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ABSTRACT: The superhamiltonian formalism is used to construct a totally symmetric
superdensity for a system whose ground state corresponds to a multidimensional
irreducible representation of the symmetry group of the Hamiltonian. A Hohenberg–Kohn
theorem is proven and the Levy constrained-search procedure is adapted. An appropriate
generalization allows the application of this procedure to degenerate excited states.
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Introduction

W hile density functional theory was originally
formulated for a nondegenerate ground

state [1], considerable attention has been paid to
extensions that allow the treatment of degenerate
as well as excited states. The principal approaches
to the treatment of excited states within density
functional theory are based on the ensemble den-
sity formalism that was originally introduced by
Theophilou [2]. The latter is based on a variational
inequality satisfied by the sum of any number of
consecutive eigenvalues of the Hamiltonian oper-
ator, starting from the ground state, that had orig-
inally been derived by Fan [3]. Theophilou’s ap-
proach was reformulated in terms of a ground state
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Hohenberg–Kohn theorem involving a superhamil-
tonian and a corresponding superdensity [4]. The
ensemble point of view was further developed by
Kohn et al. [5 – 8].

States that correspond to multidimensional irre-
ducible representations of the symmetry group of
the Hamiltonian are commonly treated by means
of a symmetrized density-functional formalism that
was introduced by Görling [9, 10]. Both the justi-
fication of this formalism from the point of view
of the Hohenberg–Kohn theorem [9] and the im-
plementation of a Kohn–Sham procedure for the
symmetrized density [10] were considered. This ap-
proach has been used by several authors, a recent
example being the series of articles by Filatov and
Shaik [11].

The main purpose of this article is to provide a
foundation for the symmetrized density formalism
for a ground state that belongs to a multidimen-
sional (i.e., degenerate) irreducible representation
of the symmetry group of the system Hamiltonian
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within the superhamiltonian formalism. A straight-
forward extension allows the application of this
formalism to degenerate excited states as well.

The Superhamiltonian

The system of interest is specified by the N-
particle Hamiltonian of the conventional form

H(I) =
∑
i∈I

hi +
∑

(i,j)∈I2

vij, (1)

where hi and vij are one- and two-body operators,
respectively, and I ≡ {1, 2, . . . , N} is the set of parti-
cle indices. The set of distinct pair indices is given
by I2 ≡ {(i, j); i, j ∈ I, i < j}. Assuming that the N
particles are identical, the Hamiltonian H(I) com-
mutes with the permutations of the particle-indices,
which form the symmetric group SN. Assuming fur-
ther that these N particles are fermions, we restrict
our attention to the sector of the N-particle Hilbert
space that is antisymmetric in these permutations.

We consider M replicas of this Hamiltonian with
sets of particle indices I(k) ≡ {1(k), 2(k), . . . , N(k)},
where k = 1, 2, . . . , M. In terms of these replicas of
the original Hamiltonian, we construct the super-
hamiltonian

HS = 1
M

M∑
k = 1

H
(
I(k)) (2)

which is the (normalized) sum of M noninteracting
subsystems. Clearly, HS is symmetric with respect
to permutations of sets of particles I(k) distinguished
by different superscripts k = 1, 2, . . . , M.

The particle permutations and the set permuta-
tions together give rise to a wreath product of the
symmetric groups SN and SM [12]. A typical ele-
ment of the wreath product permutes superparticle
indices and at the same type it permutes particle in-
dices within individual replicas.

Let ψ1,ψ2, . . . ,ψM be eigenfunctions of the
Hamiltonian H, with eigenvalues E1, E2, . . . , EM, re-
spectively. The determinantal wavefunction

�S = 1√
M!

∣∣∣∣∣∣∣∣
ψ1(I(1)) ψ2(I(1)) · · · ψM(I(1))
ψ1(I(2)) ψ2(I(2)) · · · ψM(I(2))

...
...

. . .
...

ψ1(I(M)) ψ2(I(M)) · · · ψM(I(M))

∣∣∣∣∣∣∣∣
(3)

is an eigenfunction of the superhamiltonian, with
the eigenvalue ES = (1/M)(E1 + E2 + · · · + EM).
This wavefuction is antisymmetric with respect to

permutations of the set indices. To distinguish be-
tween this antisymmetry property and the phys-
ical antisymmetry due to the fermionic nature of
the N constituent particles, we call the former set-
antisymmetry. The set-antisymmetric ground state
of the superhamiltonian is constructed in terms of
the set of the M lowest lying eigenstates of the orig-
inal Hamiltonian.

A corresponding superdensity

ρS( 
r ) =
〈
�S

∣∣∣∣∣ 1
M

M∑
i = 1

∑
j∈I(i)

δ( 
r − 
rj)

∣∣∣∣∣�S

〉

= 1
M

M∑
i = 1

〈
ψi

∣∣∣∣∑
j∈I(i)

δ( 
r − 
rj)
∣∣∣∣ψi

〉

= 1
M

M∑
i = 1

ρi( 
r ) (4)

can be introduced. Here, ρi is the ordinary den-
sity that derives from the state ψi. Since ψi is an
N-electron wavefunction,

∫
ρi d3
r = N. The super-

density is normalized by means of the factor 1/M
so that ρS is still an N-electron density, i.e.,

∫
ρS d3
r

= N.

The Hohenberg–Kohn Theorem for
the Superhamiltonian

A Hohenberg–Kohn-like theorem can easily be
formulated with respect to the superdensity.

Let hi = ti + vi, where ti is a universal one-
body operator (usually, the kinetic energy oper-
ator), and vi is a local one-body potential. The
Hohenberg–Kohn theorem deals with a family of
Hamiltonians with common ti and vij, and arbi-
trary vi.

Note that

〈
�S|HS|�S

〉 = 1
M

M∑
i = 1

〈
ψi|H|ψi

〉

= 1
M

M∑
i = 1

〈
ψi|F |ψi

〉 + ∫
vρS d3
r,

where F = ∑
i∈I ti + ∑

(i,j)∈I2
vij. It will be convenient

to define

FS = 1
M

M∑
i = 1

F
(
I(i)).

A Hohenberg–Kohn theorem stating that vi is
uniquely determined by the ground state superden-
sity ρS can be established. The proof follows that of
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the original Hohenberg–Kohn theorem [1]. Assum-
ing that two different local potentials vi and v′

i give
rise to ground state superwavefunctions �S and � ′

S
with a common superdensity ρS, we obtain by use
of the variational principle

ES = 〈
�S|FS|�S

〉 + ∫
vρS d3
r

≤ 〈
� ′

S|FS|� ′
S

〉 + ∫
vρS d3
r (5)

E′
S = 〈

� ′
S|FS|� ′

S

〉 + ∫
v′ρS d3
r

≤ 〈
�S|FS|�S

〉 + ∫
v′ρS d3
r. (6)

Hence, 〈�S|FS|�S〉 + 〈� ′
S|FS|� ′

S〉 ≤ 〈� ′
S|FS|� ′

S〉 +
〈�S|FS|�S〉 which is only possible if both Eq. (5)
and Eq. (6) are equalities. Since �S is, by construc-
tion, nondegenerate, it follows that, up to an overall
phase factor, � ′

S = �S.
The theorem just derived implies the existence of

a universal functional

FS,M[ρS] = 〈
�

(0)
S

[
v[ρS]

]∣∣FS
∣∣� (0)

S

[
v[ρS]

]〉
.

Here, v[ρS] is the unique (up to an additive constant)
local potential giving rise to the superdensity ρS.
�

(0)
S is the (nondegenerate) ground state of the su-

perhamiltonian with this external potential.
The second Hohenberg–Kohn theorem [1], sta-

ting that FS,M[ρS] + ∫
vρs d3
r obtains its minimal

value at ρ(0)
S , the ground state superdensity, is a

direct consequence of the quantum mechanical vari-
ational principle. The nature of the dependence of
FS,M on M is at present an entirely open problem.

Levy’s constrained search procedure [13] can
very easily be adapted to the present situation, fol-
lowing Pathak [14]. The energy density functional
corresponding to the superhamiltonian ground
state is given by means of

E = min
ρS

{
min
�S→ρS

〈
�S|FS|�S

〉 + ∫
vρS d3
r

}
.

This procedure avoids the v-representability prob-
lem that the original Hohenberg–Kohn procedure
poses. It does imply an N-representability problem
for the superdensity, but the latter can be dealt with
by means of an adaptation of the procedures intro-
duced by Gilbert [15], Harriman [16], and Zumbach
and Mashke [17].

SUPERSYMMETRY OPERATORS

Let the Hamiltonian H have a symmetry group
G = {e, g2, . . . , gm} and let the ground state belong

to an irreducible representation � of dimension M.
This means that [H, gi] = 0 for i = 1, 2, . . . , m.
Since gi are symmetry operators, we can assume that
they act unitarily on functions in the Hilbert state of
the Hamiltonian H. Thus, g� = exp(iγ�), where γ� is
hermitian.

The operators gS
i = ∏M

k = 1 gi(I(k)) can easily be
shown to form a group that we can denote GS that
is isomorphic with G. The elements of GS commute
with HS.

Since ψ1,ψ2, . . . ,ψM form a basis for the (irre-
ducible) invariant subspace � with respect to the
symmetry group G, we can write

giψ� =
M∑

k = 1

ψkDk,�, i = 1, 2, . . . , m;

� = 1, 2, . . . , m, (7)

where Dk,� is shorthand for D(�)
k,� (gi). It follows that

gS
i �S = 1√

M!

×

∣∣∣∣∣∣∣∣∣∣∣

gi(I
(1))ψ1(I(1)) gi(I

(1))ψ2(I(1)) . . . gi(I
(1))ψM(I(1))

gi(I
(2))ψ1(I(2)) gi(I

(2))ψ2(I(2)) . . . gi(I
(2))ψM(I(2))

...
...

. . .
...

gi(I
(M))ψ1(I(M)) gi(I

(M) )ψ2(I(M)) . . . gi(I
(M))ψM(I(M))

∣∣∣∣∣∣∣∣∣∣∣

= 1√
M!

M∑
k1 = 1

M∑
k2 = 1

· · ·
M∑

kM = 1∣∣∣∣∣∣∣∣∣

ψk1 (I(1)) ψk2 (I(1)) . . . ψkM(I(1))
ψk1 (I(2)) ψk2 (I(2)) . . . ψkM(I(2))

...
...

. . .
...

ψk1 (I(M)) ψk2 (I(M)) . . . ψkM(I(M))

∣∣∣∣∣∣∣∣∣
× Dk1,1Dk2,2 · · · DkM,M.

The only contributions to the last sum are due
to terms in which all M indices k1, k2, . . . , kM are
distinct. Since these coefficients can assume pre-
cisely M values, it follows that there are pre-
cisely M! nonvanishing terms, in which k1, k2, . . . , kM

are the M! permutations of 1, 2, . . . , M. The determi-
nant in each of these terms can be brought into the
form �S by an appropriate permutation of columns
that gives rise to a parity factor. Pulling out the com-
mon factor �S, the remaining sum of products of
the coefficients, along with the parity factors left be-
hind, can be written as an M×M determinant. Thus,

gS
i �S = �S

∣∣∣∣∣∣∣∣∣

D1,1 D1,2 . . . D1,M

D2,1 D2,2 . . . D2,M
...

...
. . .

...
DM,1 DM,2 . . .DM,M

∣∣∣∣∣∣∣∣∣
.
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Since � can be assumed to be a unitary representa-
tion, it follows that the determinant of the matrix
representing the group element gi has modulo 1.
Thus, the wavefunction �S is an eigenfunction of
every group element gS

i ∈ GS with an eigenvalue
whose absolute value is equal to 1. It follows that
the corresponding superdensity is totally symmetric
with respect to GS.

Spin degeneracy can easily be taken care of
within the formalism developed above. A system
possessing a total spin quantum number σ is (2σ +
1)-fold degenerate. Constructing an appropriate su-
perground state in terms of a (2σ + 1) × (2σ + 1)
determinant, we note that the latter is a supersin-
glet state relative to the superspin operator 
SS =∑2σ+1

i = 1

Si.

Examples

THE BORON ATOM GROUND STATE

The ground state of the boron atom is specified
by the configuration 1s22s22p. This state is obviously
a 2P. Each of its two spin components belongs to a
three-dimensional irreducible representation of the
spacial symmetry group of the atomic Hamiltonian,
i.e., the three-dimensional rotation group. A spheri-
cally symmetric density is introduced by noting that
2p2

x + 2p2
y + 2p2

z is spherically symmetric.

THREE ELECTRONS IN A QUANTUM DOT

Since the atomic orbital ordering 1s < 2s < 2p
< · · · is so deeply ingrained in the chemist’s mind,
the ground state of an (interacting) three electron
system is expected to be represented by the spheri-
cally symmetric, spatially nondegenerate state spec-
ified by the configuration 1s22s. This is certainly true

for the lithium atom, but the situation can be differ-
ent for three electrons in a quantum dot.

The orbital ordering for the three-dimensional
isotropic (i.e., spherically symmetric) harmonic os-
cillator, as well as for the spherical box, provided
that it is deep enough to support a sufficient num-
ber of bound states, is 1s < 2p < 2s < · · · .
Assuming that the interaction does not upset this
orbital ordering, it follows that the ground state
for three electrons in a quantum dot which can be
modelled by a single-particle potential of the box or
oscillator type could be the triply degenerate state
corresponding to the configuration 1s22p.
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