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Abstract
Density functional calculations for the electronic conductance of single molecules are now
common. We examine the methodology from a rigorous point of view, discussing where it can
be expected to work, and where it should fail. When molecules are weakly coupled to leads,
local and gradient-corrected approximations fail, as the Kohn–Sham levels are misaligned. In
the weak bias regime, exchange–correlation corrections to the current are missed by the
standard methodology. For finite bias, a new methodology for performing calculations can be
rigorously derived using an extension of time-dependent current density functional theory from
the Schrödinger equation to a master equation.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction and notation

Single molecules used as building blocks such as diodes,
transistors, or switches have attracted much interest as
a basis for a future molecular electronics [1]. Many
groups worldwide have been performing either experiments or
calculations. There has been tremendous progress, especially
in the areas of metallic wires [2–6] and nanotubes [7–13].
However, comparison between theory and experiment has
been much less successful for molecular electronics, i.e.,
organic molecules between two electrodes. Experimentally,
obtaining consistently reproducible results from device to
device has been problematic [14, 15]. Theoretically, the
challenge is finding a method to quantitatively determine
device characteristics with neither empirical input nor over-
parametrization [16, 17, 19, 20].

In recent years, density functional theory (DFT)
calculations of electronic transport through single molecules
have been published by an ever increasing number of research
groups. We focus here on purely electronic transport
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calculated with DFT based methods. The most prominent
method is the Landauer-type scattering formalism [21–24],
formulated in terms of Green’s functions in combination
with ground-state DFT. It can be derived using the Keldysh
non-equilibrium Green’s function formalism [25, 27]. In
the following, we will call this method the standard
approach. It can also be obtained from elementary scattering
theory (e.g. [17, 26]), or using the Kubo linear response
formula [28, 29, 111]. However, such derivations are
limited to at best Hartree-interacting electrons, as we discuss.
Apart from calculating the current–voltage characteristics of
a coherent molecular junction in the Landauer scattering
picture [17, 26, 27, 30–33, 35–40], several additional
aspects such as electron–phonon coupling [41, 52, 53],
conformation-induced switching [54–58], or interaction with
light [55] have also been addressed within these methods.
Questions discussed also include the influence of electrode–
molecule bond geometry [17, 30, 59–62] or effects of a gate
electrode [19, 42, 58, 63].

Whereas ground-state DFT has become quite reliable
for calculating the electronic structure and other properties
of molecules and solids [64], this success has not extended
to transport calculations through organic molecules [17, 19].
While these calculations were originally greeted with much
enthusiasm, researchers in the many-body community have
always been sceptical [65–67]. A simple question to ask is,
can such calculations correctly describe the Coulomb blockade
regime? That the answer is patently no has raised doubts
about the validity of this approach among that community.
These doubts have been further compounded by the fact
that calculations within this scattering framework usually
overestimate the experimentally measured conductance of
organic molecules by about one order of magnitude [17, 19].
Only for transport through atomic metallic wires [2–5], do
calculations yield results in agreement with experiment, but
this is not a true test of the method, as the same result is found
in any calculation yielding a unit of conductance per channel.

The performance of this standard approach is the main
subject of this review. As we describe below, neither
of the traditional tests of DFT calculations, i.e., direct
comparison with experiment or benchmark testing against
more accurate theoretical methods for smaller systems, are
generally available for this problem. On the one hand, the
experimental situation is often not well characterized, while
on the other, these are transport calculations with systems
of up to several hundred atoms. Alternative treatments are
either prohibitively expensive or of such a modelistic nature
as to not allow meaningful tests. Thus, at present, there is no
simple way to know when the standard approach is accurate
or reliable. Instead, we examine carefully DFT treatments,
and show that the standard approach is an approximation to
a more general approach using time-dependent DFT, and from
this perspective, its limitations can be deduced.

Ground-state DFT is based on rigorous theorems and
so, if correctly applied to a problem, using a sufficiently
accurate approximate functional, will produce an accurate
result. The purpose of the present article is to ask two simple
questions: (a) is the present standard approach formulation

derivable from the basic theorems of ground-state DFT,
and (b) if so, are our present approximations sufficiently
accurate for conductance calculations? The answers show
a variety of deficiencies (e.g. inadequacy of the ground-
state approximation, approximations made by using local
functionals) in the present theory and we do not yet know
how important these drawbacks are. We do not know how
frequently situations are encountered in which these limitations
are quantitatively significant.

We discuss here three major issues that need to be resolved
to improve on the present state of transport calculations. (i) The
first involves the accuracy of ground-state functionals. The
functionals presently used in the Landauer and Kohn–Sham
approximations might not capture enough of the physics to
be useful and more importantly they might not give good
qualitative or quantitatively accurate results. The worst defect
we have found is due to lack of derivative discontinuity in
LDA and GGA functionals, which leads to an artificial level
broadening and can greatly overestimate the conductance [19],
due to incorrect positions of the resonances if the molecule
is weakly coupled to the leads [68, 79]. (ii) The second
issue is the missing exchange–correlation (XC) contribution
in the Landauer formula. Present calculations entirely miss
this contribution to the current. Some groups have sought
to improve on the issues delineated in (i) and (ii) by
calculating the XC corrections to the current via the gradient
expansion corrections in the Vignale–Kohn approximation [20]
and the exact exchange Kohn–Sham potential with the
optimized effective potential (OEP) [79]. The exact exchange
potential can also be estimated with self-interaction corrections
(SIC) [68, 69] where the self-interaction errors in LDA DFT
calculations are subtracted out. Furthermore, in the weak
bias limit, a careful application of the Kubo response equation
coupled with the DFT formulation, can be used to find the exact
answer [19]. (iii) The third issue we address is an exact theory
for finite bias, since transport experiments are often conducted
under a finite voltage drop. Thus, an exact formula couched in
DFT terms must be derived for these conditions.

In the last few years, the DFT computational transport
community has become aware of these issues [17, 19, 20, 68],
and a variety of approaches to overcome them have been
suggested. Many are looking to alternative formulations, such
as configuration–interaction (CI) in quantum chemistry [70] or
GW in many-body physics [71, 72], to include effects that are
missed in present (standard approach) DFT treatments. Such
calculations are sorely needed, to test the DFT formulations
against and learn their limitations. Accurate wavefunction
treatments are extensively used in both ground-state DFT and
TDDFT as benchmarks and to provide insight into functional
development [73]. But since such calculations are typically far
more expensive than DFT calculations, and given the chemical
complexity of the devices that can be built, there remains an
overriding need to develop a reliable DFT approach.

Thus a variety of new DFT based formulations of the
problem are being developed. One discussed here includes
using a Kohn–Sham effective single-particle version of a
master equation formulation of transport [74] which will be
discussed in section 5.1.2. Using TDDFT, another approach
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Figure 1. Schematic diagram of the potential of a resonant tunnelling
device with the LUMO level of the device molecule sandwiched
between the Fermi levels of the leads which are shifted relative to
each other by an applied bias voltage �V . When �V = 0, the
chemical potential is μF. The LUMO and HOMO levels have a small
width γ , indicating weak coupling to the leads.

obtains the current by calculating the time evolution of a
system consisting of a molecule coupled to two finite metallic
contacts and turning on a potential step, resulting in two
different chemical potentials [75, 76]. A third is to use large
finite leads, and watch a capacitance discharge [78]. All three
methods essentially begin from a static distribution, apply
some change, and allow the system to evolve to a steady,
but non-equilibrium distribution. For non-interacting electrons
in the weak bias limit, all agree, both with each other and
the standard approach, but likely disagree in the general case
of interacting electrons in finite bias. Under certain limiting
conditions, such as adiabatic approximations to TDDFT, and
local approximations to ground-state DFT, they yield the same
results.

Because of the breadth of topics we cover in this review,
we have collected the notation used in various formulae and
expressions in table 1 for easy reference. We use atomic units
(e2 = h̄ = m = 1) throughout, unless otherwise stated. So
all energies are in Hartree (1 H = 27.2 eV = 627 kcal mol−1)

and distances in Bohr radii (0.529 Å).

2. Review of the standard approach

In this section, we first review standard calculations that
utilize a combination of ground-state DFT and the Landauer
scattering formulation (the standard approach). We then
look at approximations commonly employed in the course of
calculating the conductance with this method.

2.1. Landauer scattering formulation

The Landauer scattering formulation can be easily understood
in terms of a simple schematic form for a molecular tunnelling
device, as shown in figure 1. In this cartoon, the electrons
are non-interacting and the system is one dimensional. The
leads are featureless boxes, and the ‘molecule’ consists of
states localized to the barrier region. In the cartoon, μF is the
chemical potential of the entire system, i.e., in its ground state
and in the absence of a bias. The molecule has been drawn
so as to be weakly coupled to the leads, so that the levels on
the molecule are only slightly broadened into resonances of
width γ .

Table 1. Notation for formulae.

Symbol Description

n(r) electron density as a function of position
vext(r) ext. potential due to nuclei and ext. fields
vXC(r) exchange–correlation potential
vH(r) Hartree potential
vtot(r) vext(r) + vH(r), total electrostatic potential
vS(r) KS potential= vext(r) + vH(r) + vXC(r)
χS(r, r′, ω) KS density–density response function
χprop(r, r′, ω) proper susceptibility

(density–density response
function)

χ(r, r′, ω) many-body density–density response function
i occupied level index
a unoccupied level index
q transition index of transition i → a
�q(r) �∗

i (r)�a(r) = KS ground-state orbitals
ωq εa − εi

α = L/R quantum numbers for (left/right) lead
electrons

i, j indices for KS orbitals of the device region
α, β Cartesian indices
εkα energy of electron in lead α = L/R

with momentum k
Vkα,n coupling between leads and molecule

c†
kα(ckα) creation (destruction) operator for electron

with momentum k in lead α

d†
n (dn) creation (destruction) operator for electron

with quantum numbers n on the molecule
ρα(ε) density of states in lead α

fl/R(ε) Fermi–Dirac distribution functions in leads

�
L/R
i, j transition rate to left(right) lead

= 2π
∑

αεL/R ρα(ε)Vα,i (ε)V ∗
α, j (ε)

gr surface Green’s function for the leads
τ hopping matrix describing the coupling

between leads and molecule,
its elements are given by Vkα,n∑

R(
∑

L) self-energy matrices = τgr τ †

Ga(r,>,<) full advanced (retarded, greater, lesser)
Green’s function for the extended molecule

g0 unperturbed KS Green’s function for device

S TDDFT KS wavefunction of the entire system

α TDDFT KS wavefunction projected on the

leads α = L, R

C TDDFT KS wavefunction projected on the

central (molecule) region
Hαβ block of the TDDFT KS Hamiltonian with

α, β = L(left), R(right), C(centre/molecule)
εres position of level in a resonant tunnelling device
γ width of resonance in a resonant

tunnelling device/coupling to the leads
T (ε) transmission coefficient as a function of energy
n(ε) spectral density of states
f occupation of level
εF Fermi energy
εHOMO(εLUMO) HOMO (LUMO) level of device
σ(r, r′, ω) conductivity (current–current response

function)
ST density matrix for total system
S reduced density matrix

In the Landauer picture, the applied bias raises the
potential on the left lead by an amount �V . There is now
an imbalance in the system. If one waits a long enough time,
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Figure 2. Schematic current–voltage characteristic of the resonant
tunnelling device displayed in figure 1. The onset of the current
occurs around εLUMO − μF. The step is broadened by the
coupling γ .

eventually many electrons would flow from the left to the
right, and re-establish equilibrium, with a common chemical
potential. This is not the regime we are interested in. Instead,
on an intermediate timescale, one assumes a steady current is
established, that is sufficiently small as to have no effect on the
reservoir levels.

The current can then be calculated from the two-terminal
Landauer formula [21] which, for this case, is simply

I = 2

π

∫ ∞

−∞
dε� f T (ε) (1)

where

� f = fL(ε) − fR(ε)

= f (ε − μF − �V ) − f (ε − μF) (2)

and T (ε) is the transmission coefficient at energy ε. The factor
of two is for the two spin channels.

This can be easily understood as follows. Considered as
a function of energy, only those states in the window between
μF and μF + �V can carry a net current. Those below are
occupied on both sides, those above are unoccupied on both
sides. Each state of energy ε in the window will transmit an
electron with probability T (ε), yielding that contribution to the
net current. The schematic diagram shown in figure 1 will yield
a current bias curve like that shown in figure 2. The differential
conductance, dI/d�V , will be strongly peaked in the position
of the LUMO. The result is even simpler in the zero bias limit,
as dV → 0. Then, d f = δ(μF) dV , so that the conductance
becomes

G = dI

dV
= 2T (μF)

π
. (3)

Thus for non-interacting electrons in a fixed potential, the
Landauer formula is easily understood and justified.

2.2. Interacting electrons

The Landauer formula for non-interacting (or at most Hartree-
interacting) electrons was later generalized to interacting
electrons by Meir and Wingreen [25], who formulated an
algorithm for calculating the current using the full non-
equilibrium Green’s functions for the system. They employ a
second quantized Hamiltonian description for the electrons in
the leads, the interacting region (molecule), and the coupling

between them. Initially uncoupled, the coupling between the
leads and the molecule is turned on slowly via the Vka,n term
in equation (4):

H =
∑

k,a ε L,R

εka c†
kacka + Hint({d†

n }; {dn})

+
∑

k,a ε L,R

(Vka,nc†
kadn + H.c.). (4)

Here, k refers to the momentum of an electron with energy
εka in the left or right lead, labelled by α. The creation
and annihilation operators are denoted by c†(c) and d†(d),
referring to the leads and the molecule, respectively. Then,
using the continuity equation for the current, the Keldysh
formalism for the Green’s functions and allowing the electrons
in the device region to interact while keeping the electrons
in the leads non-interacting, they find an expression for the
current when the leads are at different chemical potentials:

I = 2

π

∫

dε(tr{[ fL(ε)�L
i, j − fR(ε)�R

i, j ](Gr
i, j − Ga

i, j )}
+ tr{(�L

i, j − �R
i, j )G<

i, j}), (5)

and �
L/R
i, j = 2π

∑
a ε L/R ρa(ε)Va,i(ε)V ∗

a, j(ε) where i, j
indexes the states in the interacting region and a indexes the
states in the leads. Gr , Ga , and G< refer respectively to
the retarded, advanced, and lesser Green’s functions. Meir
and Wingreen [25] derived a simpler formula for the case of
proportional couplings (�R

i, j = α�L
i, j )

I = 2

π

∫

dε
[

fL(ε) − fR(ε)
]

Im
[
tr

{
ΓGr

}]
, (6)

where Γ = ΓLΓR/(ΓL + ΓR). This however, is a strong
limitation due to their reliance on symmetric contacts which
is never fulfilled for a realistic system. Only an atomic point
contact could satisfy this condition since it requires that each
orbital on the device couples equally to the left and right
contact. This restriction can be removed [17, 75], resulting in a
general formula for the current in terms of the non-equilibrium,
self-consistent Green’s function.

2.3. The standard approach

Because of the difficulties involved in solving the full many-
body problem for the non-equilibrium Green’s functions
exactly for an interacting system of many electrons, the
Green’s function in equation (5) is usually approximated with
the ground-state Kohn–Sham effective single-particle Green’s
function (DFT–NEGF). This complicates the simple picture
of figure 1 somewhat, as the KS potential changes with the
applied bias. A self-consistent KS potential must be found,
which will continuously change from being raised by �V on
the left, to being at its equilibrium level on the right. These
changes will not be confined solely to the molecule, but should
die off within one or two Fermi wavelengths into the leads.
Thus one must define an extended molecule as in figure 3,
which includes those parts of the leads where the KS potential
differs from its non-biased value.

Also note that in most calculations, the molecule is
chemically bonded to the leads. Thus its levels will be much
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Figure 3. Landauer approach: schematic representation of a
benzene-1,4-dithiol molecule between two gold contacts. The
molecule plus gold pyramids (55 atoms each) constitute the extended
molecule as used in the DFT calculations for the standard approach.

broader than pictured in figure 1, overlapping with one another,
and delocalizing into the leads.

In addition, approximations to the self-energy matrix ΣR

and ΣL are made (e.g. [26, 30, 32]). The coupling between
the right lead and the device is described by the hopping
matrix τR (whose elements are just the coupling terms Vka,n

in equation (4)) and similarly for the coupling between the left
lead and the device. There is no direct coupling between the
leads as this would cause electrons from the left lead to run into
the right lead until a global equilibrium was reached. Then, the
self-energy that encapsulates the effects of coupling the left
contact to the device can be written as:

ΣL = τ Lgr
Lτ

†
L (7)

where gR
L is the surface Green’s function for the left lead. An

equivalent expression can be derived for the right contact. The
full Green’s function for the device region, G, can then be
written in terms of the unperturbed KS Green’s function, gr

0,
for the extended molecule (molecule plus small parts of the
leads, figure 3) as

G−1 = g−1
0 + ΣL + ΣR. (8)

The coupling matrices ΓR(L) are given in terms of the self-
energy matrices as

ΓL(R) = −i(ΣL(R) − Σ†
L(R)) = 2 Im ΣL(R). (9)

This self-energy only describes hopping onto and off the
device from the leads, but neglects the other processes that can
occur in the leads. The leads are thus assumed to be non-
interacting. In this situation, a Dyson equation for the device
region leads to the formula for the current for the case of non-
interacting electrons derived from the more general expression
given in equation (5):

I = 2

π

∫

dε
[

fL(ε) − fR(ε)
]

tr
{
GaΓRGrΓL

}
. (10)

Identifying the trace with a transmission coefficient, this
is identical to equation (1). This approach has been
implemented successfully by many groups by now (e.g.
[18, 26, 27, 30–35, 37–40, 49, 80]), and calculations have
been performed for a large variety of molecules, coupled

to electrodes of different materials like gold, platinum and
silicon. Molecules studied vary from H2 to alkyl chains, to
molecules built from aromatic subunits, or metallo-organic
complexes. With successful we refer to a calculation in
which the described standard formalism has been implemented
and applied in a correct way. Especially early DFT
based calculations of molecular conductance often had some
shortcomings in the implementation or application, e.g. the
coupling to the macroscopic leads was not accounted for
in an appropriate way, which lead to strong deviations in
the calculated current. Successful implementations, when
applied to the same molecular system and contact geometry
with the same functional performed by different groups
yield similar results. However, the calculated conductances
usually overestimate the experimentally measured ones by
about one order of magnitude [17, 19]. By far the best
studied molecule is benzenedithiol coupled to gold contacts
via the sulfur atoms [17, 32, 34, 40, 42–50, 59]. Figure 9
shows results from a calculation [19] using the geometry in
figure 3 and comparing DFT with HF. Other calculations use
slightly different geometries, like e.g. planar gold surfaces
and a super cell. Using the latter geometry, calculations [51]
employing the master equation approach yield a zero bias
conductance of ≈0.4G0, in very good agreement with
Transiesta calculations [34] (≈0.4G0) and the results in
figure 9 (0.3G0), which both employed slightly different
geometries.

2.4. Limitations of the standard approach

Transport is inherently a time-dependent non-equilibrium
problem with current flow which is not at all within the
domain of validity of a ground-state DFT description. Its
natural description is found within time-dependent (current)
DFT. Therefore, using ground-state DFT to calculate the
device Green’s function incorporates several uncontrolled
approximations and errors which will be investigated in
sections 3 and 4. The time-dependent (TD) XC potential
can be very different from its ground-state counterpart. First,
the step from time-dependent DFT to ground-state DFT
misses all dynamic effects, i.e., the adiabatic approximation
of section 4.2. Also, for example, the partitioned system
is assumed to be in equilibrium and disconnected from the
leads at some initial time. Slowly, a finite voltage is turned
on which shifts the chemical potentials of the leads. This
necessarily drives the system out of equilibrium and so the
electron distribution in the leads do not follow the equilibrium
Fermi distributions. This effect is probably small, but its
presence points to the many problems with this approach.

Other problems with this approach include the incorrect
placement of energy levels due to the missing derivative
discontinuity when a local approximation to the XC functional
is employed. This leads to an error in the location of the
resonance peaks (section 3). The failure of local functionals to
reproduce the derivative discontinuity also produces resonance
peaks that are too wide in energy which results in a general
overestimation of the conductance.
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Figure 4. Top panel—exact radial density for the He atom. Bottom
panel—external and exact KS potentials for the He atom (atomic
units).

3. Inadequacy of ground-state approximations

In this section, we take the standard approach prescription at
face value, and assume it would give the correct conductance
if implemented with the exact ground-state density functional.
(In the next sections, we will show that this is unlikely to
be true in general.) But we ask the simple question: using
present standard density functional approximations (LDA,
GGA, hybrids), will we get accurate results? To answer this
question, we must first review some facts that are well known
in the DFT community.

3.1. Exact ground-state DFT

In the top panel of figure 4 we show the exact density n(r)
of the He atom, calculated by Umrigar et al [81], using
quantum Monte Carlo to minimize the energy of a highly
accurate wavefunction. In the bottom panel of figure 4 we
plot both the nuclear (i.e. external potential) potential, which
is −Z/r in atomic units, and the exact Kohn–Sham potential
vS(r) for this system. Two non-interacting electrons, inserted
in this potential, reproduce exactly the density of the top
panel of figure 4. By the Hohenberg–Kohn theorem [82],
this potential (if it exists) is unique. All modern Kohn–
Sham density functional calculations [83] are calculations of
these fictitious non-interacting electrons in a KS potential.
The goal of much research in DFT is to provide ever more
reliable approximations to the exchange–correlation (XC)
energy, EXC[n]. Its functional derivative with respect to density
provides the Kohn–Sham potential via

vS(r) = vext(r) + vH(r) + vXC(r), (11)

where vext(r) is the original external potential, vH(r) is the
Hartree (or classical or electrostatic) potential, and vXC[n](r) =
δEXC[n]/δn(r) is the XC potential. In traditional ground-
state DFT, the eigenvalues of the KS potential, εi , have no

Figure 5. Density and potential of a molecule–lead system where
resonance occurs when the chemical potential of the lead lines up
with εLUMO of the molecule.

Table 2. Exact Kohn–Sham energies for the He atom, i.e. the
orbitals for the KS potential of figure 4.

Orbital Energy (H)

1s −0.903 724 36
2s −0.157 731 64
2p −0.126 569 95
3s −0.064 547 05

formal meaning, except that the eigenvalue of the highest
occupied molecular orbital (HOMO) is exactly the negative of
the ionization energy (Koopmans’ theorem), as can be shown
by studying the asymptotic decay of the density [84]. However,
the lowest unoccupied molecular orbital (LUMO) eigenvalue
does not in general match the negative of the electron affinity,
i.e.,

εHOMO = −I, εLUMO �= −A. (12)

In He, ε1s = εHOMO = −0.903 H, but ε2s = εLUMO =
−0.158 H, while the electron affinity A = 0. Thus the
fundamental gap, I − A, is not equal to the KS gap, i.e., the
HOMO–LUMO energy difference, see table 2.

What happens then, as electrons are added to the system?
This question was answered more than 20 years ago. Consider
a hydrogen atom, far (say 10 Å) from a featureless metal
surface (e.g., jellium), as shown in figure 5, and ask what
happens to the KS potential as a function of the global chemical
potential of the system. Since we chose the H atom far from
the surface, its energy levels pick up a tiny width γ , as they are
broadened into resonances. If μ matches the LUMO energy, as
shown in the cartoon, electrons would occupy that level. But as
soon as there is even an infinitesimal occupation, the level must
move, in such a way as to keep the exact Koopmans’ theorem
satisfied. Since the density changes at most infinitesimally, the
only allowed change (in the region of the atom) is a constant
jump in the KS potential, by exactly the amount needed to
restore Koopmans’ theorem for the new HOMO. This is shown
in figure 6.

3.2. DFT approximations

The success of most DFT calculations is based on good
approximations to the XC energy itself, as this determines
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Figure 6. Exact KS potentials for H and H with an extra infinitesimal
electron, illustrating the derivative discontinuity.

Figure 7. Exact and LDA KS potentials for the He atom.

so many properties of the system. The most popular
approximations, such as LDA [83], GGA [85], and hybrids of
exact exchange and GGA, such as B3LYP [86] and PBE0 [87],
have well known successes and failures. But they have
the following failures in common, because they are density
functionals:

• Self-interaction error: none are exact for a one-electron
system, in which

EX = −U, EC = 0 (1 electron). (13)

• They all have poorly behaving potentials far from the
nuclei. The true KS potential decays as −1/r far from a
neutral atom, and this contribution is from the exchange
potential. In figure 7, we have also plotted the LDA
potential for the He atom. It decays far too rapidly, and
so its orbitals are far too shallow. The HOMO is at
−0.5704 H, while the LUMO is not bound at all.

• None contain the derivative discontinuity, so their
potentials do not jump when the particle number passes
through an integer.

(Actually, hybrids have about 1/4 exact exchange, but this is
not enough to cure these ills.)

On the other hand, orbital-dependent functionals cure
all these ills (at least, approximately). The original and
simplest method is the self-interaction correction of Perdew
and Zunger [88], and is often used with LDA for strongly
correlated systems. The corrected exchange–correlation term
is then given by:

ELDA−SIC
XC [n] = ELDA

XC [n] −
∑

i

(EH [ni ] + ELDA
XC [ni ]), (14)

Figure 8. Perdew Zunger self-interaction corrected KS potential for
He (dashed line). Exact and LDA KS potentials for the He atom for
comparison.

Figure 9. Transmission coefficient over energy for
benzene-1,4-dithiol using DFT in the standard approach within a
semi-local approximation (GGA) (solid line) compared with HF
results (dashed line). Fermi energy is ≈−5.1 eV [17].

where ni (r) = |φi(r)|2. This functional is exact for one
electron, decays correctly at large r , and its potential jumps
discontinuously at integer particle number. The dashed line in
figure 8 shows the huge improvement in the potential compared
to LDA for the He case. More satisfactorily, there are
now many implementations of exact exchange within DFT, in
which the orbital-dependent exchange is treated as an implicit
density functional [89]. Such optimized effective potential
(OEP) calculations are often prohibitively expensive for large
molecules, but are exact for one electron, have a potential
that decays as −1/r , and vS(r) jumps discontinuously when
a fraction of an electron is added.

Without some form of self-interaction correction, contin-
uous density functionals allow electrons to self-repel, yielding
orbitals that are too diffuse, in potentials that are too shallow.

3.3. Effect on transport

The missing orbital effects in approximate density function-
als can have drastic consequences for calculations of conduc-
tances. For example, the missing derivative discontinuity in
local approximations of DFT affects the magnitude of the con-
ductance and misplaces the resonance peaks. This effect is
strongest when the molecule is coupled weakly to the leads.
For the exact Kohn–Sham potential as discussed above, the
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potential is discontinuous, suddenly shifting by a constant
while the energy remains continuous, as the next unoccupied
level begins to be infinitesimally occupied (see figure 6). The
origin of this discontinuity is due to the fact that εLUMO, the
Kohn–Sham LUMO (lowest unoccupied molecular orbital) for
the N-electron system is not the same as the Kohn–Sham
HOMO (highest occupied molecular orbital) for the N + 1-
electron system, as seen in section 3.1. In local approxima-
tions such as LDA and GGA, the fractionally occupied level
shifts and moves continuously to the position of the HOMO
of the N + 1 system as the next unoccupied level begins to
be fractionally populated. The effects for transport calculation
are broad resonance peaks in transmission which lead to finite
conductance even at energies off resonance, yielding an overall
increase in conductance that is unphysical.

This was first illustrated in [17], where Evers et al
performed a test calculation on a realistic system, finding
transmission coefficients for benzene-1,4-dithiol covalently
coupled to two gold clusters using DFT with a GGA, and
comparing to Hartree–Fock (HF) methods. The calculations
were performed only at zero bias and the results for the
transmission (found from the corresponding Green’s functions)
are shown in figure 9. The transmission coefficient at the Fermi
energy is reduced by a factor of 100 in the HF calculation. This
is likely due to the GGA orbitals being too diffuse, due to the
self-interaction error.

A more serious problem is due to the incorrect positions
of unoccupied levels. To probe an unoccupied resonance
at zero bias, we can apply a gate voltage Vg to a double
barrier resonant tunnelling device (DBRTS) perpendicular to
the leads, shifting the LUMO down to the Fermi level εF

(= μ at T = 0). In figure 1, this simply reduces all
molecular levels by Vg. As a level passes through εF as
a function of the gate voltage, there will be a peak in the
conductance. When the resonance starts to overlap with εF, the
exact KS ground-state potential in the region of the molecule
will differ significantly from the off-resonant situation, as it
depends on the occupation, i.e. it will jump discontinuously by
the derivative discontinuity. This thereby greatly changes the
transmission characteristics. The transmission peaks are not
at the position of the unoccupied resonances of the ungated
situation.

For any sharp resonance, the transmission coefficient is
given by

T (ε) = (γ /2)2

(ε − εres)2 + (γ /2)2
(15)

where εres and γ are the position and width of the resonance.
In any self-consistent KS treatment (including using the exact
ground-state functional), εR and γ depend on the ground-state
density, and therefore on the partial occupation, 0 � f � 1, of
the resonant level.

We will now use a simple model to show how the
use of smooth, approximate density functionals produces
completely erroneous transmissions (and hence conductances)
as a function of Vg [19]. Defining the KS spectral function
AS(ε) = Im(trGS(ε)) we can write expressions for the spectral
density of states, n(ε) = AS/π , as well as for the transmission
TS = γ AS/2. This yields a simple linear relationship

Figure 10. Double barrier resonant tunnelling system with a gate
electrode. Zero bias transmission over gate voltage: dashed line is
self-consistent approximate functional result, dotted line is
approximate result for coupling γ → 0, and solid line is exact result.
Here εLUMO(N) = 0, εHOMO(N + 1) = 1 and γ0 = 0.1 [19].

between n(ε) and the transmission of such a level, n(ε) =
2 TS(ε)/(γ π). The self-consistent occupation f of the level
is found from integrating over n(ε) as

f =
∫ εF

−∞
dε n(ε) = 1

2
+ 1

π
tan−1

{

2
εF − εres( f )

γ ( f )

}

. (16)

The transmission can be obtained by inverting equation (16):

T −1(εF) = 1 + tan2 {π( f (εF) − 1/2)} . (17)

For simplicity, neglect any dependence of γ on occupation f ,
i.e., γ ( f ) = γ0, as the actual dependence is expected to be
weak and to have only little effect on the transmission peaks.
The transmission can alternatively be expressed in terms of
the gate voltage. Setting εF = 0 for Vg = 0 and assuming
a shift of the energy levels by −Vg due to the applied gate
voltage (gate efficiency = 1), we can replace εF by Vg in
equations (16) and (17), thus describing the transmission in
terms of an applied gate voltage instead:

T −1(Vg) = 1 + tan2
{
π( f (Vg) − 1/2)

}
. (18)

Any calculation that has a derivative discontinuity would
give the solid line in figure 10. In this example �ε =
εHOMO(N + 1) − εLUMO(N) is several eV. The narrow resonance
(width γ = 0.1) is positioned at the energy of εHOMO(N+1). On
the other hand, the dashed line is the result for a smooth, (semi-
)local density functional. As the N + 1 level gets fractionally
filled, the resonance moves continuously from εLUMO(N) to
εHOMO(N + 1), resulting in a smearing out of the resonance
width. It can be seen that the position of the resonance is
displaced in this case. It is now centred in between the LUMO
of the N-electron system and the HOMO of the N +1-electron
system, assuming εres = εLUMO + f �ε (i.e. a linear dependence
of the potential on the occupation for the smooth functional).
The resonance peak should be located at the true HOMO of the
N + 1-electron system (the solid line).

Even in the extreme limit of no width of the level (γ → 0),
the resonance in LDA remains broad. For weakly coupled
leads where, at any occupation, γ � �ε, the Fermi level is
pinned to the resonance (εres( f ) → εF) for f �= 0 or 1. This
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Figure 11. Current of a single energy level coupled to two metallic
leads as a function of bias. Left figure corresponds to the case of
weak coupling and right figure corresponds to the case of strong
coupling. Solid lines are results for LDA and the dotted lines are
results using self-interaction corrected LDA (LDA-SIC). From [68].

yields εF = εLUMO + f �ε and using equation (17) we obtain the
dotted line in figure 10. Thus, in a standard calculation using
(semi)local functionals, equation (17) always produces a broad
peak whose width is comparable to �ε, thereby overestimating
the total conductance of the device—even when γ → 0. For
the case of a linear relation as discussed here, this artificial
width is just �ε/2. In addition, the resonance position is
incorrect, being �ε/2 too low.

It is possible to recover the derivative discontinuity and
so avoid these artefacts with methods briefly described in
section 3.2. The self-interaction is effectively removed either
approximately from an LDA description via a self-interaction
correction (LDA-SIC) or through the rather expensive, but
more rigorous, OEP methods. In this method, the self-
interaction can be removed explicitly, but it is computationally
more feasible to parametrize the self-interaction in terms of
its atomic components. What results is an orbital-dependent
functional that incorporates non-local effects, yielding the
derivative discontinuity.

Comparison of I –V curves between LDA and LDA-SIC
was performed by Toher et al [68, 69] using a tight-binding
calculation within the standard approach. The differences
in the I –V characteristics were much less apparent for the
case of strong coupling, confirming that the missing derivative
discontinuity is most problematic in the limit of weak coupling.
A cartoon of this effect can be seen in figure 11 where
the current versus applied bias voltage of a device effective
single-particle energy level is plotted for the LDA case (solid
line), and the case for an artificial step-like energy (dotted
line) which emulates the derivative discontinuity for the exact
Kohn–Sham potential. The plot on the left-hand side reflects
the situation of weak coupling to the leads (γ = 0.2 eV),
whereas the plot on the right-hand side reflects the situation
of strong coupling to the leads (γ = 1.2 eV).

4. Weak bias

In this section, we discuss—in the weak bias limit—the errors
made due to the standard approach scheme. In this limit, we
can use Kubo response theory to deduce the exact answer, and

compare with the standard approach. We also give an estimate
of the corrections in terms of the Vignale–Kohn current density
functional. Local functionals not only miss the derivative
discontinuity but also the XC contributions to the electric field
response, which leads to an additional overestimation of the
conductance. In the limit of low bias it is possible to describe
transport with the Kubo response formulation. Seeing how
the adiabatic local density approximation (ALDA) fails in this
formulation provides clues as to the source of the problem and
how to correct it. A more detailed discussion of calculations in
this limit is given in section 5.1.1.

4.1. Time-dependent DFT

The usefulness of ground-state DFT has been augmented by
the development and implementation of TDDFT [90]. The
Runge–Gross theorem [91] shows that, under appropriate
conditions, the time-dependent potential vext(r, t) is a
functional of the time-dependent density, n(r, t). This allows
one to construct time-dependent Kohn–Sham equations, and
use linear response theory to find TDDFT corrections to the
KS transitions, making them the true excitations of the system.

How the linear response theory works can be seen in the
density change to an applied perturbation varying as exp(iωt),
which can be expressed exactly in different ways:

δn(rω) =
∫

d3r χ(r, r′, ω) δvext(r, ω) (MB)

=
∫

d3r χprop(r, r′, ω) δvtot(r, ω) (EM)

=
∫

d3r χS(r, r′, ω) δvS(r, ω) (DFT)

where vtot(rω) is the sum of the external and induced (a.k.a.
Hartree) potentials, while

δvS(r, ω) = δvext(r, ω) + δvH(r, ω) + δvXC(r, ω) (19)

is the Kohn–Sham potential perturbation including the XC
contribution. Different susceptibilities are used in different
contexts: χ is the full many-body (MB) response function,
giving the density change in response to the external
perturbation; χprop is the proper or irreducible susceptibility,
giving the response to the perturbing potential of the total
electric field, both external and induced (Hartree), used in
electromagnetism (EM) [92]. Finally, χS is the Kohn–Sham
response function, constructed from KS energies and orbitals
of the ground-state KS potential:

χS(rr′ω) = 2
∑

q

�q(r) �∗
q(r

′)
ω − ωq + i0+

+ c.c.(ω → −ω), (20)

and

〈q| f |q ′〉 =
∫

d3r
∫

d3r ′ �q(r) f (r, r′)�q ′(r′) (21)

where q is a double index, representing a transition from
occupied KS orbital i to unoccupied KS orbital a, ωq = εa−εi ,
and �q(r) = φ∗

i (r)φa(r), where φi (r) is a KS orbital. Thus
χS is completely given by the ground-state KS calculation.
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Table 3. Singlet transition energies for He, comparison of the true
transitions with the Kohn–Sham transitions for the exact KS
potential [96].

Transition KS value (eV)a True transition (eV)b

1s → 2p 21.146 21.221
1s → 2s 20.298 20.613
1s → 3s 22.834 22.923

a The differences between the KS eigenvalues
obtained using the exact potential [96].
b Accurate non-relativistic calculations from [97].

For example, it is the response of the two non-interacting KS
electrons sitting in the KS potential of figure 2, and ωq are
the differences of the orbital energies listed in table 2. By
definition, δvXC(r, ω) causes these non-interacting electrons
to have the same density response as the real electrons.
Expanding this around the original ground-state density, and
requiring the same density response, we find a Dyson-like
equation relating the true and KS susceptibilities [93]. This is
just the RPA equation well known in other areas, but with the
Hartree interaction modified to include XC effects. One can
further translate this problem into an eigenvalue problem [94],
whose approximate solution for transition frequencies is [95]:

ω ≈ ωq + 2〈q| 1

|r − r′| + fXC|q〉 (22)

where

fXC[n0](rr′, t − t ′) = δvXC(rt)/δn(r′t ′)|n0 . (23)

is called the XC kernel. Thus, the effect of TDDFT is to
produce corrections to the KS transitions to turn them into
the true optical transitions of the system. If we had the
exact fXC(r, r′, ω) for the He atom density, calculated perhaps
from a traditional wavefunction calculation, and inserted it in
the full TDDFT response equations, we would get exactly the
results of table 3.

4.2. TDDFT approximations

Most often, ground-state approximate XC functionals are
used, even for the TD potential, which is called the adiabatic
approximation. This often produces excellent excited-state
properties, and transition frequencies typically within about 0.2
eV of the true numbers for molecules [98]. A simple example
is the π → π∗ transition in benzene in which, in a LDA
calculation, the KS transition is at about 5 eV, but the TDDFT
(ALDA) correction correctly shifts it to about 7 eV [99].

TDDFT has been implemented in many standard quantum
chemistry codes, and is run routinely to extract electronic
excitations of molecules [98]. However, as the number
of calculations has grown very rapidly, the limitations of
the scheme with an adiabatic XC approximation are being
felt. Even early on [100], it was realized that Rydberg
excitations would be missing within ALDA or AGGA, because
of the poor quality potentials of the underlying ground-state
approximation. The LDA potential of figure 7 is shallow and
short ranged, and so has no Rydberg series. Exact exchange

or SIC functionals take care of this [96]; figure 8 shows how
accurate the LDA-SIC potential is in comparison. Also, double
excitations can be shown to be missing within any adiabatic
approximation [94], although frequency-dependent kernels can
be constructed that restore them [101]. Charge transfer-type
excitations also fail [102].

For solids, development has been slower, as the local and
semi-local nature of approximate functionals means that their
effect becomes negligible in the thermodynamic limit. This
can be seen from the fact that the XC kernel in ALDA is
independent of q , the wavevector in the Fourier transform
of r − r′, as q → 0, but the Hartree term grows as
1/q2. One cure for this problem is to use TD current DFT
(TDCDFT) [103], whose validity is established in the first part
of the RG theorem [91]. Related to this fact is the notion
that no local approximation exists in terms of the density,
but a gradient expansion in the current was constructed by
Vignale and Kohn [104] for linear response. More recently,
by comparison with solutions of the Bethe–Salpeter equation,
accurate many-body approximations to the kernel have been
constructed, yielding excellent results for excitonic peaks,
etc [105].

The VK approximation is the only current-dependent
approximation that is well established, and is often applied
to problems where non-locality and memory (i.e. beyond
adiabatic) effects are important. Most importantly, it often
yields finite corrections where ALDA gives nothing, such
as to the (0,0) component needed for the optical response
of solids [103, 106], or the over-polarizability of long-chain
conjugated polymers [73, 107]. But, given that it is a simple
gradient expansion, its quantitative accuracy in any given
situation is open to question [107–109].

4.3. Constitutive relations

We can relate the conductivity σ with the susceptibility χ

described in section 4.1 using current continuity

dn

dt
= −∇ · j. (24)

Since δn(t) = δneiωt , we have:

δn = − 1

iω
∇ · δj. (25)

Then, using the relations between the vector potential and the
field:

δE = ∂δA
∂ t

= iωδA, (26)

and the definitions of the current response:

δ jα(rω) =
∫

d3r′ ∑

β

χαβ(rr′ω)δAβ(r′ω)

=
∫

d3r′ ∑

β

σαβ(rr′ω)δEβ(r′ω), (27)

where χαβ is the current–current response function, a tensor,
and σαβ is the conductivity tensor [110]. We get an
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expression relating the response functions for conductivity and
susceptibility:

σαβ = 1

iω
χαβ. (28)

Also, going back to the definition of the density response and
using the relations given above in equations (26) and (27), we
obtain:

δn(rω) = 1

ω2

∫

d3r
∑

β

∂ασαβ(rr′ω)(−∂ ′
βv(rr′ω)) (29)

which leads to the relation between the conductivity and
susceptibility:

∑

αβ

∂α∂ ′
βσ̂αβ(rr′ω) = −iωχ(rr′ω). (30)

As described in section 4.1, in TDDFT, there are three
equivalent, exact formulae—usually studied in reference to the
polarizabilities of atoms in strong fields—applied to different
many-body descriptions and requiring different inputs, to
describe the density response to an applied electric field.

There is an analogous response function for the current
response to an external electric field. As with the density
response formula, the response, given by the conductivity σ

in this case, is different in each of the exact expressions.
The many-body, non-local conductivity σ(rr′ω) describes the
response to the external electric field δEext. The proper
conductivity σprop is in response to the total field Etot =
Eext + EH, and the single-particle Kohn–Sham conductivity σS

yields the response to the full expression for the electric field,
Eext+EH+EXC, including the unphysical XC contributions EXC.

δj(rω) =
∫

dr σ(r, r′, ω) δEext(r, ω) (MB)

=
∫

dr σprop(r, r′, ω) δEtot(r, ω) (EM)

=
∫

dr σS(r, r′, ω) δES(r, ω). (DFT). (31)

4.4. DC transport from Kubo response

In the limiting case of weak bias, the response can be expanded
to first order in the electric field. In this, we follow the logic
of Kamenev and Kohn [111]. To derive the DC transport
response, a frequency-dependent electric field is applied, and
the limit ω → 0 is taken while always ensuring that vF/ω �
L, where L is the circumference of the ring. As shown by
Kamenev and Kohn, this reproduces the Landauer formula for
weak bias for Hartree-interacting electrons. Our work can be
regarded as a simple extension of this analysis to DFT. Note
that extreme care must be taken in the limiting procedure to
extract the relevant results [112–114].

It can be shown that, as ω → 0, the conductivity can
be rewritten as the transmission coefficient familiar from the
Landauer formulation. This limit has to be performed carefully
to obtain the correct current. It has to be assured that the
excursion length of electrons in the device, given by lF = vF

ω
,

is smaller than the region of the density response, lρ , which

in turn has to be smaller than the device dimensions L of the
extended molecule in the DFT calculation (see figure 3).

Using the (DFT) response equation for the Kohn–Sham
susceptibility and the full expression for the field we can obtain
the correct current. We first rewrite the Kohn–Sham non-local
conductance as

σ̂S(rr′ω) =
(

n0(r) δ(3)(r − r′) 1I + R̂(rr′ω)
)/

(iω) (32)

where

R̂(rr′ω) = 1

2

∑

q

Pq(r)P∗
q(r

′)
ω + ωa + i0+

, (33)

defining Pq(r) = φ∗
i (r)∇φ j(r) − φ j(r)∇φ∗

i (r). Here φi (r)
and εi are the KS orbitals and eigenvalues, ωa = εi − ε j ,
and q = (i, j). This result can be written more compactly
in terms of the retarded KS Green’s function Gr

S(rr′ε) and the
corresponding KS spectral density

AS(rr′ε) = − Im Gr
S
(rr′ε)/π, (34)

just as the regular χS can be. Thus we find, exactly,

R̂(rr′ω) = 1
2

∫

dε f (ε){Gr
S(rr′, ε + ω)

+ (Gr
S
)∗(rr′, ε − ω)}↔∇↔∇′ AS(rr′ε). (35)

For small ω, only the imaginary component of the KS
Green’s function contributes to R̂. Expansion in powers of ω

yields a term linear in ω, and an integration by parts yields the
DC conductance entirely in terms of the spectral density at the
Fermi energy [111]:

σ̂S(ω → 0) = −π AS(εF, r, r′)
↔∇ ⊗ ↔∇′ AS(εF, r, r′). (36)

This result is true for the conductance of non-interacting
electrons in any single-particle potential. Next, we specialize
to a 1D system, to avoid complications. Then, equation (30)
tells us that, as ω → 0, σS becomes independent of position.
Thus, σS from equation (36) may be evaluated at any choice
of z and z ′. An easy choice is z < 0 and z ′ > 0, and one
finds [111]

σS(ω → 0) = TS(εF)

π
. (37)

Since σS(ω → 0) is just a constant, it can be taken outside the
integral of equation (32), yielding

δ I = TS

π
(δVtot + δVXC) (38)

δ I (ω → 0) = TS(εF)

π

∫

d3r ′(δEext(ω) (39)

+ δEH(r
′ω) + δEXC(r

′ω)) (40)

where δVtot = ∫
dz′ δEext(ω) + δEH(z ′ω) is the net drop in

total electrostatic potential across the device, and

δVXC =
∫ ∞

−∞
dz δEz,XC(z, ω → 0) (41)

is the corresponding drop (if any) in the XC potential.
Thus, equation (42) would be exact if the exact VXC

was properly included. But the implementation commonly
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used in the Landauer formulation of molecular electronics
corresponds, as we will see below in 4.5, to only the Hartree
response:

δ I = 1

π

∫ μ+δV

μ

dε TS(ε, V )( fL(ε) − fR(ε))

= TS(εF)

π
δVtot (LANDAUER). (42)

Equations (38) and (42) are identical, except that the standard
approach does not include the extra exchange–correlation term,
δVXC. This derivation has been recently generalized to include
correct averaging over the lateral directions [115].

4.5. XC correction to current

The present implementation of the Landauer formulation using
local functionals includes the Hartree piece of the potential and
thus correctly includes the charging effects, but it is missing
the XC piece. To see this, consider the XC contribution to
the voltage given by equation (41). Since δEXC = − � · δvXC,
this implies that δVXC = δvXC(z → ∞) − δvXC(z → −∞).
But far from the barrier, δρ = 0, and so any local or semi-
local approximation necessitates that δvXC equals zero far from
the barrier. Thus δVXC = 0 when working within these
approximations [19]. Thus ALDA and all other local or semi-
local approximations miss the non-local interactions of the
exact XC functional.

Alternatively, integration of the second equation in
expressions (32) would also give the exact result since all three
formulae are equivalent and exact:

δ I = Tprop

π
δVtot (43)

but Tprop refers to the full proper transmission coefficient which
cannot be easily calculated for a realistic system, and is not the
transmission through any single-particle potential.

TDDFT within a local or semi-local approximation
has been shown to produce erroneous results when non-
local effects become important, such as in the optical
response of solids. The Vignale–Kohn functional is a non-
local functional in terms of current density that has been
successfully applied to situations where non-locality cannot be
ignored, such as in long conjugated polymers [73, 107, 116]
where local approximations give overestimates on the static
polarizabilities. This non-locality also plays a role in the
non-equilibrium transport problem as seen in section 4.4. In
the regime of weak bias, Koentopp et al [19] estimate the
size of the XC correction to the current in the Vignale–Kohn
approximation. Since ALDA is a local approximation, it
misses the non-local interactions of the exact XC functional.
Inclusion of the viscous contribution to δVXC yields a correction
to the transmission coefficient that reduces its magnitude:

δVXC/V ≈ −(1 − T (εF))T (εF)/40π1/2k3/2
F . (44)

A more explicit expression for the XC correction can be
calculated. Sai et al [20] calculate the dynamical response
contribution to current flow using the Vignale–Kohn correction
in TDCDFT. This dynamical contribution is a viscous flow

component from the XC field that is missing in ground-
state DFT calculations and gives a finite correction to the
conductance. A current density functional theory is necessary
because functionals that are dependent on the density alone do
not contain information about the constant value of the current.
The Vignale–Kohn construction has an XC field that has both
the ALDA XC potential and a term dependent on the XC stress
tensor which in turn is dependent on viscoelastic coefficients
and velocity fields.

A dynamical resistance Rdyn arises from the DC XC field
which increases the total resistance of the system, thus acting
against the external field.

Rdyn = 4

3e2 Ac

∫ ∞

−∞
η
(∂zn)2

n4
dz (45)

where a and b are points inside the electrodes, Ac is the cross-
sectional area, n is the density, and η is the viscosity. A
calculation that includes the real part of the stress component
of the electric field yields a correction of 10% [20].

5. Finite bias

Given the limitations of the standard approach already
discussed, it has been realized that a more fundamental
derivation of the conductance formula is needed, especially
one that lends itself to a DFT treatment. For example, in
DFT, one is not allowed to turn off the coupling between the
molecule and leads, as the Hohenberg–Kohn theorem does not
apply in empty space, nor does the RG theorem allow for time-
dependent interactions between electrons.

Several suggestions have been made as to how to do
this, that might appear quite different. Here we discuss and
compare just two of these: the master equation approach, and
the TDDFT–NEGF approach. The master equation requires
coupling to a dissipative bath, such as the phonons, in
order to achieve a steady current, while the TDDFT–NEGF
approach achieves a steady current via dephasing into the
continuum. Moreover, the master equation allows for periodic
boundary conditions (PBCs) whereas TDDFT–NEGF uses a
localized system. Finally, because of this, the master equation
with periodic boundary conditions requires TD current DFT,
whereas TDDFT–NEGF uses the density as the basic variable.

5.1. Master equation

5.1.1. Periodic boundary conditions. The Landauer
formulation, and indeed most of the literature on transport, uses
the concept of different chemical potentials on the left- and
right-electrodes, and assumes some steady current-carrying
state between them.

Such a situation is not so easy to realize within the
basic theorems of density functional theory, time-dependent
or otherwise. Even TDDFT requires starting from some
initial wavefunction [117], almost always the ground-state
wavefunction of some system. But the ground state of any
system of electrons has at most one chemical potential, not two.

Thus useful DFT descriptions begin with a system in
its electronic ground state, and a single chemical potential.

12
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So far, only the situation in which both electrodes are of the
same metal have been investigated. Furthermore, to avoid
the difficulties of having infinite potentials far inside the
electrodes, a gauge transformation that is standard in solid-
state physics is applied and a solenoidal magnetic field is
imposed on a ring of material. A vector potential that is linear
in time, a = Et then gives rise to a uniform electric field on
the ring, causing a current to flow.

The same approach is then applied to finite bias, and again
avoids the need for two different chemical potentials. However,
a new complication arises, as in the presence of the electric
field, as ω → 0, if L is kept finite, the electrons will accelerate
indefinitely around the ring, which is not the situation we wish
to model. Instead, if some coupling to the phonons in the
system is introduced, there will be dissipation, and a steady
state can develop. It is possible to derive an extension of
TDCDFT that includes dissipation in a time-dependent Kohn–
Sham master equation. Note that dissipation is unnecessary in
the weak bias limit of the previous section, as Joule heating is
second order in the perturbation [118].

5.1.2. Master equation theory. A master equation approach
has been constructed that introduces dissipation via a
quantum mechanical treatment of the Boltzmann equation
from statistical mechanics [74]. The master equation describes
the evolution of the density of a system coupled to a heat
bath and has an analogue with the well studied problems of
optical interactions of laser fields with matter [119]—atomic
transitions in the presence of electromagnetic fields. Among
the advantages of this approach is the elimination of the
artificial boundary and contact conditions necessary in the
Landauer formulation, the inclusion of inelastic processes, and
applications beyond the steady state situation.

With this approach, there are no reservoirs corresponding
to the left and right leads at different chemical potentials
and the voltage drop across the barrier is an output of
the method rather than an input as it is for the Landauer
approach. Instead of the open boundary conditions employed
by the Landauer approach as illustrated in figure 3, periodic
boundary conditions are imposed [74] such that the system is a
closed circuit with no exchange of electrons with semi-infinite
reservoirs (see figure 12). This geometry is a neat way to treat
an open system, avoiding partitioning an infinite system as in
the standard approach.

The approach employs a quantum Liouville equation for
the total Hamiltonian of the system HT, which contains the
device Hamiltonian H0, the phonon bath R, and the electron–
phonon coupling potential V . ST is the density matrix for the
total system. Its time evolution is given by

dST/dt = −i[HT, ST]. (46)

After tracing out the bath degrees of freedom, what results
is the Liouville equation for the reduced density matrix S along
with a term that encapsulates the dissipation in the system
C[S]:

dS/dt = −i[H, S] + C[S]. (47)

Figure 12. Master equation schematic diagram—periodic boundary
conditions, magnetic field induces electric field on ring.

The dissipation term describes collisions with the heat
bath and is given by

C[S] = −
∑

m,n

�mn(Lnm Lmn S + SLnm Lmn − 2Lmn SLnm),

(48)

where L = c†
ncm and �mn are the transition probabilities

obtained through Fermi’s golden rule. To derive explicit
expression, the coupling potential

V =
∑

m,n,α

γ α
m,nc†

ncma†
α + h.c. (49)

is treated perturbatively to second order. The creation and
destruction operators for the electrons/phonons are c†/c and
a†/a respectively. In the coupling matrix elements, γ α

m,n , the
indices m and n refer to the electrons and α refers to the
phonons. �mn is then given by:

D(εn − εm)|γmn|2(n̄εn−εm + 1), εn > εm

D(εm − εn)|γmn|2n̄εm −εn , εm > εn .
(50)

The electric field is imposed on the system through the addition
of a time-dependent vector potential a(t) in the Hamiltonian.
Gauge transformations are then performed periodically to
set the vector potential to zero, otherwise the Hamiltonian
would grow indefinitely leading to numerical instability in
the implementation. One of the problems with previous
attempts to use a master equation formulation within this set-
up is the apparent current continuity violation. But it can be
shown that current continuity is maintained once the dissipative
contribution to the current is considered [74]. The equation of
motion for the time-dependent density when propagating the
system under the master equation is given by

d〈n(r)〉
dt

∣
∣
∣
∣
t=0

= − � 〈 j (r)〉 + Tr(n(r)C[S]S̄). (51)

The last term in this equation is the contribution due to the
dissipative part of the master equation and so the total current
is then given by the standard expression using the current
operator plus a dissipative part due to the propagation of the
system under the master equation:

〈 jT(r)〉 = 〈 j (r)〉 + 〈 jD(r)〉. (52)
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Figure 13. Potential for the DBRTS. Top panel—no applied external
field, middle panel—external field for the case of low dissipative
coupling, γ0. The bottom panel shows the total current (solid line),
the Hamiltonian current (short dashed line) and the dissipative
current (dashed line).

The general many particle formulation must be simplified
to an effective single particle form to be of any use in
practice. The many-body density matrix S that satisfies the
Liouville equation for a Hamiltonian H , must be rewritten in
an effective single-particle description such that the resulting
single-particle density matrix SS is in terms of the eigenstates
of HS. These eigenstates are the equilibrium single-particle
eigenstates and are related to SS via the expression SS =∑

lm flm |l〉〈m|. The density functional formulation which
maps a system of interacting particles into one of non-
interacting particles with the same density is a natural direction
to proceed. In analogy with the Hohenberg–Kohn theorem for
ground-state DFT and the Runge–Gross theorem for TDDFT,
it can be proven that for a fixed electron–electron interaction,
a given C[S] and an initial density matrix S0, the potential
is uniquely determined by its time-dependent density n(rt).
A single-particle form of equation (47) can be recovered by
applying perturbation theory for a weak interaction between
the non-interacting electrons and the phonons in the bath,
tracing out the irrelevant degrees of freedom, and adding the
Hartree potential to the single-particle Hamiltonian. What
results is a single-particle form of the master equation with
a Kohn–Sham version of C[S] and a single-particle form of
the density matrix expressed in the basis of the equilibrium
single-particle eigenstates indexed by n, m. If the expansion
coefficients are related to the many-body density matrix S via
fnm = tr[Sc†

mcn], then the single-particle master equation can
be written in terms of the single-particle eigenstates:

d fnm

dt
= −i

∑

p

[Hnp(t) f pm − fnp Hpm(t)]

+ (δnm − fnm)
∑

p

(�np + �mp) f pp

− fnm

∑

p

(�pn + �pm)(1 − f pp). (53)

In addition, the parameters in the dissipative part of the Kohn–
Sham master equation (see equation (50)) can be in principal

Figure 14. Hysteresis effects for a DBRTS device as demonstrated
through I–V plots for two different values of dissipative coupling γ0.
Lower γ0 is associated with a more pronounced hysteresis.

obtained from ground-state DFT linear response calculations,
thereby eliminating the need for any empirical parameters.

5.1.3. Master equation results. The master equation
approach is currently under development, but some initial
results for test systems have been calculated [120, 121]. The
first model tested with the master equation approach was a
simple 1D double barrier resonant tunnelling system (DBRTS).
Well known results familiar to the experimental community
were derived for a DBRTS and show that the effect of inelastic
collisions, accounted for in the master equation formulation, is
important in understanding the behaviour of these devices.

Among the approximations made for the phonons in
this model calculation are, that their density of states has a
parabolic dependence given by D(ω) ≈ ω2. Furthermore, the
coupling between levels m and n is set to a constant γmn = γ0.
In the top two panels of figure 13, results for the potential in
the absence of a field and in the presence of a field with low
dissipative coupling γ0 are given. Results are similar to the
results from the Landauer formulation except for the following
important points.

The voltage drop across the device is an output of the
calculation rather than an input and there can be seen a small
voltage drop across the wire as well, but this is soon neutralized
by screening effects.

The bottom panel of figure 13 displays the total current
derived. In keeping with the constraints of current continuity,
the total current (solid line) is constant within numerical error
due to cancellation between the Hamiltonian current (short
dashed line) and the dissipative current (long dashed line). It
should also be noted that the dissipative current is larger at the
contact points, indicating that these are the sites of local Joule
heating.

The master equation approach also predicts the hysteresis
effects of a DBRTS as demonstrated in figure 14. At low
dissipative coupling γ0, the hysteresis is much more evident
than at higher values of γ0. For stronger dissipative coupling,
the resonance peak also shifts towards lower voltages.
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Figure 15. Electron occupation of the resonant level in a DBRTS as
given by the diagonal elements of the density matrix in the steady
state. A higher bias leads to non-linear effects as evidenced by
stronger deviations from the unperturbed Fermi–Dirac distribution.

Figure 16. Three atom gold chain: supercell geometry showing the
atomic wire connected to two gold electrodes (Au 111 surfaces). The
dark atoms indicate the region where dissipative coupling is present.
Periodic boundary conditions are applied in all directions. The lateral
interaction between a wire and the nearest periodic images has
negligible effect on the current.

In figure 15, the electron occupation of the level is plotted
for different values of the applied bias. At higher bias, the
distribution deviates from equilibrium and exhibits a bump in
the tail that points to charging of the resonant level. This
charging is the origin of the bistability and the hysteresis
observed in DBRTs. The bistability arises from the non-
linearity associated with the Hartree potential. The finite
current for voltages above the resonance peak stems from the
inclusion of dissipation. In the absence of dissipative effects
the current would go down to zero the moment the resonant
level becomes fully occupied and the broadened level no longer
overlaps with the Fermi level of the lead. When dissipation is
included, electrons can relax into the leads leading to a finite
current for bias voltages above the resonance. The dissipative
coupling also controls the size of the hysteresis effect.

5.1.4. Chains of gold atoms. Further calculations within
the master equation approach have studied electronic transport
through a 3 atom gold wire sandwiched between two Au(111)
surfaces [121]. Figure 16 shows the unit cell of the periodic
system used in the calculations. Four layers of gold atoms per
side are included as the contacts. Dissipation is applied in the
three outermost atomic layers only. Again, the phonon density
is assumed to be parabolic and the coupling takes the form of
γi j = γ 〈i |V | j〉 where γ sets the strength of the dissipation.

In this application, where a very small periodically
separated cell was used, a very large dissipative coupling was
necessary to force a steady state (this was obtained by imposing

Figure 17. Calculated I–V characteristics of a 3 atom gold wire.
The black dots are the master equation results. The dashed line
indicates the characteristics corresponding to one quantum of
conductance. The error bars reflect the fluctuations of the
Hamiltonian current in the supercell which measure deviation from
current continuity in the numerical calculation.

Figure 18. 3 atom gold chain—potential: total potential (including
external potential, and induced Hartree and exchange–correlation
potential) averaged over planes perpendicular to the wire. The
external potential in the supercell is given, for illustrative purposes,
in the position gauge (which does not satisfy the periodic boundary
conditions). The black dots indicate the position of the atomic planes
in the slab, whereas the red dots indicate the atoms of the wire. The
total potential is essentially flat in the electrodes. The large drop
across the wire is due to the contact resistance.

one quantum of conductance at once specific value of the
applied bias). This leads to an unphysically large dissipative
current. The strength of the dissipative coupling can be reduced
with increasing system size, eventually reaching its physical
value for cells that are large compared to the electron–phonon
mean free path. Under those conditions the Hamiltonian
current dominates. It was found that a more physical
behaviour of the I –V characteristics is obtained, when only
the Hamiltonian current is used to model the physical current.
Neglect of the dissipative current in this system is further
supported by the fact that the current continuity violation of
the Hamiltonian current is weak (see figure 17).

The calculated I –V -characteristics, shown in figure 17
reproduces well the linear behaviour measured experimen-
tally [2, 3, 5]. In figure 18 we plot the total (external plus
induced) potential across the device. The potential drops oc-
curs mainly across the length of the Au wire. Only a small
portion of the potential drop occurs inside the leads. We would
expect no potential drop at all inside a perfect metal, the small
observed drop is due to the dissipation in the three outermost
atomic layers of the leads.
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5.2. TDDFT–NEGF

Another method that avoids the use of two external chemical
potentials with an artificial partitioning and manages to obtain
a steady current in transport calculations is the exact non-
equilibrium Green’s function approach using time-dependent
density functional theory (TDDFT) [75–77, 122, 123]. The
system begins in thermodynamic equilibrium in its ground
state and the leads and device are coupled. A time-dependent
perturbation is imposed deep inside the leads, such that the
potential exhibits a step somewhere inside the molecule.

The method applies the NEGF Keldysh formulation to the
time-dependent KS equations, i.e., to a set of non-interacting
particles yielding the correct density. The time evolution of the
system is then described by the KS equations of TDDFT

i
̇S(r, t) = HS(r, t)
S(r, t), (54)

where HS(r, t) is the time-dependent KS Hamiltonian, and

S(r, t) is the KS wavefunction. Using the continuity equation
∂/∂ t n(r, t) = −∇jS(r, t) for the KS current density jS(r, t)
this produces the correct time-dependent current through the
device:

I (t) = −
∫

d3r
d

dt
n(r, t) (55)

where the integral is over some cross-section through the
molecule. In NEGF, the density can be expressed in terms of
the lesser Green’s function:

n(r, t) = −2iG<(r, t; r, t) (56)

which in turn can be calculated from equations of motion
for the non-interacting system. To solve the non-interacting
problem, the system is partitioned into the molecule (C),
and left/right leads (L, R) as in the standard approach (see
section 2.3). The KS Hamiltonian can then be written as a
3 × 3 block matrix, yielding for the time evolution

i
∂

∂ t

⎡

⎣

L


C


R

⎤

⎦ =
⎡

⎣
HLL HLC 0
HCL HCC HCR

0 HRC HRR

⎤

⎦

⎡

⎣

L


C


R

⎤

⎦ , (57)

where 
α(r, t) is the KS wavefunction projected onto left/right
lead (L, R) and the molecule region (C), respectively.

For the left and right lead (α = L, R), we can, using
the lead Green’s functions gα (see description in section 2.3),
obtain an explicit solution for the projected wavefunctions:


α(t) = igα(t, 0)
α(0) +
∫ t

0
dt ′gα(t, t ′)HαC
C(t ′). (58)

gα is defined via (id/dt − Hαα(t))gα(t, t ′) = δ(t − t ′)
with the appropriate boundary conditions gα(t†, t) = −i and
gα(t, t†) = 0.

Using this, we can rewrite the expression for the molecule
region as

i
∂

∂ t

C(t) = HCC(t)
C(t) +

∫ t

0
dt ′�(t, t ′)
C(t ′)

+ i
∑

α=L,R

HCαgα(t, 0)
α(0). (59)

where

�(t, t ′) = HCL(t) gL(t, t ′) HLC(t ′)
+ HCR(t) gR(t, t ′) HRC(t ′) (60)

is the self-energy accounting for coupling to the leads as
described in section 2.3. Thus equation (59) yields, in principle
exactly, the time evolution of the molecular wavefunction
in the presence of a current through the leads. It is non-
Hermitian, as it describes electrons flowing from left to right.
The solution for the wavefunction of the central region is
obtained by propagating an initial state, i.e. the ground state
of the extended system in equilibrium, which is obtained in
a fashion analogous to the standard approach. For the actual
propagation, transparent boundary conditions are imposed at
the lead interfaces and a generalized Cayley method is used
(see [123] for details).

The feasibility of the scheme has been tested on simple
1D systems. These calculations demonstrate the independence
of the steady current on the history, and show a variety of
features, such as non-monotonic dependence of current on bias,
and larger transient currents than steady state currents. First
applications of this approach include: (i) the study of the role of
bound states in transport [124]. Here oscillations in the density
and the TDDFT KS potential have been observed, the system
does not evolve towards a steady state. (ii) The coupling to
nuclei [125]. However, these are all non-interacting problems,
and so have not tested the procedure when interaction plays a
roll.

An important issue of the formalism is whether or not a
steady current can arise in the absence of any dissipation. For
non-interacting electrons (e.g. the electrons in the KS system),
it has been found a steady current develops if

(1) the single-particle Hamiltonian becomes time-independent
as t → ∞,

(2) the electrodes form a continuum of states, i.e., are infinite,
(3) local density of states on the molecule is smooth.

These all appear reasonable conditions. Furthermore, the
steady current is independent of the history of the turning on
of the potential step, if the t → ∞ Hamiltonian is.

The crucial point for the steady current is the second one.
In the presence of a continuum of states, even non-interacting
electrons dephase and a steady current develops. This is the
mechanism for achieving a steady current in this approach, and
makes dissipation to phonons or many-body scattering effects
unnecessary. A continuum of states requires infinite electrodes,
but these are then implicitly included in source and sink terms
in the resulting equations.

5.3. Master equation versus TDDFT–NEGF

Both the master equation approach and the TDDFT–NEGF
approach go beyond the standard approach. Each begins
from a situation for which we have a basic theorem proving
a functional dependence of the potential on the density, and
from which the Landauer formula can be derived, at least in the
case of non-interacting electrons. They clearly yield different
results in cases where their conditions differ, such as when
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dissipation is strong in the master equation, but it is as yet
unknown if they differ when applied to the same situation (and
if they do, which one is ‘correct’). In this section, we compare
and contrast the two different approaches.

Basic variable: In the master equation approach, because
the system experiences a solenoidal magnetic field and periodic
boundary conditions are used, the basic variable is the current
density. In contrast, the TDDFT–NEGF approach has been
developed using the density itself as the basic variable.
While this is more familiar within DFT, the current allows
development of simple approximations such as Vignale–Kohn,
yielding simple corrections to the conductance.

Boundary conditions: Almost all present calculations
are performed on localized systems embedded between two
electrodes, using localized basis sets, and this is also true for
TDDFT–NEGF. The master equation approach both requires
and allows use of plane-wave codes, and so can make it much
easier to adapt present solid-state codes for use in transport
calculations.

Fundamental theorems: TDDFT–NEGF is based on the
Runge–Gross theorem, which applies only to finite systems.
Yet the leads must be infinite to produce the required
dephasing. This is an inconsistency in the approach whose
implication is debatable. The master equation, on the other
hand, required proving the Runge–Gross theorem for the
master equation instead of the time-dependent Schrödinger
equation, and so requires introducing new functionals. These
may (or may not) reduce to the standard ones of TDCDFT in
the limit of weak dissipation.

Need for dissipation: The TDDFT–NEGF approach
demonstrates that a steady current can arise without explicit
dissipation mechanisms, once the leads are infinite. The master
equation approach may well reduce to the same result in the
limit in which the ring size is very large and the dissipation
small, but this has yet to be demonstrated. If so, they become,
in that limit, simply two different procedures for finding the
same result. If not, one might well be correct for molecular
conductance, the other not.

Weak bias: With small dissipation, the master equation
produces the same conductance in the zero bias limit as
the Kubo response [74], and therefore includes the XC
corrections to the Landauer formula as seen in section 4.4.
A similar result can be derived from the TDDFT–NEGF
formula [122], although couched in DFT terms. Thus
the formalisms agree in the limit of weak bias and small
dissipation, even for interacting electrons. For the description
of Joule heating effects and phonon scattering, which are
not easily incorporated into the TDDFT–NEGF approach, the
master equation formalism provides a natural framework.

6. Summary

In this brief, non-comprehensive review, we have critically
examined the present state of the art of DFT calculations of
transport through single molecules. Our findings are:

• Even the steady state of current flowing through
a molecule is not included by the basic theorems
establishing ground-state DFT.

• The commonly used approximation of ground-state DFT
in the Landauer formula, which we dub the standard
approach, has a variety of limitations, making it inexact,
even if the exact ground-state functional were known and
used.

• Standard density functional approximations, such as LDA,
GGA, or hybrids, are insufficiently accurate to treat
molecules weakly coupled to leads, and likely produce
large overestimates of the current. This effect might be the
origin of the overestimates relative to experiment. Orbital-
dependent functionals, such as exact exchange or self-
interaction corrected LDA (LDA-SIC), should perform
much better.

• The standard approach is only a Hartree-level theory for
the conductance, and neglects non-local XC corrections
to the conductance. This is demonstrable in the case of
weak bias. Either orbital-dependent or current-dependent
functionals are needed to even estimate these corrections.

• For finite bias, several approaches have been developed
that are within time-dependent DFT frameworks, thus
addressing the problem of the inadequate ground-state
approximation. Two of these have been described in this
review. (i) The master equation approach which includes
dissipation to phonons. (ii) The TDDFT–NEGF formalism
which does not have the need for dissipation. Connections
are being developed between the two, and time will tell
which is more practical, reliable, or relevant.

Open questions for both new approaches and any other
DFT treatments include the following:

• Do they agree with the Kubo response weak bias limit
discussed in section 4.4? Both new formalisms do this.

• At finite bias, which effects are included or not in each
approach?

• At finite bias, in what limits do they agree or disagree with
each other and with the standard approach? We already
know that within ALDA, all give the same answer as the
standard approach, but expect differences with non-local
non-adiabatic functionals.

• Does one always approach a steady state, and is it unique?
The hysteresis seen in model calculations with the master
equation is an example of more than one steady solution.

• Is there a dependence on how the potential is turned on?
Recently, bound states of the molecule have been shown
to lead to infinitely oscillating contributions to the current
in model calculations using the TDDFT–NEGF approach,
when the turn-on is non-adiabatic. Do these survive in an
interacting system?

• Are there infinite memory effects in the time-dependent
Kohn–Sham potential? These are logically possible, and
might even be necessary, to reproduce the physics.

• Exactly what features of these theories are needed to
reproduce strongly correlated effects such as Coulomb
blockade, and is there any chance to model such features?

On the other hand, the present Landauer-type calculations
(the standard approach) yield the correct steady solution to the
more sophisticated approaches when the functional is local in
time and space (see section 4.4), and this may be sufficient for
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many purposes. Only more demanding calculations (be they
time-dependent DFT, non-local static DFT, or CI or GW ) and
better characterized experiments can tell us what is important
to reliable first-principles predictions of the conductance of
single molecules.
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