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ABSTRACT: Density-corrected DFT is a method that cures several failures of self-consistent
semilocal DFT calculations by using a more accurate density instead. A novel procedure employs
the Hartree−Fock density to bonds that are more severely stretched than ever before. This
substantially increases the range of accurate potential energy surfaces obtainable from semilocal
DFT for many heteronuclear molecules. We show that this works for both neutral and charged
molecules. We explain why and explore more difficult cases, for example, CH+, where density-
corrected DFT results are even better than sophisticated methods like CCSD. We give a simple
criterion for when DC-DFT should be more accurate than self-consistent DFT that can be
applied for most cases.

Semilocal density functional theory (DFT) has become a
popular workhorse for electronic structure calculations,

despite its many known shortcomings.1 A major failure has
always been the stretching of bonds into dissociated fragments.
Prototypes of this failure are stretched H2

+ and stretched H2,
for which semilocal DFT binding energies generically fail to
vanish at large separations.2 The identification of self-
interaction error for the former case and static correlation for
the latter has been unified in the generic concept of
delocalization error of semilocal functionals.3

Our focus here is dissociation of heteronuclear diatomic
molecular species. In many cases, semilocal DFT dissociates
incorrectly into charged fragments, so that the potential energy
curve tends to an incorrect value for large R, where R is the
interatomic distance.4 Figure 1 shows the prototypical case, the
binding energy curve of NaCl with standard approximations
(PBE5 as a generic GGA functional, and B2PLYP,6 a double
hybrid functional). Beyond about R = 4 Å, the PBE curve
becomes highly inaccurate, as it tends to an incorrect
dissociation limit, ∼1 eV below the sum of Na and Cl atomic
energies in PBE. Even a highly accurate double-hybrid
functional such as B2PLYP6 goes to an incorrect dissociation
limit of about −0.7 eV. The work of ref 4 on density-corrected
DFT (DC-DFT) showed that by using Hartree−Fock (HF)
densities in DC-DFT (which is denoted as HF-DFT) accuracy
could be maintained until ∼5.6 Å. At that point the HF energy
of neutral fragments dips below that of charged fragments, and
the HF-DFT curves abruptly jump to zero. This is shown by
the light-blue line for the PBE functional.
In the present work, we correct the procedure for applying

HF-DFT to this problem and show that it substantially
improves results. This procedure yields the solid blue line of
Figure 1, which remains smooth and relatively accurate out to a
remarkable 8.2 Å. We explain why this happens and that it is no
accident. We show that a generalization applies to both

molecular anions and cations. We also show some exceptions
and how these can still be understood in terms of the basic
concepts of DC-DFT. We give a simple criterion for when DC-
DFT should improve results over self-consistent DFT. Thus,
using our simple procedure, the potential energy surface of
most heteronuclear diatomics can be greatly improved.
The theory behind DC-DFT is very straightforward.7 In a

Kohn−Sham DFT (KS-DFT) calculation,8 the unknown piece
of the energy, the exchange-correlation energy, EXC[ρ], is
approximated, EXC

app[ρ]. The self-consistent solution of the KS
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Figure 1. Binding energy curve of NaCl molecule with various
methods. Dashed lines are self-consistent DFT and solid blue line is
HF-PBE. The cyan line is HF-PBE with the less useful procedure of ref
4.
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equations then yields the density that minimizes the total
energy, ρapp(r), and the calculated approximate total energy is
Eapp[ρapp]. We decompose the error in the energy by writing

ρ ρ ρΔ = − + −E E E E E( [ ] ) ( [ ] [ ])app app app app
(1)

The first term is the functional error and is the error made in
the energy even if we had used the exact density in our
approximate functional. The second is the density-driven error
and is the error in the energy due solely to the approximate
density. In typical semilocal DFT calculations, the second term
is much smaller than the first, and these are called normal.9 In
unusual and interesting cases, the second-term becomes
comparable or even dominates, and these are abnormal. In
such cases, evaluation of the semilocal approximation on a
more accurate density yields a significant reduction in the
energy error. This is DC-DFT.7 For many density-driven errors
of semilocal DFT calculations, HF densities are sufficient to
make the density-driven error negligible.
These effects have been noticed since the start of KS-DFT,10

especially in the case of atomic anions,11 where the effect of the
density-driven error is severe. Some of the earliest DFT
calculations in quantum chemistry actually used HF densities12

to compare apples-to-apples when testing approximate func-
tionals, but self-consistent densities rapidly became the norm.
Pioneering works even showed13,14 that many difficult cases for
semilocal DFT were improved by using HF densities. Other
cases, such as the prototype of stretched H2

+, could not be This
is a genuine error of the approximate energy functionals and is
barely affected by using the exact density.9

However, a quantitative and general analysis appeared only
recently,7,9 showing that many cases of delocalization error
could be greatly reduced (if not eliminated) by HF-DFT. This
analysis has been used to explain how accurate electron
affinities can be extracted from (formally) unconverged DFT
calculations,15 why barrier heights are usually improved by
evaluating functionals on HF densities,13 why the apparently
very poor-quality potentials of semilocal approximations usually
do not matter in the energy,9 and many other phenomena. A
recent application of DC-DFT to ions and radicals in solution7

shows that the potential energy surfaces of choride−water and
hydroxide−water complexes are quite inaccurate with standard
approximations such as B3LYP but are almost perfect when
B3LYP is evaluated on HF densities. Moreover, while different
approximations yielded significantly different potential energy
surface when performed self-consistently, their agreement is so
good in HF-DFT that there is no need to compare with
sophisticated quantum-chemical methods like CCSD(T).7 We
note that implementation of HF-DFT is particularly simple for
evaluation of energies within any standard quantum chemical
code. Simply solve the HF equations as usual, then use the
output HF density as the initial guess for a DFT calculation, but
stop the code before the density is updated, as described in a
Web site (http://tccl.yonsei.ac.kr/mediawiki/index.php/DC-
DFT).
The present work concerns heteronuclear bond dissociation

in semilocal DFT and how to improve it using DC-DFT.
(Calculation details are given in Supporting Information.)
From very early on,16,17 it was recognized that, in many cases,
semilocal approximations cause molecules to dissociate into
charged fragments. The linearity of the exact functional with
particle number18 guarantees that all diatomics dissociate into
fragments of integer charge. Semilocal approximations are
smooth functions of particle number and lack the discontinuity

in the derivative of the energy at integers.19 This, in turn, means
they have an analytic minimum around some nonzero value of
charge transfer between the fragments, q, in the infinitely
stretched limit. (An ensemble generalization20 cures this but
only in the infinitely stretched limit.) Nowadays, we call this
delocalization error.2 When q is finite, the energy of the
molecule, stretched to R → ∞, does not match the sum of the
energies of the fragments.4 In the classic case of NaCl, the
stretched molecule is a full 1 eV lower in energy than the
fragments in PBE. (In standard practice, this embarrassment is
avoided by reporting the binding energy of a molecule as the
difference between equilibrium energy and the sum of neutral
atomic energies, not the difference between the equilibrium
energy and infinitely stretched molecules.)
To explain the correct DC-DFT procedure for heteronuclear

diatomics, in Figure 2, we plot several potential energy curves,

using dashed lines for singlet and dotted lines for triplets. The
self-consistent PBE singlet curve (brown) is smooth but goes to
the incorrect limit. The HF curves (red) cross at 5.6 Å, where
the minimizing HF density switches to the triplet. Thus, PBE,
evaluated on the minimizing HF density, produces the cyan
curve of Figure 1, but the correct procedure is to switch curves
only when EPBE[ρI

HF] > EPBE[ρIII
HF]. Thus, HF-DFT follows the

blue dashed curve until R = 8.2 Å. Compared with CCSD(T)
(black solid line), it is an almost constant shift prior to 8.2 Å.
In Figure 3, we plot Mulliken charges, Q(R), as a function of

bond length for NaCl. The value of Q in self-consistent PBE
differs only slightly from that of HF in the region R = 2.0−4.0
Å, but beyond 4 Å, in self-consistent PBE, Q drops slowly
toward its asymptotic value of q = 0.4. The drop is the onset of
the density-driven error, as the HOMO−LUMO gap becomes
very small as R increases.9 This value of 8.2 Å is not much
smaller than the value of 9.5 Å for the exact functional,4 in
which region the charge localized on the ions suddenly drops to
0. On the contrary, the HF charge keeps increasing toward 1,
until it suddenly drops to 0. This behavior is generic and can be
traced back to the behavior of the approximations for
fractionally charged fragments.16 The exact functional is linear
between integer occupations. Semilocal functionals are concave,
which causes the minimum of a stretched heteronuclear bond
to differ from integer occupations, while HF is convex,21

producing downward cusps at the integer occupations. Usually
this is overcomed by using self-interaction-corrected DFT,22

Figure 2. Binding energy curves of NaCl with various methods and
spin multiplicities. The dashed lines are singlet potential energy curves,
and dotted lines are triplet potential energy curves. The reference
curve (CCSD(T)) is given in a black solid line.
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orbital-dependent DFT methods,23 hybrid functionals tuned to
have correct linear behavior,21,24 and so on.
To practice this assumption, we show the results for several

different approximations in Figure 4. The two purely semilocal

curves, PBE and TPSS, are almost identical at large R, both self-
consistently (dashed) and using the new version of HF-DFT
(solid). The B3LYP curve, including ∼20% exact exchange,
does slightly better self-consistently because its density is ∼20%
better, but HF-B3LYP is almost identical to HF-PBE, and HF-
TPSS is slightly better. They are each much closer to the
CCSD(T) curve than their self-consistent analogs and tend
toward the right value for large R. Moreover, their errors for
large R are not much different from their errors at equilibrium.
Next, we apply our method to charged species to test its

limitations. For anions, self-consistent DFT with semilocal
approximations is notorious for not even binding the last
electron, unless it is artificially (but accurately) confined by a
limited basis set.25 In Figure 5, we plot the binding energy
curve of CH− with several local approximations, both self-
consistently and within HF-DFT. The differences between HF-
DFT and self-consistent DFT are very small at equilibrium, but
after ∼1.7 Å, there is a huge difference. The self-consistent
curves are too low and in fact plateau ∼1 eV below the

dissociated fragment energies of C− plus H. On the contrary,
the HF-DFT curves are all in close agreement with one another
and with the reference CCSD(T) curve. Again, the Mulliken
charges of the various self-consistent calculations show the
story. In the inset of Figure 5, we plot these for the H atom and
see that the HF charge loosely agrees with the self-consistent
local DFT charge out to ∼1.7 Å but differs radically after this.
Semilocal DFT allows about q = |Q[H]| = 0.34 of an electron to
transfer from C− to the H atom, whereas HF localizes the extra
electron entirely on the C atom.
We next consider a prototypical example of a molecular

cation, CH+. We compare various binding energy curves of
CH+ in Figure 6 and Figure S1(Supporting Information). It is

well known that single-reference electronic structure calcu-
lations for the dissociation of CH+ have difficulties, so we use a
recent ground-state multireference configuration interaction
(MRCI) result26 as reference. Because the atomic MRCI
energies of C+ are not given, we chose the MRCI energy of R =
30 au (∼15.9 Å) as the zero point. The pattern is very similar to
the previous cases. All semilocal curves go to the incorrect
dissociation limit ∼1.0 eV below 0, while HF-DFT curves agree
well with the MRCI curve. To emphasize this, in Figure 7, we

Figure 3. Mulliken charge of Na in NaCl from HF and semilocal DFT
calculations. The light-blue line is the HF charge following the
previous procedure.9

Figure 4. Binding energy curve of NaCl with various DFT
approximations. Dashed lines are self-consistent and solid are HF-
DFT.

Figure 5. Binding energy curves of CH− in self-consistent and HF-
DFT. Inset: charge of H in CH− ion. The gray solid line is the HF
charge.

Figure 6. Binding energy curves of CH+ in self-consistent and HF-
DFT. The black circled solid line is MRCI results from ref 22. Inset:
charge of H in CH+ ion. The gray solid line is the HF charge.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.5b01724
J. Phys. Chem. Lett. 2015, 6, 3802−3807

3804

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.5b01724/suppl_file/jz5b01724_si_001.pdf
http://dx.doi.org/10.1021/acs.jpclett.5b01724
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpclett.5b01724&iName=master.img-003.jpg&w=184&h=161
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpclett.5b01724&iName=master.img-004.jpg&w=192&h=167
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpclett.5b01724&iName=master.img-005.jpg&w=196&h=174
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpclett.5b01724&iName=master.img-006.jpg&w=188&h=163


plot the errors made by CCSD and the various HF-DFT
calculations. (The self-consistent curves have errors off this
scale.) Although all curves contain a kink, which is the point
where curve crossing between singlet and triplet curve occurs,
the magnitude of the error is typically smaller in HF-DFT than
in CCSD, being particularly small for HF-TPSS.
So, should we expect all HF-DFT calculations to fix all

dissociation problems, yielding accurate binding curves out to
very large separations? If not, when do we expect HF-DFT to
yield such good curves and when not? How would we know
without having to run sophisticated calculations like CCSD(T),
thereby defeating the purpose of these low-cost calculations?
We next apply the analysis tools of DC-DFT to answer these
questions.
The basic tool is to study the gap of the semilocal DFT

calculation.7,9 An unusually small self-consistent gap (often 0 or
below 0.5 eV) suggests a possible density-driven error, so a HF-
DFT calculation should be done to see if energies change
significantly. None of the neutral or cationic molecules studied
here meet this criterion at equilibrium, implying that semilocal
results are normal and barely changed by using HF-DFT. If
near-equilibrium properties are the only ones needed, there is
no reason to do HF-DFT (and substantial reasons to avoid
it27). Anions are abnormal at all distances and always improved
by HF-DFT.25

But in essentially every case, the gap shrinks to zero or near-
zero at some finite value of R, so that all stretched molecules
could be abnormal in semilocal DFT. In fact, the gap of the
molecular system in semilocal DFT can be somewhat
ambiguous in a stretched molecular system. To find a more
useful criterion, we study specifically the stretched limit, that is,
where R is sufficiently large that all quantites are close to their
limiting values. In this limit, a powerful result for approximate
DFT for neutral molecules has long been known.16 If the
isolated atoms satisfy

ϵ > ϵA B( ) ( )HOMO LUMO
(2)

where A and B are either of the atoms, then this solution
cannot be a minimum for the stretched molecule, and a self-
consistent calculation will keep transferring charge until these
values match one another. We denote that value by q = |Q(R→
∞)|. We have found that this criterion generalizes to molecular
ions also. One first chooses the fragments with integer

occupations that have lowest energy. Now one of them is an
ion. In the case of anions, the LUMO eigenvalues of the
semilocal functional are likely to be positive but well-defined
with a carefully chosen basis set (as shown in ref 12). In Table
S1(Supporting Information), we give a table of atomic neutrals
and ions showing the relevant levels.
Using the atomic inputs, we construct Table 1 for the

molecules and molecular ions discussed here and other

examples. The HOMO−LUMO criterion eq 2 applies in all
cases for large R: If it is satisfied, q is finite, and semilocal DFT
tends to an incorrect energy at large R. By incorrect, we mean
different from the sum of the energies of the isolated fragments.
The stretched molecule is abnormal and is usually improved by
a HF-DFT calculation, as shown in our figures.
An important point is that this analysis applies only in the

stretched limit. Even if a molecule is normal in this limit, that is,
has q = 0, it still has a small or vanishing gap for finite R and
must be checked for abnormality at finite R. In such cases, HF-
DFT might still yield an accurate binding energy curve out to
larger R than self-consistent DFT, but we do not have a simple
condition for predicting when this will be the case.
Figure 8 shows a typical case of a normal calculation.

Semilocal functionals all go correctly to the zero dissociation
limit, and HF-DFT worsens the result for all R. The charges do
not vary much and vanish at large R regardless of the functional
you use. There are also some cases where the abnormality
depends on the particular semilocal DFT calculation. Consider
HF in Figure 9. From our table, PBE transfers a small charge at
large R, making it abnormal, and the PBE binding energy curve
is improved by HF-PBE. This also holds for TPSS, where HF-
TPSS slightly improves the results, but this is not true for
B3LYP, so HF-B3LYP does not improve its result.

Figure 7. Binding energy error curves of CH+ calculated with CCSD
and HF-DFT methods. The reference values come from interpolating
MRCI results of ref 22.

Table 1. Various Properties of Molecular Species Calculated
With PBEa

A B q ϵHOMO[A] ϵLUMO[B] ΔϵP
NH H N 0.00 −7.59 −4.13 −3.46
NO N O 0.00 −8.30 −6.49 −1.82
HS H S 0.00 −7.59 −5.64 −1.96
CH H C 0.00 −7.59 −5.58 −2.01
NaH H Na 0.00 −7.59 −1.17 −6.42
HF H F 0.09 −7.59 −9.30 1.70
PCl P Cl 0.14 −6.30 −7.71 1.42
NaCl Na Cl 0.32 −3.04b −7.73 4.69
AlO Al O 0.33 −3.10 −6.44 3.35
NaO Na O 0.38 −3.04 −6.49 3.45
CaF Ca F 0.51 −3.75b −9.25 5.50
NaO+ O Na+ 0.00 −7.60 −7.23 −0.38
SiN+ N Si+ 0.06 −8.30 −11.81 3.50
BH+ H B+ 0.19 −7.59 −13.36 5.77
CH+ H C+ 0.37 −7.59 −17.15 9.55
NO+ N O+ 0.47 −8.30 −20.61 12.30
HF− F− H 0.28 1.47 0.27 1.20
NO− O− N 0.33 2.38 −4.13 6.52
CH− C− H 0.41 1.81 0.27 1.54
NH− N− H 0.56 2.93 0.27 2.66

aAmount of charge transfer in the dissociation limit, q, is calculated at
R = 5.0 Å and with the def2-QZVP basis.28 A is for electropositive
atomic species, while B is for electronegative ones. If not specified, ϵ is
calculated with the aug-cc-pV5Z basis set.29 bCalculated with the cc-
pV5Z basis set.30
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We have commented only on heteronuclear diatomics, even
though the classic cases of breakdown of DFT due to
delocalization error are homogeneous (stretched H2

+ and
H2). This is because we study only abnormal calculations and
how to fix them. The classic examples do not have large
density-driven errors.
To conclude, considerable evidence shows that, in many

cases, semilocal DFT errors in heteronuclear binding energy
curves are density-driven and can be reduced by using HF-
DFT. We have significantly extended the range of DC-DFT
beyond previous suggestions and have given a clear criterion for
when DC-DFT will be better than self-consistent DFT. In the
infinitely stretched limit, DC-DFT always yields the correct
dissociation, which is the sum of the fragment energies (within
DC-DFT). If a self-consistent DFT density incorrectly transfers
charge, the HF density will be better. While this is not an ideal
procedure in terms of model chemistries or a black box that can
be applied unambiguously to every problem, DC-DFT provides
a pragmatic approach for those who need dissociation curves at
larger distances while retaining a DFT-level of computational
cost as well as food for thought for more fundamental theory
development.
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