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Adiabatic connection in the low-density limit
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In density-functional theory, the exchange-correlation functional can be exactly expressed by the adiabatic
connection integral. It had been noticed that as X\ — o, the N=! term in the expansion of W(\) vanishes. We
provide a simple derivation of this exact condition in this work. We propose a simple parametric form for the
integrand, satisfying this condition, and show that it is highly accurate for weakly correlated two-electron

systems.

DOI: 10.1103/PhysRevA.79.064503

In density-functional theory (DFT) [1], the exchange-
correlation functional Exc[n] is exactly expressed by the
adiabatic connection [2,3] formula

1
Exc[n]=f dA\W[n](N), (1)
0

where A is a coupling constant that connects the Kohn-Sham
system (A=0) to the true system (A=1), while keeping the
density n(r) fixed. The integrand, W(\), contains only poten-
tial contributions to Exc. The shape of W(\) has been much
studied in DFT [4]. For example, the success of hybrid func-
tionals that mix some fraction of exact exchange with a gen-
eralized gradient approximation (GGA) can be understood
this way [5]. There is ongoing research to use the low density
(A—0) limit as information in construction of accurate
models of W(\) [6-8]. Recently, the adiabatic connection
formula has been used directly in functional construction [9].

The expansion of W(\) in the high-density (weak cou-
pling) limit for finite systems is known to be [7]

W(N) =Wo+ Wyh+ --ras X — 0, (2)

where W),=2ES", with ES™* the second-order coefficient in
Gorling-Levy perturbation theory [6,10,11]. The expansion
in the low-density (strongly correlated) limit is believed to be
[7.12]

W) =W+ WA+ ---as N — o0, (3)

where W, is defined as the coefficient of A=""? in the expan-
sion above, and W, can be calculated from the strictly cor-
related electron (SCE) limit [13]. In addition to these expan-
sions, by definition the exact W[n](\) is known to satisfy the
following scaling property [7]:

WIn](N) =AW [ny)\], (4)

where n,,(r) is the scaled density, defined by n,(r)
=¥’n(yr), 0<y<. In the equations above, one can show
that W,=Ey, the exchange energy, and that W, is finite [6].
The dependence on A\~ in the low-density limit is because
correlation dominates here, and the Thomas-Fermi screening
length is proportional to )\;” 2,

In practical DFT calculations, W(\) must be approxi-
mated. However, any approximate W(\) should satisfy sev-
eral exact conditions, such as Egs. (2)—(4). In the erratum to
Ref. [7], Seidl et al. concluded that for the interaction-
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strength interpolation (ISI) model (see below), the spurious
A2 In X\ term in Ec[n,] is due to the A~! term in the expansion
of W(\) as A—o0 [Eq. (3)]. In a recent work [12], this was
proved rigorously by calculating zero-point oscillations
about the strictly correlated limit. In this Brief Report, we
elaborate the statement in the erratum to Ref. [7], showing
that a reasonable assumption about the scaling behavior of
the correlation energy prohibits such spurious terms as
A2 In \. While this result is not new, we provide a simple
derivation and show how this exact constraint affects ap-
proximate functionals. Throughout this Brief Report, we use
atomic units (e’>=%=u=1) everywhere, i.e., all energies are
in Hartrees and all distances in Bohr radii.

Any N\ dependence can always be expressed in terms of
density scaling [14]. Using the fundamental relation of Levy-
Perdew [15] one finds

d [Ed[n,)
Wln](\) = Ex[n] - 72—<C—L> ()
dy\ ¥
and it is generally believed for nondegenerate Kohn-Sham
systems [16] that Ec[n,] has the following expansion in the
low-density limit (y—0):

Ec[n,]= ¥(Bo[n]+ y"*B\[n] + yBy[n]+---),  (6)

where the By[n]’s (k=0,1,2---) are scale-invariant function-
als. Substituting into Eq. (5), we find the expansion of W(\)
for large A

1 1
W(\) = Ex[n] + B[n] + Ex‘“Bl[n] - Eﬁ/zm[n] + o

)

i.e., the \™' term is missing, and W(\) is independent of
Bz[f’l]

Now we survey approximations to W(\) and see whether
they have the correct low-density expansion [Eq. (7)]. There
are several kinds of approximations, the most famous being
the ISI model by Seidl and co-workers [6-8]:

X
WSRO0 = Waln] + ——2—— (g)
V1 +Y[n]\ +Z[n]
where X=xy?/z%, Y=xX/7?, and Z=X/z-1, with x

==2W[n], y=W_[n], and z=Ex[n]-W.[n].
The ISI model uses the values of W[n] and its derivatives
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AW(M) (mHartree)

FIG. 1. Comparison of three different approximations to W(\)
for Hooke’s atom (k=1/4), plotted as AW=Wmodel_jyexact The ex-
act curve (up to A=3) is taken from Ref. [19].

at both the high-density (A—0) and the low-density (A
—o0) limits, to produce an accurate curve for W(N), 0=\
=1, to insert in Eq. (1) to get an approximation to Exc. It
gives very accurate results for the correlation energy [7] and
meets several conditions. But if we expand W!S! in the low-
density limit

X Xz
WISIN) = Woo + =24 N e 9)
VY Y

we can see that its N~ term does not generally vanish, al-
though it works very well numerically for E- [17]. This
wrong coefficient was already shown to produce a spurious
term (A% In \) in the expansion of Eq[n,] as A — [7].

There were several attempts to overcome this problem
[correctly omitting the A\~ term but including all the other
(integer and half-integer powers) terms] in the literature
[18,12] by modifying the IST model, but they are less simple:
one requires Wy [the next order in Eq. (2)] [18] and the other
is not a direct model to W, [12]. Consider instead the fol-
lowing four parameter interpolation model

1
W\ =a+by +dy*, y=——, (10)
yra Y v1+cA\

where a, b, ¢, and d are scale-invariant functionals. We use
the same inputs as those for the ISI model, i.e., Wy, W}, W,
and W, to fit the parameters. Generally there are no analyti-
cal expressions in compact form for the parameters, and one

TABLE I. Comparison of several quantities for three different
approximations to W(\) for Hooke’s atom (k=1/4). The exact val-
ues are taken from Ref. [19] except for W., (Ref. [20]). All energies
are in mHartrees.
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FIG. 2. Comparison of three different approximations to W(\)
for helium atom, plotted as AW=Wmodel_yexact The discrete val-
ues are shown, as well as fitting curves to aid the eyes. We**! values
(up to N=1) are taken from Ref. [22].

has to solve for them numerically. The 4th power in y is the
lowest that can be added while satisfying the exact condi-
tions, but producing an expansion with nonzero A\™" terms
(n € Z,n>1). We recommend use of this W* to replace the
ISI model because it is numerically accurate and avoids the
A1 term in the low-density limit. One can show that W2
obeys the scaling property [Eq. (4)], provided that Wy[n.,]
='}’W0[”]a W(’)[ny]:Wé[n], Ww[”y]=')’Woo[”]s and Wo,o[n'y]
=v"2W![n], as they should. If we integrate W*°(\) over \
from O to 1, we find a simple expression for the exchange-
correlation energy

Simats

N +2b(=1+ V1 +c)lc. (11)
C

We compare the performance of the new model and ISI on
Hooke’s atom, two electrons in a spherical harmonic well,
with force-constant k=1/4. We show below that for this sys-
tem, our W works as a highly accurate interpolation, even
more accurate than the ISI model.

Magyar et al. [19] calculated the W(\) curve for 0=\
=4 for Hooke’s atom (k=1/4) using Wy=Ex=-0.515 and
Wy=-0.101 as inputs. They confirmed that W,=-0.743,
consistent with the SCE ansatz [6]. They also found W_.,
=0.235, but this was based on a fit that violated our condi-
tion, so we discount this result. Gori-Giorgi [20] calculated
W! =0.208 based on the SCE model [6,12], which we con-
sider exact. We apply these inputs (W,, W, W.., and W) to
our W*° and the IST model (W*® generates two sets of solu-

TABLE II. Comparison of several quantities for three different
approximations to W(\) for helium atom. The exact values are
taken from Ref. [22]. All energies are in mHartrees.

exact ISI simp acc exact ISI simp acc
14 -583 -579 -583 -582 W, —-1104 —-1100 —-1103 -1103
Wi —-44 —41 —45 —44 Wi —64 -60 —64 —63
Ec -39 =37 -38 -38 Ec —42 -40 —42 —41
Ec+Tc -10 -10 -9 -9 Ec+Tc -6 -6 -5 -5
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TABLE III. Comparison of W*™ and W!S! on systems with more than two electrons. Ex, Wy and W, are
taken from Ref. [13], and W_, is taken from Ref. [12]. All energies are in Hartrees.

EX w! WSCE w! SCE EISI Esimp [Eexact
0 o o C C C

Be -2.67 -0.250 -4.02 2.59 -0.104 -0.110 —-0.096

Ne -12.1 -0.938 -20.0 22.0 -0.410 -0.432 -0.394

tions for a, b, ¢, and d, but we select the one with d closest
to b, for it can be reduced to W™ ag below). We plot the
differences between these models and the exact curve (taken
from Ref. [19]) in Fig. 1. One can see that our W*° works
very well between A=0 and 1, which is the range of interest.
Its predictions for W, Ec, and Ec+T¢ are excellent, with T
being the correlation energy from the kinetic part, as listed in
Table I. With these exact inputs, we found that, as N\ — o,
WIST— —0.743+0.208\""24+0.068\"! +- -, which shows that
although the coefficient of N1 is small, it does not vanish.

We can also apply our W to the helium atom. Here
Wo=Ex=-1.025, W;=-0.095 [21], and W.=-1.500 [6],
W.=0.621 [12] from the SCE model [6,12]. We plot the
differences between these models and the exact curve (taken
from Ref. [22]) in Fig. 2 and compare several key quantities
in Table II.

One can see that our model here works fairly well, and
WSIMP (see below) is even a little better than W2, ISI does
not satisfy the exact condition we derived in this work [Eq.
(7] as A—oe, WS'—-1.500+0.621N"2+0.376A" +- -, so
the \~! coefficient is not even small.

Now, we propose a simpler version of W**, which cannot
be used in typical cases, as the exact value of W, is not
known in general. A simpler model is constructed by setting
d=b, to yield

1
y=—r—, (12)
V1+cN

WITP(N) = a +b(y + ),

with a, b and ¢ being scale-invariant functionals. We have
found (see results for Hooke’s atom and helium atom) that
although there is one parameter less, the above form pro-
duces usefully accurate results, especially between A=0 and
1. In a word, W acts as an accurate interpolation to the
whole adiabatic connection curve, while W¥™ is more con-
venient and practical to use, without losing accuracy. It
yields W2, =0.191 for Hooke’s atom and 0.594 for helium.

We use Wy, W.., and W, to construct the explicit form of
WS™P(\), and find

Wo— W,
s c=
2

4w,
S5(We— W)

a=W,, b= (13)

Thus a and b set the end points, while ¢ is a measure of the
curvature. Substituting Eq. (13) into Eq. (12), we get the

explicit form of W(\) in terms of Wy, W.., and W;. One can
show that it has the correct expansion in both limits, and it
obeys the scaling property [Eq. (4)]. Setting d=b in Eq. (11)
and subtracting exchange, it yields

—

ES™ =2p[f(c) - 1], flc)= [Vl +co—

1+c/2:|
/c,
l1+¢

(14)

with b and ¢ defined in Eq. (13). ES™ correctly recovers
GL2 in the weakly correlated limit (W,,— —, keeping W,
and W fixed, such as in the Z— o limit of two-electron ions)
and EYP correctly reduces to W, for strong static correlation
(W) — -, keeping W, and W., fixed, such as for stretched
H,). We can calculate the kinetic correlation energy T

Te=b[2f(c) -z -], (15)

with f(c) defined in Eq. (14) and z=1/ Vl+c, showing that
the curvature B=Tc/|Ec—T¢| [23] is a function of ¢ alone.
We strongly urge EX¢F be applied whenever its inputs are
accurately known.

We can further test our W™ in systems with more than
two electrons, but only those for which all inputs are known,
with results listed in Table III. One can see that W™ pre-
dicts E fairly accurately, but is less accurate than W'S!, This
is perhaps due to lack of W., in W*mP,

In fact, in their first paper on the ISI model, Seidl et al.
proposed a similar model [6], which yields results numeri-
cally very close to those of ISI, but without the y* term. But
their model contains no A" (n>1) contributions. Note that
none of these models work for the uniform electron gas,
because Wy=—o [17], so both the model developed by Seidl
et al. [6] and W*™P reduce to W(\)=W...

After the bulk of this work was completed, we received a
preprint of Ref. [12], containing a detailed theory of the lead-
ing corrections to W(\) as N\ — oo, consistent with the much
simpler arguments given here. Also, we use their W., value
for helium (see text) to replace the old one predicted by
point-charge-plus-continuum (PC) model [7].

We thank John Perdew and Jianmin Tao for kind discus-
sions. We are also in debt to Paola Gori-Giorgi and Michael
Seidl for useful suggestions and the values of W_... This work
is supported by National Science Foundation under Grant
No. CHE-0809859.
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