�, this was
proved rigorously by calculating zero-point oscillations
about the strictly correlated limit. In this Brief Report, we
elaborate the statement in the erratum to Ref. �7�, showing
that a reasonable assumption about the scaling behavior of
the correlation energy prohibits such spurious terms as
�2 ln �. While this result is not new, we provide a simple
derivation and show how this exact constraint affects ap-
proximate functionals. Throughout this Brief Report, we use
atomic units �e2=�=�=1� everywhere, i.e., all energies are
in Hartrees and all distances in Bohr radii.

Any � dependence can always be expressed in terms of
density scaling �14�. Using the fundamental relation of Levy-
Perdew �15� one finds

W�n���� = EX�n� − �2 d

d�
�EC�n��

�2 � , �5�

and it is generally believed for nondegenerate Kohn-Sham
systems �16� that EC�n�� has the following expansion in the
low-density limit ��→0�:

EC�n�� = ��B0�n� + �1/2B1�n� + �B2�n� + ¯� , �6�

where the Bk�n�’s �k=0,1 ,2¯� are scale-invariant function-
als. Substituting into Eq. �5�, we find the expansion of W���
for large �

W��� = EX�n� + B0�n� +
1

2
�−1/2B1�n� −

1

2
�−3/2B3�n� + ¯ ,

�7�

i.e., the �−1 term is missing, and W��� is independent of
B2�n�.

Now we survey approximations to W��� and see whether
they have the correct low-density expansion �Eq. �7��. There
are several kinds of approximations, the most famous being
the ISI model by Seidl and co-workers �6–8�:

WISI�n���� = W��n� +
X�n�

�1 + Y�n�� + Z�n�
, �8�

where X=xy2 /z2, Y =xX /z2, and Z=X /z−1, with x
=−2W0��n�, y=W�� �n�, and z=EX�n�−W��n�.

The ISI model uses the values of W�n� and its derivatives
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at both the high-density ��→0� and the low-density ��
→�� limits, to produce an accurate curve for W���, 0��
�1, to insert in Eq. �1� to get an approximation to EXC. It
gives very accurate results for the correlation energy �7� and
meets several conditions. But if we expand WISI in the low-
density limit

WISI��� = W� +
X
�Y

�−1/2 +
XZ

Y
�−1 + ¯ , �9�

we can see that its �−1 term does not generally vanish, al-
though it works very well numerically for EC �17�. This
wrong coefficient was already shown to produce a spurious
term ��2 ln �� in the expansion of EC�n�� as �→� �7�.

There were several attempts to overcome this problem
�correctly omitting the �−1 term but including all the other
�integer and half-integer powers� terms� in the literature
�18,12� by modifying the ISI model, but they are less simple:
one requires W0� �the next order in Eq. �2�� �18� and the other
is not a direct model to W� �12�. Consider instead the fol-
lowing four parameter interpolation model

Wacc��� = a + by + dy4, y =
1

�1 + c�
, �10�

where a, b, c, and d are scale-invariant functionals. We use
the same inputs as those for the ISI model, i.e., W0, W0�, W�,
and W�� to fit the parameters. Generally there are no analyti-
cal expressions in compact form for the parameters, and one

has to solve for them numerically. The 4th power in y is the
lowest that can be added while satisfying the exact condi-
tions, but producing an expansion with nonzero �−n terms
�n�Z ,n�1�. We recommend use of this Wacc to replace the
ISI model because it is numerically accurate and avoids the
�−1 term in the low-density limit. One can show that Wacc

obeys the scaling property �Eq. �4��, provided that W0�n��
=�W0�n�, W0��n��=W0��n�, W��n��=�W��n�, and W�� �n��
=�3/2W�� �n�, as they should. If we integrate Wacc��� over �
from 0 to 1, we find a simple expression for the exchange-
correlation energy

EXC
acc = a +

d

1 + c
+ 2b�− 1 + �1 + c�/c . �11�

We compare the performance of the new model and ISI on
Hooke’s atom, two electrons in a spherical harmonic well,
with force-constant k=1 /4. We show below that for this sys-
tem, our Wacc works as a highly accurate interpolation, even
more accurate than the ISI model.

Magyar et al. �19� calculated the W��� curve for 0��
�4 for Hooke’s atom �k=1 /4� using W0=EX=−0.515 and
W0�=−0.101 as inputs. They confirmed that W�=−0.743,
consistent with the SCE ansatz �6�. They also found W��
=0.235, but this was based on a fit that violated our condi-
tion, so we discount this result. Gori-Giorgi �20� calculated
W�� =0.208 based on the SCE model �6,12�, which we con-
sider exact. We apply these inputs �W0, W0�, W�, and W�� � to
our Wacc and the ISI model �Wacc generates two sets of solu-

TABLE I. Comparison of several quantities for three different
approximations to W��� for Hooke’s atom �k=1 /4�. The exact val-
ues are taken from Ref. �19� except for W�� �Ref. �20��. All energies
are in mHartrees.

exact ISI simp acc

W1 −583 −579 −583 −582

W1� −44 −41 −45 −44

EC −39 −37 −38 −38

EC+TC −10 −10 −9 −9

TABLE II. Comparison of several quantities for three different
approximations to W��� for helium atom. The exact values are
taken from Ref. �22�. All energies are in mHartrees.

exact ISI simp acc

W1 −1104 −1100 −1103 −1103

W1� −64 −60 −64 −63

EC −42 −40 −42 −41

EC+TC −6 −6 −5 −5
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FIG. 1. Comparison of three different approximations to W���
for Hooke’s atom �k=1 /4�, plotted as 	W=Wmodel−Wexact. The ex-
act curve �up to �=3� is taken from Ref. �19�.
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FIG. 2. Comparison of three different approximations to W���
for helium atom, plotted as 	W=Wmodel−Wexact. The discrete val-
ues are shown, as well as fitting curves to aid the eyes. Wexact values
�up to �=1� are taken from Ref. �22�.
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tions for a, b, c, and d, but we select the one with d closest
to b, for it can be reduced to Wsimp as below�. We plot the
differences between these models and the exact curve �taken
from Ref. �19�� in Fig. 1. One can see that our Wacc works
very well between �=0 and 1, which is the range of interest.
Its predictions for W1�, EC, and EC+TC are excellent, with TC
being the correlation energy from the kinetic part, as listed in
Table I. With these exact inputs, we found that, as �→�,
WISI→−0.743+0.208�−1/2+0.068�−1+¯, which shows that
although the coefficient of �−1 is small, it does not vanish.

We can also apply our Wacc to the helium atom. Here
W0=EX=−1.025, W0�=−0.095 �21�, and W�=−1.500 �6�,
W�� =0.621 �12� from the SCE model �6,12�. We plot the
differences between these models and the exact curve �taken
from Ref. �22�� in Fig. 2 and compare several key quantities
in Table II.

One can see that our model here works fairly well, and
Wsimp �see below� is even a little better than Wacc. ISI does
not satisfy the exact condition we derived in this work �Eq.
�7��: as �→�, WISI→−1.500+0.621�−1/2+0.376�−1+¯, so
the �−1 coefficient is not even small.

Now, we propose a simpler version of Wacc, which cannot
be used in typical cases, as the exact value of W�� is not
known in general. A simpler model is constructed by setting
d=b, to yield

Wsimp��� = a + b�y + y4�, y =
1

�1 + c�
, �12�

with a, b and c being scale-invariant functionals. We have
found �see results for Hooke’s atom and helium atom� that
although there is one parameter less, the above form pro-
duces usefully accurate results, especially between �=0 and
1. In a word, Wacc acts as an accurate interpolation to the
whole adiabatic connection curve, while Wsimp is more con-
venient and practical to use, without losing accuracy. It
yields W�� =0.191 for Hooke’s atom and 0.594 for helium.

We use W0, W�, and W0� to construct the explicit form of
Wsimp���, and find

a = W�, b =
W0 − W�

2
, c =

4W0�

5�W� − W0�
. �13�

Thus a and b set the end points, while c is a measure of the
curvature. Substituting Eq. �13� into Eq. �12�, we get the

explicit form of W��� in terms of W0, W�, and W0�. One can
show that it has the correct expansion in both limits, and it
obeys the scaling property �Eq. �4��. Setting d=b in Eq. �11�
and subtracting exchange, it yields

EC
simp = 2b�f�c� − 1�, f�c� = 	�1 + c −

1 + c/2
1 + c


/c ,

�14�

with b and c defined in Eq. �13�. EC
simp correctly recovers

GL2 in the weakly correlated limit �W�→−�, keeping W0
and W0� fixed, such as in the Z→� limit of two-electron ions�
and EXC

simp correctly reduces to W� for strong static correlation
�W0�→−�, keeping W0 and W� fixed, such as for stretched
H2�. We can calculate the kinetic correlation energy TC

TC = b�2f�c� − z − z4� , �15�

with f�c� defined in Eq. �14� and z=1 /�1+c, showing that
the curvature 
=TC / �EC−TC� �23� is a function of c alone.
We strongly urge EXC

simp be applied whenever its inputs are
accurately known.

We can further test our Wsimp in systems with more than
two electrons, but only those for which all inputs are known,
with results listed in Table III. One can see that Wsimp pre-
dicts EC fairly accurately, but is less accurate than WISI. This
is perhaps due to lack of W�� in Wsimp.

In fact, in their first paper on the ISI model, Seidl et al.
proposed a similar model �6�, which yields results numeri-
cally very close to those of ISI, but without the y4 term. But
their model contains no �−n�n�1� contributions. Note that
none of these models work for the uniform electron gas,
because W0�=−� �17�, so both the model developed by Seidl
et al. �6� and Wsimp reduce to W���=W�.

After the bulk of this work was completed, we received a
preprint of Ref. �12�, containing a detailed theory of the lead-
ing corrections to W��� as �→�, consistent with the much
simpler arguments given here. Also, we use their W�� value
for helium �see text� to replace the old one predicted by
point-charge-plus-continuum �PC� model �7�.

We thank John Perdew and Jianmin Tao for kind discus-
sions. We are also in debt to Paola Gori-Giorgi and Michael
Seidl for useful suggestions and the values of W�� . This work
is supported by National Science Foundation under Grant
No. CHE-0809859.

TABLE III. Comparison of Wsimp and WISI on systems with more than two electrons. EX, W0� and W� are
taken from Ref. �13�, and W�� is taken from Ref. �12�. All energies are in Hartrees.

EX W0� W�
SCE W��

SCE EC
ISI EC

simp EC
exact

Be −2.67 −0.250 −4.02 2.59 −0.104 −0.110 −0.096

Ne −12.1 −0.938 −20.0 22.0 −0.410 −0.432 −0.394
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