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Density functional theory (DFT) calculations are used in over 40,000 scientific papers each year, in
chemistry, materials science, and far beyond. DFT is extremely useful because it is computationally much
less expensive than ab-initio electronic structure methods and allows systems of considerably larger size to
be treated. But the accuracy of any Kohn-Sham DFT calculation is limited by the approximation chosen
for the exchange-correlation (XC) energy. For more than half a century, humans have developed the
art of such approximations, using general principles, empirical data, or a combination of both, typically
yielding useful results, but with errors well above the chemical accuracy limit (1 kcal/mol). Over the
last 15 years, machine learning (ML) has made major breakthroughs in many applications and is now
being applied to electronic structure calculations. This recent rise of ML begs the question: Can ML
propose or improve density functional approximations? Success could greatly enhance the accuracy and
usefulness of DFT calculations without increasing the cost.

In this work, we detail efforts in this direction, beginning with an elementary proof of principle from
2012, namely finding the kinetic energy of several fermions in a box using kernel ridge regression. This
is an example of orbital-free DFT, for which a successful general-purpose scheme could make even DFT
calculations run much faster. We trace the development of that work to state-of-the-art molecular
dynamics simulations of resorcinol with chemical accuracy. By training on ab-initio examples, one
bypasses the need to find the XC functional explicitly. We also discuss how the exchange-correlation
energy itself can be modeled with such methods, especially for strongly correlated materials. Finally, we
show how deep neural networks with differentiable programming can be used to construct accurate density
functionals from very few data points by using the Kohn-Sham equations themselves as a regularizer. All
these cases show that ML can create approximations of greater accuracy than humans, and is capable
of finding approximations that can deal with difficult cases such as strong correlation. But such ML-
designed functionals have not been implemented in standard codes because of one last great challenge:
generalization. We discuss how effortlessly human-designed functionals can be applied to a wide range
of situations, and how difficult that is for ML.
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1. INTRODUCTION

Direct solution of the Schrodinger equation for electrons
(traditionally designated as ab initio in quantum chemistry)
yields chemically accurate energies (errors below 1
kcal/mol). However computational costs scale poorly with
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system size, limiting its routine applicability to smaller
molecules. On the other hand, density functional theory
(DFT) calculations typically scale much more favorably,
allowing routine calculation of molecules with hundreds
of atoms. This increased applicability comes at a cost:
The effective non-interacting Kohn-Sham equations that, in
principle, yield exact ground-state energies and densities, in
practice, require a small fraction of the total energy (called
the exchange-correlation (XC) energy) to be approximated
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in an uncontrolled way.

Presently, there are hundreds of distinct approximations
to the XC energy [1], all of which are available in common
electronic-structure codes. Some have been designed from
general principles of physics, without reference to any
specific molecular or material system [2]. Others have been
fitted and tested on an ever-growing population of databases
of distinct molecular systems and properties and these yield
higher accuracies on those systems [3]. However, almost
all use similar basic ingredients, such as the density, its
gradient, and a fraction of Hartree-Fock (HF) exchange,
and are inspired by physical or chemical insight.

In the past decade, machine learning (ML) has seen
some remarkable successes in various applications, including
image recognition, language translation [4], and even
playing curling [5]. ML is also increasingly being applied
to problems in physical sciences, where it can help with,
for example, extraction of salient features from microscopy
images [6], or climate modelling [7]. It can also be used to
speed up purely computational tasks. In electronic structure
theory, there has been much success in designing new force-
fields using ML, creating far more accurate force fields than
previous human-designed attempts [8]. ML force-fields can
reproduce results from DFT or any ab-initio methods at
a fraction of the computational cost, simply by training on
carefully chosen examples, and are already available in useful
codes [9].

A different, and arguably more difficult, task is to use
ML to design new density functional approximations or to
improve existing ones. This is simply a regression problem,
i.e., fitting a function of many variables. But regression in
DFT involves fitting a functional, which can be considered
a function of infinitely many variables and that complicates
the task.

There are several distinct approaches to using ML to
make functionals. If the goal is to make DFT calculations
run faster, one such problem is approximating the KS
kinetic energy functional, i.e., the kinetic energy of the
non-interacting KS orbitals (Ts[n]), thereby bypassing the
need to solve the KS equations, the most expensive step
in most DFT implementations. If Ty could be computed
rapidly, it could revolutionize all DFT calculations by
making them run much faster [10]. This is called orbital-
free DFT (OF-DFT) [11-14]. Moreover, training data
is abundant as every self-consistent cycle of every DFT
calculation ever performed yields a set of orbitals (and
hence density) and their 7. But the path to success is
not smooth. To determine the density in OF-DFT, one
must solve an Euler equation [15] requiring an accurate
and well-behaved functional derivative of T5. Due to
limited information available in direct training, ML-designed
interpolating functionals that are extremely accurate for the
energy, almost necessarily yield poor functional derivatives.

The more traditional problem is to improve the accuracy
of DFT, either by modifying existing XC approximations
or creating completely new forms [16-18]. Usually (but
not always [19]) the functional derivative of the XC energy
is somewhat unimportant to the energy. But unlike the

orbital-free approach, the amount of accessible accurate
training data from higher level of theories is limited and is
mostly available for relatively small systems. Nonetheless,
promising ML ideas developed for OF-DFT can also be
applied to the XC case. Combining both can improve
accuracy and computational cost simultaneously[20].

Another important objective is to find new forms that
overcome the drawbacks of traditional human-designed XC
approximations. For instance, most molecules and many
materials in their equilibrium state are considered to be
weakly correlated, where ingredients that have been used
in the past work reasonably well and can be borrowed to
design ML functionals too. But most XC approximations
fail to break bonds correctly because they fail when a bond
is stretched and electrons localize on distinct sites. Thus
the complete binding energy curves of even HJ and Ha
represent paradigm difficult problems for standard DFT [21].
A stretched bond is an example of strong correlation that
provides a good test for ML-designed functionals. Fig. 1
shows an ML-functional reproducing an entire binding
energy curve from training on only two bond lengths [18].
Such bonds are even more difficult for OF-DFT if semi-local
approximations (terms that depend on only the density and
its gradient) [2, 22] are used, as the same considerations
apply even more strongly to Ts[n].

In principle, ML-designed functionals need not be limited
by human imagination and intuition as ML can use the
density everywhere to find the energy contribution at a point
(a fully non-local functional) [13]. This is an ambitious goal.
Humans have an almost 100-year head-start on this task [1],
and it may be a while before an ML functional become as
useful and practical as B3LYP[22] in chemistry. In current
studies, many simplifications are made for efficient data
generation and easier implementation, simply to see if a
new ML approach can work, before building more realistic
or general applications.

Thus, several of the examples discussed here are
for one-dimensional analogs of true electronic structure
problems [11-13, 18, 20]. For the non-interacting problem,
an effective code can be written in a few minutes for solving
the Schrddinger equation, and training data generated
within hours on a single core. For interacting systems,
highly accurate solutions can be obtained very efficiently
in one dimension, using a method called the density
matrix renormalization group (DMRG) [23]. DMRG is
a very powerful quantum solver, using matrix product
states, with many applications to strongly correlated model
systems relevant to condensed matter physics [24] and
also in quantum chemistry [25]. Recently, considerable
effort was made to create a one-dimensional analog
of molecular systems using DMRG to handle strongly
correlated effects [26], making data generation much easier.
Such simplicity ensures maximum flexibility and ease in
interfacing with existing ML codes, which often come in
prepackaged routines.

A useful introduction to ML for chemical scientists can
be found in Ref. [27] with a glossary of terms. Here, we
simply distinguish between kernel methods and deep neural
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FIG. 1. The dissociation curve of a one-dimensional Hs

molecule, created using the ML. XC approximation of Ref. 18
by training with DMRG data at just two configurations.
Darkening shades of grey show predictions from underfitting
to overfitting, but distributed around the exact curve due
to the physics prior knowledge built into the model. The
optimal green curve, found by validating the model at a single
configuration, produces chemically accurate results. Fn, is
the nucleus-nucleus repulsion energy. See Fig. 11 for details.

networks, the two methods used in the key references. The
basic problem is one of regression with many parameters,
where some method of regularization is required to avoid
overfitting. Regularization is any procedure that allows
one to control how smooth the fit is. Ridge regularization
penalizes overfitting with the sum of the squares of the
fitting coefficients. The kernel trick maps a low-dimensional
space to a higher one to create a function that is easier to
fit [28], which is especially relevant in our case. Kernel ridge
regression (KRR) remains a standard tool in ML today.
However, many of the most impressive gains in ML
have recently come from neural networks (NN). These
are characterized by the graph of differentiable operations,
architectures with various inductive biases, and scalability
on hardware accelerators [29]. Their performance can
usually be continuously improved by increasing the model
capacity, with copious addition of data, whereas more
traditional methods can saturate or become too expensive
to train [30]. In fact, the first application of ML to density
functional design was using NN [31]. This pioneering
work used exact energies and XC potentials to fit an XC
functional that remains relevant even today. In this article,
we discuss the chronological developments of ML density
functionals focusing only on the work of our research group,
but comprehensive reviews are available elsewhere [32].

2. PROTOTYPE

Here we review the most elementary application of ML
to create an approximate OF-DFT functional[11]. The
simplest problem imaginable is to consider the energy levels
of a 1D potential between infinite walls. It is trivial to solve
such box problems numerically, filling the levels with same-

spin fermions, so that there is one particle per level. For N
fermions in the box, the KRR kinetic energy functional is:

TMY[n] = Zozjk(n,nj), (1)

where N7 is the number of training densities, oy are the
weights, and & is a Gaussian kernel of the form

k(n,n;) = exp(— / Er(n(r) —n;(1)*/20%). (2)

The weights «; are found by minimizing the mean
squared error of TMY[n] for all training data plus a
regularization penalty, while o can be determined by cross-
validation. Each data point adds an integral over the entire
density inside the Gaussian kernel, and hence the resulting
functional is completely non-local.
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FIG. 2. The range of variation within the data set of 1000
training densities for N = 1 for the box problem (green).
Any one of these densities can be accurately reproduced using
the projection method discussed in Ref. 11. Adapted with
permission from Ref. 11. Copyright 2012 American Physical
Society.

To generate data, three Gaussian potential dips were
placed at random inside the box. For N = 1, with as few
as 80 training densities, chemically accurate (error less than
1 kecal/mol) predictions were made for the kinetic energies
of a test set drawn from the same distribution, and shown
in Fig. 2. This was a huge improvement compared to semi-
local XC approximations (error = 160 kcal/mol). However,
to be useful, an approximate T must also have an accurate
derivative, so that the Euler equation yields an accurate
density [15]. The functional derivative of KRR TML[n] has
the form,

STML B Nrp
e =g 2 ;aj (nj(z) — n(x)k(n,n;)).  (3)

This derivative is shown in Fig. 3. It oscillates wildly relative
to the exact curve. This is expected as the exact functional
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derivative describes the change in the functional in every
direction in the infinite-dimensional space of densities, but
with KRR, one could only expect it to be accurate in the
very few directions in which it has training data.
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FIG. 3. Functional derivative of —T™¥[n], the exact

derivative, v(z), and their projections on the data-manifold
for Ny = 100. Adapted with permission from Ref. 13.
Copyright 2015 John Wiley and Sons.

To overcome this problem, a constraint was added to the
minimization, §(E[n] — (g[n]) = 0, where the functional
gln] = 0 defines the manifold of training densities. The
specific g[n] can be determined using principal component
analysis (PCA) [27]. The cartoon in Fig. 4 illustrates
this process. One first calculates the usual functional
derivative, and then projects it onto the local principal
components in which there are greatest variations among
the nearby training densities. This leads downhill on the
training manifold, and since the optimal density should be
within that manifold, it finds a density very close to the
exact minimizer. Although the projected derivative is very
accurate, as in Fig. 3, the error of the functional evaluated
on this projected ML density, T™"[nML], is substantially
larger than that of 7™ on the exact density, chemical
accuracy is still achieved with 150 training samples for one
particle.

A detailed account of all the KRR implementation is given
in Li et al.[13]. Six alternative kernels were tried, of which
three had comparable performance, including the Gaussian
used here. The details of how the projection method works
are also explained, discussing the relative contributions of
the energy and density to the error. An analysis of the
functional found, and the hyperparameter landscape, is
available in Ref. 33.
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Gradient Descent
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FIG. 4. The training densities and the exact density are on
the density manifold defined by g[n] = 0. The solution of the
Euler equation via simple gradient descent becomes unstable
(red dashed curve) and leaves the shaded region.

3. ORBITAL-FREE DFT

Inspired by the proof of principle from Ref. 11, many
questions arise as one works towards chemical realism.

A. Bond breaking

Orbital-free semi-local approximations to Ts[n] fail worse
than those for XC when a chemical bond is stretched. An
implementation of KRR to correctly describe the stretched
bond limit can be found in Snyder et al.[12]. They trained
TME[n] with data from KS-DFT along the bond distance of
several prototype 1D diatomic molecules and tested if the
non-local ML approximation, similar to the one in the box
problem, could remain accurate all along the dissociation
curve. To tackle the highly curved density manifold, a
technique called nonlinear gradient denoising (NLGD) was
also proposed. By utilizing kernel principal component
analysis (kPCA) [34] to capture the low-dimensionality, this
method improves the accuracy of the projected gradient
descent with even fewer training densities compared to
normal PCA in Ref. 11.

For both Hy and LiH, the relative error in T%[n]
evaluated on the projected density with NLGD was less than
1 keal/mol with just Ny = 10. By increasing the training
set size to 20, the bond dissociation energy, equilibrium
bond length, and the zero-point vibrational frequency could
be determined to within 1%. Fig. 5 depicts how accurately
the ML algorithm reproduces the exact binding energy curve
of Hy obtained from a DFT calculation.

The NLGD algorithm is further illustrated in Ref. 35 for
the 1D box problem. A 3D expansion of a similar OF-DFT
mapping can be found in Ref. 36 where a convolutional
neural network predicts the potential energy surface for
hydrocarbon chains with accuracy comparable to those of
human-designed functionals. Examples of improvements
made in human-designed functionals for the same problem
can be found in Seino et al.[37] and Golub et al.[38], who
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FIG. 5. The molecular binding energy curve obtained with
constrained optimal densities (KRR-NLGD) for 1D model of
H>. Adapted with permission from Ref. 12. Copyright 2013
ATP Publishing.

trained neural networks for 7™%[n] that included up to
third-order and fourth-order gradients of the density.

B. Exact conditions

In DFT, known theoretical properties (exact conditions)
are used to constrain the form of approximate functionals|2,
22, 39]. But the ML models above cannot be analyzed
by checking for such conditions. The weights in the KRR
functional are large and alternate in sign, suggesting the
possibility of predicting totally unphysical negative kinetic
energy. However, all test densities considered had accurate
positive ML kinetic energies, i.e., throughout the training
density manifold.

In order to make these KRR functionals less system-
specific and to enable easier training, a later study[40]
incorporated one of the elementary exact conditions of DFT,
the coordinate scaling, within the KRR optimization,

Ti[ny] = *Ts[n], ny(r) =7%n(r), v> 0. (4)

Two 1D systems were studied separately- the exactly
solvable Hooke's atom, and the Hy molecule with accurate
DMRG energies and densities. After training the KRR
model on scaled density n,, it was evaluated on a test set
of 50 densities for the two systems. Fig. 6 shows that in
Hooke's atom the scaled kinetic energy functional was much
more accurate than its unscaled counterpart, but not for Hs.

Scaling makes the densities of different configurations of
Hooke's atom look similar to one another. But that is
not so for Ha, hence no improvement is seen in its kinetic
energy. This is a result of the large changes in density as you
move within the training manifold. Would scaling improve

Hooke'sAtom
H,

m |Jnscaled
=== Scaled

Training set size  Nr

FIG. 6. The error in the kinetic energy functional trained
on scaled and unscaled densities for both 1D Hooke’s atom
and 1D Hz molecule. Adapted with permission from Ref. 40.
Copyright 2018 AIP Publishing.

learning if several molecules at different bond distances were
simultaneously trained on?

C. DMolecular dynamics of single molecules

New complications arise when ML is applied to chemically
realistic problems. Brockherde et al.[14] tried incorporating
these methods in realistic 3D electronic structure codes,
but as the number of degrees of freedom increased, the
cost of the projection method to determine the density
became prohibitive. A relatively simple workaround is to
learn the density directly as a functional of the potential
and so bypass the need to solve either the KS equations or
the Euler equation. The KRR density and energy models
in Ref. 14 were capable of running molecular dynamics
(MD) with a standard XC approximation (PBE) for a
small organic molecule, malonaldehyde. Training sets
were generated by running classical MD simulations at
higher temperatures, e.g. 500 K (to ensure sampling of
higher energy regions of the potential energy surface) and
then performing DFT calculations at snapshots of such
simulations.  With sufficient training, the errors in the
density map became much smaller than density differences
due to different XC approximations.

The performance of this ML density functional along the
MD trajectory is shown in Fig. 7. In the region where
the proton transfer occurs, the error is largest because
these configurations are not included in the training set.
One could easily run a KS calculation for this particular
configuration and retrain including that data point to
reduce this error. In fact, standard KS-MD does not
yield accurate proton transfer rates, as nuclear tunneling
plays an important role and requires more sophisticated
approaches[41].
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FIG. 7. Predicted ML energy along a 0.15 ps MD trajectory
of malonaldehyde showing the transfer of a proton between
oxygen atoms. Adapted from Fig. 5 of Ref. 14. Copyright
2017 Nature Research, licensed under Creative Commons
Attribution 4.0 International.

D. A-DFT and chemical accuracy

Although the training data used for malonaldehyde were
generated from approximate DFT, in principle, the ML
functional could also be trained on energies and densities
from higher-level ab-initio theories, such as coupled-cluster,
i.e. to bypass the KS equations, as if they had been solved
with chemical accuracy.

In practice, it is difficult to extract accurate densities
for training from a CCSD(T) calculation[42], but one can
simply learn accurate energies as a functional of the density
of a standard DFT calculation. This leads to several
different energy functionals that ML can produce: the
ab-initio energy, the DFT energy, and the difference in
the two (A-DFT), which is much easier to learn (i.e.,
converges much more rapidly with training data) because
the error in a DFT calculation is a very smooth function
of the nuclear coordinates. All this was done in a recent
work by Bogojeski, Vogt-Maranto, et al.[43]. Of many
different situations studied, the highlight is again ML-MD
simulations, in which a rotation barrier in resorcinol was
probed. A semi-local XC functional makes a substantial
error in the rotation barrier and Fig. 8 shows how the
DFT trajectory bifurcates from the accurate trajectory.
The KRR-DFT energy on the ML density yields almost
perfect agreement with a full DFT MD simulation. Self-
consistent DFT corrected with A-DFT calculated on the
ML density yields trajectories with errors less than 0.2
kcal/mol. Using the ML density with the CCSD(T) energy
without performing DFT calculations at each step, usually
gives a good trajectory, but with substantial energy errors.
Moreover, directions can appear in a trajectory that are
wholly unphysical, taking the molecule outside the manifold
on which the density functional works.

Unfortunately, it is difficult to generalize these methods to
other systems or to strong correlation. A similar machine-
learned correcting functional was also defined in Dick et
al.[44] for liquid water which used an NN to predict accurate
ground-state properties by approximating the difference
in energies and forces from the DFT densities. Later,
an approximation for XC was also constructed with this
method[17].
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FIG. 8. Positions and energy of the resorcinol conformer
switch predicted using standard DFT alone (blue), and
after correction with A—DFT trained on CCSD(T) energies
(purple). Adapted from Fig. 3 of Ref. 43. Copyright
2020 Nature Research, licensed under Creative Commons
Attribution 4.0 International.

4. EXCHANGE-CORRELATION:

We turn now to models for XC. Much work in the
literature applies to weakly correlated systems. We focus
on creating fully non-local ML approximations so that
strong correlation can be handled. Because highly accurate
densities and energies are cumbersome and expensive to
generate for training, we return to the simpler 1D world for
testing these ideas.

A. Strong correlation and thermodynamic limit

For materials applications, true strong correlation is even
worse than in stretched Hy. For example, for stretched
Hy4, semi-local XC approximations create four broken spin-
symmetry solutions, not two. Ultimately, for solid-state
applications, one should be able to handle the infinite-chain,
or in other words, the thermodynamic limit[26].

In Li et al. [20], the task was to learn both T and XC and
their derivatives for 1D H-atom chains of fixed separation
varying from equilibrium to very stretched, and chains
varying from two to twenty atoms, to accurately extrapolate
to the thermodynamic limit. Contrary to Ref. 12, the KRR
machinery was applied to DMRG energies and densities to
approximate both Ts[n] and Exc[n] in one shot. This was an
extremely ambitious goal given the requirement of accurate
functional derivatives and the enormous size of the kinetic
and Hartree energies. The NLGD method described in the
previous sections[12] yields an extremely accurate 1D Hy
dissociation curve. But this method becomes far too costly
for longer chains as the number of grid points in the density
increases. Without accurate derivatives, one can still easily
learn energies, but not calculate accurate densities.

The key was the representation of the density. There
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FIG. 9. Individual Hydrogen partition densities for every
interatomic separation R within the training set for a chain
of length N and the base density found using PCA. Note
similarity to Fig.2. Adapted with permission from Ref. 20.
Copyright 2016 American Physical Society.

is too much freedom when it is simply a function of the
large grids needed to represent the system. Many alternative
representations were tried, but the ultimate winner was the
simple atoms-in-molecules partitioning of Hirshfeld [45]. A
molecular density of an IN-atom chain was decomposed
into a weighted sum of distorted atomic densities. After
collecting and centering all these atomic densities, PCA
was used to create a data-driven basis for the allowed
density variations shown in Fig. 9. This reduced the time
needed to calculate the optimizing densities by several
orders of magnitude while retaining chemical accuracy. The
infinite-chain limit of 1D H-atoms could then be found
with chemical accuracy, treating all aspects of the DFT
calculation with KRR on a PCA basis learned from atoms-
in-molecules. DMRG results for both extrapolation of finite
chains and periodic systems agreed with each other and with
the ML result to within 1 kcal/mol (Fig. 10).

On reflection, it would have been much easier to simply
approximate the XC energy alone with ML methods in this
calculation, and use the KS procedure to produce accurate
densities. This seems a worthwhile test for future work, and
might also have been useful in Ref. 12.

Other studies have also tried to address strong-correlation
with ML-DFT on model systems[46—48]. But developments
are more prominent for weakly correlated systems[49-51].

B. Kohn-Sham regularizer (KSR)

Here, we look again at full binding energy curves obtained
with DMRG to find XC approximations that correctly break
bonds, but now within the KS framework. A pioneering
study [16] showed that by including density errors in the
loss function of a feed-forward NN, one could achieve
performance comparable to human-designed functionals for
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FIG. 10. Energy of the infinite H-chain with uniform
interatomic spacing of 2.08 Bohr trained using extrapolated
DMRG chain densities and energies. Adapted with
permission from Ref. 20. Copyright 2016 American Physical
Society.

a real molecule by training on just three or four molecules.
This is because the density is the functional derivative of the
energy with respect to the external potential, by training
with densities one simultaneously improves both the energy
and all possible linear responses to changes in the potential.
This greatly enhances the possibilities of generalization.

There are several other efforts to build a transferable
ML-DFT model with different approaches[48, 52-54]. The
most recent work by Li et al.[18] pushes the inspiration
from Ref. 16 forward in two major respects. The first
is to see if an entire dissociation curve can be found
with minimal training on a few examples. The second
is a theme of deep learning in general, namely the
importance of differentiable programming (DP). DP keeps
rigorous components where we have paramount physics
prior knowledge and well-established numerical methods.
By using DP, one can automatically apply gradient-based
approaches to optimization, unlike earlier work.

NNs often have many more parameters than training
examples and hence need to be regularized. Prior knowledge
is usually included via constraints on the network, physics-
informed loss functions, or feature preprocessing[40, 55].
Ref. 18 treats the procedure of solving the KS equations as
a differentiable program and trains an XC functional using
a loss function of density and energy. By backpropagating,
the KS equations work as an implicit regularizer for the
model. It learns to sample and generate a trajectory from
the initial guess density to the exact density during the self-
consistent cycle. This improves generalization compared to
direct ML models without the KS scheme, such as the KRR
models described above, as these models use only the final
step results for training and have little information about
initial densities.

The success of the KSR model is apparent from the high
accuracy achieved for stretched systems. In Fig. 11, the
entire dissociation curve of the Hy molecule is reproduced
with chemical accuracy by training at just two separations.
A similar performance was reported for Hy. Inclusion of
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FIG. 11. One-dimensional Hs dissociation curve, similar

to Fig. 5 but with with DMRG data instead of KS-DFT.
The colored curves are the optimal models trained on two
configurations (red diamonds) and validated on R = 3
(black triangle). An ML model directly predicting E from
geometries quickly overfits the training data. But the global
KSR functional improves with each iteration of the KS
equations (grey lines). The lower panel shows the KSR
predictions are within the chemical accuracy limit (light blue
region). Adapted from Fig. 1 of Ref. 18. Copyright 2021
American Physical Society, licensed under Creative Commons
Attribution 4.0 International.

the density loss term generates a much better prediction
for the density and the XC potential compared to energy
loss alone. The KSR is transferrable in the sense that it
could also predict energies for H2+ or two Hy molecules, even
though the model was never exposed to those molecules.
A successful extrapolation of this method for 3D real
molecules may hold the key for a generalizable practical ML
density functional which can surpass the accuracy of any
human-designed functional.

5. OUTLOOK

In the arena of OF-DFT, a natural question has arisen.
If we can find sufficiently accurate force fields by training
on DFT (or better) data, why do we need orbital-free
DFT? Won't a force field always be much faster (even
if slower than simpler force fields)? The current answer
is: maybe. For some specific but very important limited
cases, ML force fields are both faster and do not run into
difficulties. However, there are problematic configurations
that current force fields cannot resolve[56]. Moreover, a
DFT calculation can be performed for any combination of
any atoms in any configuration, whereas most force fields
are designed either for exploring materials configuration
space with one or two elements, or chemical compound
space with about a dozen different elements relevant to
medicinal chemistry. A few DFT runs on new combinations
of elements and configurations would be cheaper than the
cost of new training. Between these two extremes, there is
likely room for orbital-free ML-DFT.

But the main focus is to improve XC approximations.

Here, there are two distinct areas. For the weakly correlated
systems most often encountered in chemistry and many
materials, substantial improvements in accuracy would be
incredibly useful and might be achievable by finding better
combinations of the many approximate functionals already
suggested.  For strongly correlated systems (including
complete dissociation curves of molecules), going beyond
the usual semi-local starting points is likely a requirement,
and here, the advantage of ML to create entirely non-local
functionals is clear.

Possibly the greatest challenge to creating fully non-
local functionals is that of generalizability. =~ We need
approximations that can be applied to systems of effectively
arbitrary size and boundary conditions (open or periodic).
A functional that uses the entire density throughout the
system is so sophisticated that training on densities of one
molecule is unlikely to yield great accuracy on another,
and so must be retrained for every case. Yet the very
simplest and oldest XC approximation, local exchange[57],
generalizes perfectly, by virtue of using only the density at
each point to determine its contribution to the XC energy.
An ML functional that uses the density within a given
radius of the point might improve accuracies for weakly
correlated systems, but is unlikely to avoid catastrophic
failures for strong correlation. The search for the elusive XC
functional will continue, but now includes machine learning
alternatives to human designs.
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