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The asymptotic behavior of anN-electron ground-state wave function is analyzed, as one electron
wanders far from the system. Implications for the one-matrix and pair density are described. The
asymptotic behavior currently discussed in the literature, in which the remaining (N21) electrons
relax to their ground state, is generalized to the case where the (N21)-electron ground state is
degenerate. Infinitely long-ranged correlations are reported, in which the selected (N21)-electron
ground state depends upon the direction along which one electron wandered off. We correct a
standard limit for the one matrix. Numerical and analytic studies of accurate correlated wave
functions illustrate and support the standard asymptotic behavior for the nondegenerate case and its
generalization derived here. We extract the (N21)-electron density from the correlatedN-electron
wave function. We also discuss the question how large the separation of one electron must be to
realize the limiting behavior. ©1996 American Institute of Physics.@S0021-9606~96!01531-0#

I. INTRODUCTION AND SUMMARY OF CONCLUSIONS

The accurate calculation of ground-state properties of
atoms and molecules is a major goal in quantum chemistry1,2

and in density functional theory.3–5We focus on the asymp-
totic behavior of the ground-state wave functionC as one
spatial coordinate becomes large compared to the extent of
the system. Early work on the asymptotic behavior of the
wave function yielded upper bounds for the electron density
and wave function,6–11 but we derive equalities.

The motion of an electron far from nuclei occurs on a
different time scale from the motion of electrons close to
nuclei. The electron loses kinetic energy and slows down as
it wanders away. The remaining (N21)-electrons have time
enough to adjust themselves to the position of the distant
electron. Thus with increasingr N , the remaining (N21)-
electron system collapses towards its ground stateCN21. @In
some cases, e.g., when the total spins of theN- and (N21)-
electron systems differ by more than 1/2 unit of angular mo-
mentum, the ground state of the (N21)-electron system may
not be ‘‘accessible’’12,13 from that of theN-electron system
via removal of one electron. In these cases, it should be
understood thatCN21 is the lowest-energy accessible eigen-
state of the (N21)-electron system.# The asymptotic sepa-
ration of theN-particle system allows us to write the leading-
order term of the ground-state wave function of the
N-particle system as

lim
rN→`

C~x1 ,...,xN!5Ar~xN!/NCN21~x1 ,...,xN21!$xN%,

~1!

wherexi5(r i ,si! denotes the spatial and spin coordinates of
the i th electrons,r is the electron density, and the curly
brackets indicate a parametric dependence of the ground
state of the (N21)-particle systemCN21(x1 ,...xN21)$xN%

upon the coordinates of theNth particle. If the ground state
of the (N21)-particle system is degenerate, an infinitesimal
perturbation causes the (N21)-particle system to switch
from one degenerate state to another. The wave function of
the (N21)-particle system never becomes independent of
the directionrN/r N in which theNth particle wanders away.
Expressions similar to Eq.~1! have already appeared in the
literature,12–14 but these neglect the parametric dependence
on xN . The asymptotic correlation between theNth particle
and the (N21)-particle system is prefigured in the work of
Nisteruk15 and Slametet al.,16,17 who found an angular de-
pendence of the asymptotic exchange hole in the noninter-
acting neon and carbon atoms. However, because they used
degenerate 2s and 2p orbitals, they also found an unphysical
sp hybridization.

The asymptotic behavior of Eq.~1! as discussed in the
present paper leads to unexpected results for density matri-
ces. We focus on those matrices which contribute to the
ground-state energy of theN-particle system

E52
1

2 E d3r¹ r8
2 g~r ,r 8!ur85r1E d3r r~r !v~r !

1
1

2 E d3r d3r 8
P~r ,r 8!

ur2r 8u
, ~2!

whereg~r ,r 8! is the spin-averaged one-particle density ma-
trix, andP~r ,r 8! is the pair density, defined as the probability
density for finding an electron atr and a second electron at
r 8, so that

E d3r 8E d3rP~r ,r 8!5N~N21!. ~3!

The on-top valueP~r ,r ! is very accurately given by the local
spin density approximation,18,19 while expressions for
P~r ,r1u! asu→0 have guided the construction of trial wave
functions which properly account for the electron–electron
cusp.20–24
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Earlier investigations12,25 of the largeur 82r u asymptotic
behavior of the pair density have neglected the consequences
of degeneracy. The intuitive expectation thatP~r ,r 8! factor-
izes into a product ofN-electron ground-state densities

lim
ur82r u→`

P~r ,r 8!5r~r !r~r 8! ~4!

@or equivalently that the pair distribution function
g~r ,r 8!5P~r ,r 8!/r~r !r~r 8! tends to unity,26 as it does for a
homogeneous electron gas# is incorrect for a finite system
~see Fig. 2 of Ref. 27!. The commonly used limit28,29

lim
ur82r u→`

P~r ,r 8!5r~r !r~r 8!F12
1

NG , ~5!

@which satisfies the exact normalization condition of Eq.~3!#
is also inexact, even when the (N21)-electron ground state
is nondegenerate. We show that

lim
r→`

P~r ,r 8!5r~r !rN21~r 8!$ r̂%, ~6!

whererN21~r 8!$r̂ % is one of the degenerate ground-state den-
sities of the (N21)-electron system, with the choice depend-
ing parametrically upon the directionr̂5r /r . Thus a com-
plete factorization in the asymptotic limit is not generally
possible, contrary to earlier claims.12,25 The asymptotic be-
havior of Eq.~6! is illustrated in Fig. 3–5, and the (N21)-
electron ground-state density is extracted fromCN via Eq.
~6!.

We also find a nontrivial degeneracy effect ing~r ,r 8!,
which appears in Eq.~2!. The validity of the asymptotic
expression

lim
r ,r 8→`

g~r ,r 8!5Ar~r !Ar~r 8!, ~7!

as currently given in the literature5,13,30–32is limited to non-
degenerate (N21)-particle systems.~In Ref. 32 it is incor-
rectly assumed that, because all natural orbitals decay with
the same exponent,33 they all become equal at larger .! More
generally, from Eq.~1!,

lim
r ,r 8→`

g~r ,r 8!5Ar~r !Ar~r 8!F~ r̂ , r̂ 8!, ~8!

where

F~ r̂ , r̂ 8!5 lim
r ,r 8→`

E dx1•••dxN21 CN21* ~x1 ...xN21!$r ,s%

3CN21~x1 ,...xN21!$r 8,s%, ~9!

ands denotes the majority spin channel asr→`. F reduces
to 1 when the unit vectorsr̂ and r̂ 8 are equal~and could also
be calculated from the exact Kohn–Sham wave function19!.
This behavior is illustrated by Figs. 1 and 2 within. Despite
the angular factorF in Eq. ~8! the simple von Weiza¨cker
expression34 for the kinetic energy remains valid in the tail
region of the electron density.

Our work has no direct implication for the controversy
over the extended Koopmans’ theorem,13,33,35since that con-
troversy arises even when the (N21)-electron ground state
is nondegenerate.36

The central object in the exact Kohn–Sham density
functional theory3–5 is the densityrxc~r ,r 8! at r 8 of the
exchange-correlation hole surrounding an electron atr .
Levy, Perdew, and Sahni12 have derived its asymptotic be-
havior @Eq. ~29! of Ref. 12# as the electron moves off to
infinity. In light of Eq. ~6!, their result must be generalized to
allow the density of the (N21)-electron system to depend
upon the directionr̂ along which the electron is removed.
Similar remarks can be made for the exchange hole. Ex-
change and exchange-correlation holes for atoms are dis-
played in Ref. 37. The implications of our work for density
functional approximations will be discussed elsewhere.19

II. ASYMPTOTIC BEHAVIOR FOR A CLOSED-SHELL
ATOM WITH DEGENERATE ( N21)-PARTICLE
STATES

We illustrate the asymptotic behavior of Eq.~1! using
the Ne atom, where the high symmetry~1S for the atom,
2P for the positive ion! of the system allows a simple deri-
vation. Considerr N→`, and choose thez axis alongrN .
Since theN-particle wave function has zero total angular

FIG. 1. Angular dependence of the spin-averaged one-particle density ma-
trix g(r ,V,r ,V8) for the Ne atom. Ther values of the top to the bottom
dashed curves correspond to 2, 3, and 4a0 , respectively. The curves are
scaled by the electron density at the correspondingr values. The curve at the
very bottom is an exact cosine curve.

FIG. 2. Angular dependence of the spin-averaged one-particle density ma-
trix g(r ,V,r ,V8) for the Be atom. Ther values of the short- to the long-
dashed curves correspond to 2.019, 4, 6, and 8a0 , respectively.~The larger
the dash, the greater ther .! The curves are scaled by the electron density at
the correspondingr values.
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momentum (L50), theNth particle must be in a state with
l51 andm50 to have nonzero amplitude along the quanti-
zation axis, i.e., alongrN . To conserve total angular momen-
tum, the wave function of the Ne1(2P) ion must also have
m50. Furthermore, the probability amplitude for finding the
Nth electron atxN is proportional tor1/2(xN). Therefore,

C~x1 ,...,xN!5Ar~xN!/N 2Pz~x1 ,...,xN21!

5Ar~xN!/N 2P~x1 ,...,xN21!$xN%. ~10!

The parametric dependence of the (N21)-particle wave
function2P(x1 ,...,xN21)$xN% is such that the ‘‘hole’’ in the
Ne1 ion is always oriented towards theNth electron. This
orientation of the (N21)-particle system persists, no matter
how large the distance between theNth particle and the ion.
These considerations apply to all closed-shell atoms, in
which the ion is not spherical. More generally, the paramet-
ric dependence is not a consequence of the symmetry of the
system but of degeneracies of the (N21)-particle ground
state.

III. ASYMPTOTIC BEHAVIOR OF REDUCED DENSITY
MATRICES

We define the spin-averaged second-order density matrix
by

g2~r1 ,r2 ;r18 ,r28!5N~N21!E ds1 ds2 dx3 ,...,dxN

3C* ~r1 ,s1 ,r2 ,s2 ,x3 ,...,xN!

3C~r18 ,s1 ,r28 ,s2 ,x3 ,...,xN!. ~11!

The one-particle density matrix is then

g~r ,r 8!5E d3r2 g2~r ,r2 ;r 8,r2!, ~12!

and the pair density is

P~r ,r 8!5g2~r ,r 8;r ,r 8!. ~13!

Most of the properties of interest to quantum chemists, e.g.,
the energy, the charge distribution, or other one-electron
properties, can be calculated from these density matrix ele-
ments.

Because the asymptotic behavior of the wave function
discussed in the literature omits the parametric dependence
of the (N21)-particle system on the coordinate of theNth
electron, it is generally believed thatg~r ,r 8! satisfies Eq.
~7!.5,32We find instead Eqs.~8! and~9!. For the Ne atom, the
overlap between the (N21)-particle wave functions, which
depends on the angleDV betweenr and r 8 with the Ne
nucleus as the apex, behaves like cosDV, because the Ne1

ion hasp symmetry. More generally, when the ionization
takes place out of a subshell with angular momentuml , by
inserting Eq.~1! into Eqs.~11! and ~12! we obtain

lim
r→`

g~r ,V,r ,V8!

r~r !
5cos~ l •DV!, ~14!

which has been verified by calculating the overlap of two
spherical harmonicsYl

m(V) andYl
m(V1DV) for l51,...,5.

The dependence ofg~r ,r 8! on the angle betweenr and r 8
gives rise to contributions to both the kinetic and exchange
energies.

Neglecting this parametric dependence, Eq.~7! implies

lim
r→`

2 1
2¹ r8

2 g~r ,r 8!ur85r52 1
2r

1/2~r !¹2r1/2~r !. ~15!

After a simple integration by parts, and extending the result
for all space, we find the non-interacting kinetic energy to be

TW@r#5
1

8E d3r u“r~r !u2/r~r !, ~16!

i.e., the von Weizsa¨cker approximation.34 This argument has
been used32 to show that the von Weizsa¨cker approximation
becomes exact in the tail region of the electron density. Our
findings show that, for a nonspherical ion, the one-matrix
does not factorize, but instead obeys Eq.~8!. The asymptotic
kinetic energy density then becomes

lim
r→`

t~r !52 1
2r

1/2~r !¹2r1/2~r !1
r~r !

2r 2
~L r

2F~ r̂ , r̂ 8!!r5r8 ,

~17!

where we have used the identity¹25(1/r )
3(]2/]r 2)r2(L2)/(r 2), with L as the angular momentum
operator. However, since the second term above is higher
order in 1/r , our results verify that the von Weizsa¨cker ex-
pression yields the right asymptotic kinetic energy density,
even when the ion is degenerate.

The asymptotic behavior of the pair density is found by
inserting Eq.~1! into Eqs. ~11! and ~13!, yielding Eq. ~6!,
with

rN21~r 8!$ r̂N%5~N21!E dx2 ,...,dxN21 ds

3CN21* ~r 8,s,x2 ,...,xN21!$rN ,sN%

3CN21~r 8,s,x2 ,...,xN21!$rN ,sN%, ~18!

where sN is the majority spin in the limitr N→`. Thus,
contrary to expectations,26 the pair density does not factorize
into a product ofN-particle-system electron densities.

The limit of Eq. ~6! obeys the sum rule of Eq.~3! but is
not properly symmetric, i.e.,P~r ,r 8!ÞP~r 8,r !. However, a
symmetrized model can be constructed which obeys the
same sum rule and has the same limit. This model is

Pmodel~r ,r 8!5r~r 8!n~r , r̂ 8!1r~r !n~r 8, r̂ !

2
N

~N21!
n~r , r̂ 8!n~r 8, r̂ !, ~19!

wheren~r 8,r̂ !5rN21~r 8!$r̂ %, and limr 8→` n(r 8, r̂ )/r(r 8) 5 0.
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The results given in this section can be spin decom-
posed, and Eq.~6! becomes, in an obvious notation,

lim
r→`

P~r ,s,r 8,s8!5r~r ,s!rN21~r 8,s8!$ r̂ ,s%. ~20!

IV. NUMERICAL INVESTIGATION OF THE
ASYMPTOTIC BEHAVIOR OF GROUND-STATE WAVE
FUNCTIONS

We have derived long-range asymptotic expressions for
the wave function, the spin-averaged one-particle density
matrix, and the pair density. How relevant are these expres-
sions to the problem of constructing electronic wave func-
tions? To address this point, we investigate accurate corre-
lated wave functions for several small systems and compare
their asymptotic behaviors with the predictions of the pre-
ceding section. The numerical wave functions are obtained
from conventional multireference configuration interaction
calculations based on Gaussian basis sets.~For details of the
calculations, see the Appendix!. The wave functions used for
Ne and Be recover 88% and 92% of the exact38 correlation
energy, respectively.

In order to understand the asymptotic behavior of
g~r ,r 8!, we choose values ofr5ur u5ur 8u and vary the angle
betweenr and r 8 in the range from 0 to 2p rad. The corre-
sponding curves for Ne are displayed in Fig. 1. The various
r values correspond to 2, 3, and 4 bohr. The angular depen-
dence of the one-particle density matrix forr56 a0 does not
differ from the pure cosine curve on the scale of the above
figure. The curves converge towards the cosine curve pre-
dicted by Eq.~14! and agree with our expectation about the
overlap of two wave functions withp symmetry as a func-
tion of the orientation of thep states.

Since the Be ionization takes place out of anl50 sub-
shell,g~r ,r 8! for the Be atom factorizes asr→`. However,
Fig. 2 shows that this limit is achieved only whenr and r 8
are each extremely large. There is a considerable polarization
of the Be1 ion, which in a first approximation can by de-
scribed by mixing 2p character into the 2s orbital of the Be
atom. Thisp character then leads to aDV dependence of
g~r ,r 8! which is noticeable even for rather larger . ~In the

limit where the nuclear chargeZ goes to infinity, the 2s
and 2p orbitals of the four-electron ions become
degenerate,18,39–41 producing a DV dependence even as
r→`.!

According to the asymptotic equation for the pair density
of the ground-state wave function, we can also extract the
density of the (N21)-particle system from the pair density
of theN-particle wave function

rN21~r 8!$ r̂%5 lim
r→`

P~r ,r 8!

r~r !
. ~21!

For any finite but larger , P~r ,r 8!/r~r ! gives an approximate
(N21)-particle density, and we will refer to this quantity as
the ‘‘polarized’’ electron density of the (N21)-particle sys-
tem. Figure 3 shows a plot ofP~r ,r 8!/r~r ! for Be. We see
that the 1s electrons are rather unaffected by the presence of
the fixed electron at the distancer , whereas the 2s electron is
quite sensitive to the electron at large separation. As ex-
pected, the electron density piles up on the opposite side of
the Be1 ion. The deformation of the ion density vanishes
very slowly with increasingr . The curve labeledr5` is just
the density of the free positive ion.

FIG. 3. Asymptotic collapse of the pair density of the Be atom. The dashed
curves are for r5~26,0,0! and ~210,0,0! a0 . The solid curve is
4pr 82rN21~r 8!.

FIG. 4. Asymptotic collapse of the pair density of the neon atom, plotted
along the line joining the outer-electron position to the nucleus. The dashed
curves are for r5~23,0,0! and ~25,0,0! a0 . The solid curve is
4pr 82rN21~r 8!$r̂ %.

FIG. 5. Asymptotic collapse of the pair density of the neon atom, plotted
along a direction through the nucleus and perpendicular to the line joining
the outer-electron position to the nucleus. The dashed curves are forr5~0,
22,0! and ~0,23,0! a0 . The solid curve is 4pr 82rN21~r 8!$r̂ %.
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If the orientation of the ion towards the position of the
electron at infinite distance is not regarded as a polarization
effect, the Ne1 ion is less polarizable than the Be1 ion. We
expect that the oriented and polarized Ne1 density converges
rapidly towards the density of the oriented free Ne1 ion. This
is because the energy gap between the 2p orbitals and the 3s
orbitals is large compared to the 2s–2p gap in Be. Figure 4
shows polarized Ne1 densities forr parallel tor 8. Again we
find that theK-shell electron density hardly changes withr .
The calculations for the Ne atom verify that the density of
the (N21)-particle system is contained in the pair density of
theN-particle system, even for approximate wave functions.
To illustrate the anisotropy of the pair density atr5`, we
compare the densities in Fig. 4 to polarized densities withr
perpendicular tor 8, shown in Fig. 5. The polarization of the
density of the (N21)-particle system by theNth electron is
much weaker in this case. The electron density in theL shell
is higher than in Fig. 4, since the hole in theN-electron
density is oriented along the axis connecting the nucleus to
the distant electron.

Finally, we consider Hooke’s atom, which consists of
two electrons bound to a center by a harmonic potential. For
certain values of the spring constant, analytic solutions may
be found to this two-body problem.42 For k51/4, C(r ,r 8)

5 (11(ur12r2u/2)e2(r1
2
1r2

2)/4/A4p5/2(815Ap). Insertion
into Eqs.~12! and ~13! and takingr@1 yields

g~r ,V,r ,V8!/r~r !→11@cos~DV!21#/r 21••• ~r→`!,
(22)

and

P~r ,r 8!

r~r !rN21~r 8!
→122

r 8

r
cos~DV!1••• ~r→`!,

~23!

where DV is the angle betweenr and r 8, and
rN21(r 8)5e2r82/2/(2p)3/2. At r 85& @the maximum of
4pr 82rN21~r 8!# and r ir 8, the polarization correction in Eq.
~23! is still significant~10%! at r528.

The examples given in this section demonstrate that the
asymptotic behavior discussed prior to this work is incom-
plete in the case of Ne, and not a very strong constraint on
the wave function for either Be or Hooke’s atom.
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APPENDIX: COMPUTATIONAL DETAILS

The calculations reported in the present paper are per-
formed with theCOLUMBUS program system,43,44which con-
tains a program~UCIDEN! for the construction of the spin-
averaged one- and two-particle density matrices44 of
multireference single- and double-excitation CI wave func-
tions. The Gaussian basis sets for all the atoms are taken
from theMOLCAS45 basis set library. The basis sets contained
therein are described in Ref. 46. The Gaussians are uncon-
tracted and are transformed to proper spherical components.
The COLUMBUS program system has been extended by the
programCHARGE to perform the real-space analysis of the
spin-averaged one- and two-particle density matrices.

The CI calculations for the Be atom are based on a mul-
ticonfigurational self-consistent field~MCSCF! one-particle
basis. The MCSCF expansion includes all configurations ob-
tained by distributing two valence electrons in the 2s, 3s,
and 2p orbitals of Be. All configurations obtained by distrib-
uting the four electrons of Be in the 1s, 2s, 3s, and 2p
orbitals in all possible ways are used as references in the CI
calculation. Similarly the CI wave function for Be1 was cal-
culated with a set of reference configurations based on the
same active orbitals as in the case of Be. The one-particle
basis in this case was obtained from a Hartree–Fock~HF!
calculation. The wave function for the Ne atom was deter-
mined with a multireference single- and double-excited CI
calculation, where all zero, single, and double excitations of
the eight valence electrons in the 3s and 3p orbitals are
taken as reference configurations. The orbitals were opti-
mized in an MCSCF calculation, where the eight electrons of
theL shell have been distributed in all possible ways in two
orbitals ofs symmetry and six orbitals ofp symmetry. The
same structure of the MCSCF and the CI wave functions was
used in the calculation for Ne1 ion. Table I shows the size of
the Gaussian basis sets and the corresponding HF, MCSCF,
and CI energies.

1Ab Initio Methods in Quantum Chemistry I and II, Advances in Physical
Chemistry, edited by K. Lawley~Wiley, New York, 1987!.

TABLE I. Gaussian basis sets and resulting energies for Be, Be1, Ne, and Ne1.

Atom Basis set HF energya MCSCF energy CI energy Correlation energy Exact correlation energyb

Be 14s9p4d3 f 214.572 99 214.618 37 214.663 78 20.086 43 20.094 34
Be1 14s9p4d3 f 214.277 35 214.321 40 20.044 05 20.047 37
Ne 14s9p4d3 f 2128.546 58 2128.679 49 2128.895 94 20.349 36 20.391 7
Ne1 14s9p4d3 f 2127.819 16 2127.909 47 2128.107 16 20.288 00 20.326 5

aAll energies are given in hartree.
bAs taken from Ref. 38.
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