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The asymptotic behavior of aN-electron ground-state wave function is analyzed, as one electron
wanders far from the system. Implications for the one-matrix and pair density are described. The
asymptotic behavior currently discussed in the literature, in which the remaiNirdlL] electrons

relax to their ground state, is generalized to the case whereNhelj-electron ground state is
degenerate. Infinitely long-ranged correlations are reported, in which the seldctet) {electron

ground state depends upon the direction along which one electron wandered off. We correct a
standard limit for the one matrix. Numerical and analytic studies of accurate correlated wave
functions illustrate and support the standard asymptotic behavior for the nondegenerate case and its
generalization derived here. We extract the-{1)-electron density from the correlatddelectron

wave function. We also discuss the question how large the separation of one electron must be to
realize the limiting behavior. €1996 American Institute of Physid$$0021-960806)01531-7

I. INTRODUCTION AND SUMMARY OF CONCLUSIONS upon the coordinates of théth particle. If the ground state
) ) of the (N— 1)-particle system is degenerate, an infinitesimal

The accurate calculation of ground-state properties Oferrhation causes theN( 1)-particle system to switch
atoms and molecules is a major goal in quantum chemiStry from one degenerate state to another. The wave function of
and in density functional theoryy” We focus on the asymp-  he (N—1)-particle system never becomes independent of
totic behavior of the ground-state wave functiinas one e girectionr,/r, in which theNth particle wanders away.
spatial coordinate becomes large compared to thg extent @xpressions similar to Eq1) have already appeared in the
the system. Early work on the asymptotic behavior of th‘?iterature,lz‘l“ but these neglect the parametric dependence
wave function yielded upper bounds for the electron density) , xy . The asymptotic correlation between th¢h particle

. _11 . . .

and wave func’uoﬁ, but we derive equalities. and the (N—1)-particle system is prefigured in the work of

The motion of an electron far from nuclei occurs on ayjisieruk® and Slameet al.**1” who found an angular de-
different time scale from the motion of electrons close topendence of the asympto,tic exchange hole in the noninter-
nuclei. The electron loses kinetic energy and slows down 35cting neon and carbon atoms. However, because they used

it wanders away. The remainindi¢-1)-electrons have time  jeqenerate 2and 2p orbitals, they also found an unphysical
enough to adjust themselves to the position of the dlstar‘gp hybridization.

electron. Thus with increasingy, the remaini;gd\frgz 1)- The asymptotic behavior of Eql) as discussed in the
electron system collapses towards its ground state ™. [In - resent paper leads to unexpected results for density matri-
some cases, e.g., when the total spins ofNh@nd N—1)- o5 e focus on those matrices which contribute to the

electron systems differ by more than 1/2 unit of angular mo
mentum, the ground state of the {- 1)-electron system may
not be “accessible?>*3from that of theN-electron system L[ a2 , .

via removal of one electron. In these cases, it should be E=~3 f drve, y(r.r )|r':r+f d°r p(r)v(r)
understood tha¥’N ! is the lowest-energy accessible eigen-

state of the N—1)-electron systenh.The asymptotic sepa- +} f & d¥r P(r,r")
ration of theN-particle system allows us to write the leading- 2 [r—r'|
order term of the ground-state wave function of the
N-particle system as

‘ground-state energy of tHé-particle system

, @

where y(r,r’) is the spin-averaged one-particle density ma-
trix, andP(r,r") is the pair density, defined as the probability

lim W(xq,...Xn) = VPOXN)/NEN (X, oxn— )X, density for finding an electron atand a second electron at
rN— r’, so that

()
wherex; = (r;,0;) denotes the spatial and spin coordinates of J d3r’J d3rP(r,r')=N(N—1). 3)

the ith electrons,p is the electron density, and the curly

brackets indicate a parametric dependence of the grounthe on-top valueP(r r) is very accurately given by the local
state of the K- 1)-particle systemPN " (x;,..xy_1){Xn}  spin density approximatiof:’® while expressions for

P(r,r+u) asu—0 have guided the construction of trial wave

dpermanent address after July 1, 1996: Dept. of Chemistry, Rutgers, Canﬁuncggni which properly account for the electron—electron
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Ernzerhof, Burke, and Perdew: Long range behavior of wave functions

Earlier investigation$'?® of the large|r’ —r| asymptotic

behavior of the pair density have neglected the consequences

of degeneracy. The intuitive expectation th&t,r’) factor-
izes into a product oN-electron ground-state densities

lim  P(r,r')=p(r)p(r’) (4)

[r —r]—o
[or equivalently that the pair distribution function
g(r,r")=P(r,r)p(r)p(r’) tends to unity’® as it does for a
homogeneous electron das incorrect for a finite system
(see Fig. 2 of Ref. 27 The commonly used linf#:?°

lim

[r" —r|—o

P(r,r")=p(r)p(r’) : (5)

Lt
N

[which satisfies the exact normalization condition of B]]
is also inexact, even when th&l{-1)-electron ground state
is nondegenerate. We show that

lim P(r,r")=p(r)pN"1(r"H{f},

r—oo

(6)

2799

HrQr ) 0.5
plr)

AQ[radians]

FIG. 1. Angular dependence of the spin-averaged one-particle density ma-
trix y(r,Q,r,Q") for the Ne atom. The values of the top to the bottom
dashed curves correspond to 2, 3, andy4 respectively. The curves are
scaled by the electron density at the correspondinglues. The curve at the
very bottom is an exact cosine curve.

Our work has no direct implication for the controversy
over the extended Koopmans' theoréfi>**since that con-
troversy arises even when thil{ 1)-electron ground state
is nondegeneraf®.

The central object in the exact Kohn—-Sham density
functional theory™ is the densityp,(r,r’) at r’ of the

wherepN~1(r"){f} is one of the degenerate ground-state denexchange-correlation hole surrounding an electronr at
sities of the N — 1)-electron system, with the choice depend-Levy, Perdew, and Sahiihave derived its asymptotic be-

ing parametrically upon the direction=r/r. Thus a com-

havior [Eq. (29) of Ref. 12 as the electron moves off to

plete factorization in the asymptotic limit is not generally infinity. In light of Eq. (6), their result must be generalized to

possible, contrary to earlier claim$?® The asymptotic be-
havior of Eq.(6) is illustrated in Fig. 3-5, and theN(—1)-
electron ground-state density is extracted fréf via Eq.
(6).

We also find a nontrivial degeneracy effect #r,r'),
which appears in Eq(2). The validity of the asymptotic
expression

lim  y(r,r")=~p(r)vp(r’),

rr’—w

@)

as currently given in the literatuté®3°~32s |imited to non-
degenerateN— 1)-particle systems(In Ref. 32 it is incor-

allow the density of theN—1)-electron system to depend
upon the directiomr along which the electron is removed.
Similar remarks can be made for the exchange hole. Ex-
change and exchange-correlation holes for atoms are dis-
played in Ref. 37. The implications of our work for density
functional approximations will be discussed elsewHére.

II. ASYMPTOTIC BEHAVIOR FOR A CLOSED-SHELL
ATOM WITH DEGENERATE (N-1)-PARTICLE
STATES

We illustrate the asymptotic behavior of E(.) using

rectly assumed that, because all natural orbitals decay witthe Ne atom, where the high symmetf}s for the atom,

the same exponent,they all become equal at large More
generally, from Eq(1),

lim  y(r,r")=\p(r)Jp(r'"F(r,r"),

r,r’~>oc

8
where

F(F,F’): ||m fdxl"'dXN_l \I,Nil*(xl...XN_l){r,(T}

r,r’ —o

X‘PN_l(Xl,...XN_l){r,,U},

©)

and o denotes the majority spin channelras «. F reduces
to 1 when the unit vectors andr’ are equaland could also
be calculated from the exact Kohn—Sham wave function

2P for the positive ion of the system allows a simple deri-
vation. Considery—o, and choose the axis alongry,.
Since theN-particle wave function has zero total angular

1 2 3 1 5
AN
0.975 Be
0.95 \\ 4
AN N /
0.925 \ r=28 / AQ[radians]
A2 W\ /
p(r) ° \\ S A
0.875 N~ a4
0.85 N //
. N _
0.825
r=2.019

This behavior is illustrated by Figs. 1 and 2 within. DespiteF!G. 2. Angular dependence of the spin-averaged one-particle density ma-

the angular factoF in Eg. (8) the simple von Weizzker
expressioff for the kinetic energy remains valid in the tail
region of the electron density.

trix y(r,Q,r,Q)") for the Be atom. The values of the short- to the long-
dashed curves correspond to 2.019, 4, 6, angd &espectively(The larger
the dash, the greater the The curves are scaled by the electron density at
the corresponding values.
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2800 Ernzerhof, Burke, and Perdew: Long range behavior of wave functions

momentum [ =0), theNth particle must be in a state with o oy(r, Q")
=1 andm=0 to have nonzero amplitude along the quanti-  lim TICOSU -AQ), (14
zation axis, i.e., alongy . To conserve total angular momen- =

. 2 .
tum, the wave function of the '_\T_‘é P) ion must also have \yhich has been verified by calculating the overlap of two
m=0. Furthermore, the probability amplitude for finding the spherical harmonic¥™(Q) andY™(Q+AQ) for 1=1,...,5.

H : 1/2,
Nth electron aixy is proportional top~'“(xy). Therefore, The dependence of(r,r’) on the angle between andr’
ives rise to contributions to both the kinetic and exchange
\I’(Xl,...,XN): \/p(XN)/N ZPZ(Xl""'XN*l) g g

energies.
= p(xy)/N ZP(XL---,XNA){XN}- (10) Neglecting this parametric dependence, &g.implies
The parametric dependence of thBl-{1)-particle wave lim —3V2 y(r,r )= = — 3pY4r) V2p(r). (15
function?P(xy,... Xy_1){Xx} is such that the “hole” in the r—e

Ne™ ion is always oriented towards tiéth electron. This

orientation of the N—1)-particle system persists, no matter

how large the distance between tNéh particle and the ion.

These considerations apply to all closed-shell atoms, in 1

which the ion is not spherical. More generally, the paramet- Tw[P]=§f d3r|Vp(r)|?/p(r), (16)

ric dependence is not a consequence of the symmetry of the

system but of degeneracies of thh1)-particle ground j.e., the von Weizszker approximatiori* This argument has

state. been usetf to show that the von Weizsker approximation
becomes exact in the tail region of the electron density. Our
findings show that, for a nonspherical ion, the one-matrix
does not factorize, but instead obeys E). The asymptotic

lll. ASYMPTOTIC BEHAVIOR OF REDUCED DENSITY ~ Kinetic energy density then becomes
MATRICES

After a simple integration by parts, and extending the result
for all space, we find the non-interacting kinetic energy to be

; _ _1.1/2 2 1/2 w 200 o1
We define the spin-averaged second-order density matrix r“_r:rl t(r) 2p (N)VEp () + 2r? (LR ) e

by 17

where we have used the identity V2= (1/r)

X (9%19r?)r —(L2)/(r?), with L as the angular momentum
operator. However, since the second term above is higher
order in 1f, our results verify that the von Weizskeer ex-

yz(rl,rz;ri,ré):N(N_l)f dO'l d0'2 dX3,...,dXN

X‘I]*(rl,gl,rz,o'z,x:g,...,XN)

XW(r] 01,15 ,02,Xg,... XN)- (11)  pression yields the right asymptotic kinetic energy density,
even when the ion is degenerate.
The one-particle density matrix is then The asymptotic behavior of the pair density is found by
inserting Eq.(1) into Egs.(11) and (13), yielding Eq. (6),
y(r,r’)=f a3, ya(r.roir ry), (12 With
and the pair density is pN_l(r’){fN}=(N—1)j dx,,...,dxy_; do
P(r,r,):’)/z(r,r,;r,r,). (13) Xq,Nil*(r,,U,Xz,...,XN_l){rN,(TN}
Most of the properties of interest to quantum chemists, e.g., XUNTLr 0%, Xn— )T ony, (18)

the energy, the charge distribution, or other one-electron ) o o o

properties, can be calculated from these density matrix elé¥here oy is the majority spin in the limitry—o. Thus,

ments. contrary to expectatiorf$,the pair density does not factorize
Because the asymptotic behavior of the wave functiorf™© @ product ofN-particle-system electron densities.

discussed in the literature omits the parametric dependence 'Ne limit of Eq.(6) obeys the sum rule of E¢3) but is

of the (N—1)-particle system on the coordinate of then ~ NOt properly symmetric, i.e.P(r,r’)#P(r',r). However, a

electron, it is generally believed thatr,r’) satisfies Eq. Symmetrized model can be constructed which obeys the

(7).532We find instead Eqg8) and(9). For the Ne atom, the S&me sum rule and has the same limit. This model is

overlap between theN— 1)-particle wave functions, which model . 1y s ~, ' a

depends on the anglaQ betweenr andr’ with the Ne PTr.r)=p(r')n(r.i") +p(n)n(r'.F)

nucleus as the apex, behaves like A6k because the Ne

ion hasp symmetry. More generally, when the ionization - (N—-1) n(r,rn(r’,r), (19
takes place out of a subshell with angular momentuyroy
inserting Eq.(1) into Egs.(11) and(12) we obtain wheren(r’,F)=pN"1(r"){f}, and lim .. n(r',F)/p(r’') = 0.
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The results given in this section can be spin decom-
posed, and Eq6) becomes, in an obvious notation,
lim P(r,o',r',o")=p(r,0')pN71(r’,a”){f,o}. (20

r—oo

IV. NUMERICAL INVESTIGATION OF THE
ASYMPTOTIC BEHAVIOR OF GROUND-STATE WAVE
FUNCTIONS

We have derived long-range asymptotic expressions for -3 3
the wave function, the spin-averaged one-particle density r' = (a',0,0)[bokr]
matrix, and the pair density. How relevant are these expres-
s_lons to the problem_ of C(_)nstruct_lng el_ectronlc wave funC-FIG. 4. Asymptotic collapse of the pair density of the neon atom, plotted
tions? To address this point, we investigate accurate COIT&jong the line joining the outer-electron position to the nucleus. The dashed
lated wave functions for several small systems and compareirves are forr=(-3,0,0 and (=5,0,0 a,. The solid curve is
their asymptotic behaviors with the predictions of the pre-47'%p" 1(r){}
ceding section. The numerical wave functions are obtained
from conventional multireference configuration interaction
calculations based on Gaussian basis $Etw. details of the
calculations, see the Appendlix@ he wave functions used for
Ne and Be recover 88% and 92% of the eXacorrelation
energy, respectively.

In order to understand the asymptotic behavior of
¥r,r’), we choose values af=|r|=|r’| and vary the angle

limit where the nuclear chargg goes to infinity, the 2
and 2 orbitals of the four-electron ions become
degeneraté®3*~#! producing aAQ dependence even as
—>OO_)

According to the asymptotic equation for the pair density
of the ground-state wave function, we can also extract the

betweenr andr’ in the range from O to 2 rad. The corre- density of the N—1)-particle system from the pair density

sponding curves for Ne are displayed in Fig. 1. The variousof the N-particle wave function
r values correspond to 2, 3, and 4 bohr. The angular depen- . . P(rr’)
dence of the one-particle density matrix for 6 a, does not pr(riry= I"Tf (1)
differ from the pure cosine curve on the scale of the above o
figure. The curves converge towards the cosine curve prd=or any finite but large, P(r,r')/p(r) gives an approximate
dicted by Eq.(14) and agree with our expectation about the (N— 1)-particle density, and we will refer to this quantity as
overlap of two wave functions witpp symmetry as a func- the “polarized” electron density of theN—1)-particle sys-
tion of the orientation of the states. tem. Figure 3 shows a plot d®(r,r')/p(r) for Be. We see
Since the Be ionization takes place out oflan0 sub- that the & electrons are rather unaffected by the presence of
shell, «(r,r') for the Be atom factorizes as—. However, the fixed electron at the distancewhereas the 2electron is
Fig. 2 shows that this limit is achieved only wherandr’ quite sensitive to the electron at large separation. As ex-
are each extremely large. There is a considerable polarizatigpected, the electron density piles up on the opposite side of
of the Be" ion, which in a first approximation can by de- the Be" ion. The deformation of the ion density vanishes
scribed by mixing p character into the orbital of the Be  very slowly with increasing. The curve labeled=x is just
atom. Thisp character then leads to &) dependence of the density of the free positive ion.
v(r,r") which is noticeable even for rather large (In the

(21)

-3 ) —1 5] 1 2 3

6 r' = (a',0,0)[bohr]
r’ = (2/,0,0)[bohr]
FIG. 5. Asymptotic collapse of the pair density of the neon atom, plotted
FIG. 3. Asymptotic collapse of the pair density of the Be atom. The dashedilong a direction through the nucleus and perpendicular to the line joining

curves are forr=(—6,0,0 and (—-10,0,0 a,. The solid curve is the outer-electron position to the nucleus. The dashed curves are: {or
471 2pNT1(r ). —2,0) and (0,—3,0) a,. The solid curve is 4r'2pN~1(r"){f}.
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TABLE |. Gaussian basis sets and resulting energies for B&, RBe, and Né.

Atom Basis set HF enerdy MCSCF energy Cl energy Correlation energy Exact correlation eRergy
Be 149p4d3f —14.572 99 —14.618 37 —14.663 78 —0.086 43 —0.094 34

Be" 14s9p4d3f —14.277 35 —14.321 40 —0.044 05 —0.047 37
Ne 1469p4d3f —128.546 58 —128.679 49 —128.895 94 —0.349 36 -0.3917

Ne* 14s9p4d3f —127.819 16 —127.909 47 —128.107 16 —0.288 00 —-0.3265

All energies are given in hartree.
PAs taken from Ref. 38.

If the orientation of the ion towards the position of the Foundation under Grants No. DMR92-13755 and DMR95-
electron at infinite distance is not regarded as a polarizatio@1353.
effect, the N& ion is less polarizable than the Béon. We
expect that the oriented and polarized N#ensity converges
rapidly towards the density of the oriented free'Nen. This
is because the energy gap between thetbitals and the 8
orbitals is large compared to thes22p gap in Be. Figure 4 APPENDIX: COMPUTATIONAL DETAILS
shows polarized Nedensities for parallel tor’. Again we _ )
find that theK-shell electron density hardly changes with The calculations reported in the presgg} paper are per-
The calculations for the Ne atom verify that the density offormed with thecoLumsus program systerﬁ.,' which con-
the (N— 1)-particle system is contained in the pair density oft@ins & progran(ucipen) for the construction of the spin-
the N-particle system, even for approximate wave functions@veraged one- and two-particle density matfitesf
To illustrate the anisotropy of the pair densityrat o, we multlreference sm'gle- ant_j double-excitation Cl wave func-
compare the densities in Fig. 4 to polarized densities with tions. The Gau?‘glan basis sets for all the atoms are taken
perpendicular ta’, shown in Fig. 5. The polarization of the from t{heMOLCAS _ba5|§ set library. The basis _sets contained
density of the N— 1)-particle system by thaith electron is therein are described in Ref. 46. The Gaus_5|ans are uncon-
much weaker in this case. The electron density inLtrghell tracted and are transformed to proper spherical components.
is higher than in Fig. 4, since the hole in theelectron ~ 1N€ COLUMBUS program system has been extended by the

density is oriented along the axis connecting the nucleus tB"09r@MCHARGE to perform the real-space analysis of the
the distant electron. spin-averaged one- and two-particle density matrices.

Finally, we consider Hooke’s atom, which consists of The CI calculations for the Be atom are based on a mul-

two electrons bound to a center by a harmonic potential. FoinO_nfigurational Se|f-COHSiS-tent. fieldMCSCP on.e-par.ticle
certain values of the spring constant, analytic solutions ma%?"’_‘s's- The MCSCF expansion includes all configurations ob-
be found to this two-body problef. For k=1/4, W(r,r') ained by distributing two valence electrons in thg, 3s,

= A+ (- rzllz)e,(riﬂg)ﬂ‘/ 479845, Insertion and 2o orbitals of Be. All configurations obtained by distrib-

. ) . uting the four electrons of Be in thesl2s, 3s, and 2
into Egs.(12) and(13) and takingr>1 yields orbitals in all possible ways are used as references in the ClI

y(r,Q,r, Q") p(r)—1+[cofAQ)—1]/r?+ -+ (r—®), calculation. Similarly the Cl wave function for Bevas cal-
(22) culated with a set of reference configurations based on the
same active orbitals as in the case of Be. The one-particle
basis in this case was obtained from a Hartree—FotiK)
P(r,r") r' calculation. The wave function for the Ne atom was deter-
W*l_ZT COgAD) +-+- (r—e), mined with a multireference single- and double-excited ClI
(23)  calculation, where all zero, single, and double excitations of
the eight valence electrons in thes 2ind 3 orbitals are
taken as reference configurations. The orbitals were opti-
mized in an MCSCF calculation, where the eight electrons of
theL shell have been distributed in all possible ways in two

and

where AQ is the angle betweenr and r’, and
N y=e"""*2/(27)32 At r'=v2 [the maximum of
47r'2pN"1(r")] andr||r’, the polarization correction in Eq.

(23) is still significant(10%) atr = 28. orbitals ofs symmetry and six orbitals gf symmetry. The

The gxample; given in this septlon de.monstra'te .that th'game structure of the MCSCF and the Cl wave functions was
asymptotic behavior discussed prior to this work is INCOM- ;564 in the calculation for Neion. Table | shows the size of

Frllete n thfe cat_se Off Ne_,tr?ndBnot al-\|/ er;i/( s’tror;g constraint ofhe Gaussian basis sets and the corresponding HF, MCSCF,
e wave function for either Be or Hooke’s atom. and Cl energies.
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