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Partition density-functional theory
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Partition density functional theory is a formally exact procedure for calculating molecular properties from
Kohn-Sham calculations on isolated fragments, interacting via a global partition potential that is a functional of
the fragment densities. An example is given and consequences discussed.
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Kohn-Sham density functional theory (KS-DFT) [1,2] is
an efficient and usefully accurate electronic structure method,
because it replaces the interacting Schrödinger equation with
a set of single-particle orbital equations. Calculations with
several hundred atoms are now routine, but there is always
interest in much larger systems. Many such systems are treated
by a lower-level method, such as molecular mechanics (MM),
but a fragment in which a chemical reaction occurs must still
be treated quantum mechanically (QM). A plethora of such
QMMM approaches have been tried and tested, with varying
degrees of success [3]. These are often combined with attempts
at orbital-free DFT, which avoids the KS equations, but at the
cost of higher error and unreliability.

On the other hand, partition theory (PT) [4,5] combines the
simplicity of functional minimization with a density optimiza-
tion to define fragments (such as atoms) within molecules,
overcoming limitations of earlier approaches to reactivity
[6,7]. While there are many definitions of charges on atoms,
few have the generality of PT and the associated promise
of unifying disparate chemical concepts, as is illustrated in
Refs. [8] and [9].

In this Brief Report, we unite KS-DFT with PT to produce
an algorithm that allows a KS calculation for a molecule to be
performed via a self-consistent loop over isolated fragments.
Such a fragment calculation exactly reproduces the result
of a standard KS calculation of the entire molecule, as we
demonstrate on a 12-atom example. This also shows that
fragments can be calculated ‘on the fly’, as part of solving
any KS molecular problem.

Thus we present a formally exact framework within
which existing practical approximations can be analyzed
and, for smaller systems, compared with exact quantities.
Our method suggests new approximations which could, by
construction, scale linearly [10] with the number of fragments
[so-called O(N )], allow embedding of KS calculations within
cruder force-field calculations (QMMM), and even improve
exchange-correlation (XC) approximations so as to produce
correct dissociation of molecules [11].

In Ref. [12], we presented the basic equations of PDFT
and their application to a two-electron model system, for

which the inversion of the KS equations is trivial. But here
we develop and apply PDFT fragment calculations for more
than two electrons, where the inversion must be performed
via a self-consistent procedure, and also determine fractional
charges self-consistently. We regard the present calculation
as a demonstration of the ability of a many-electron PDFT
fragment calculation to exactly reproduce the results of the
corresponding molecular calculation.

The Hohenberg-Kohn theorem [2] states that, for N elec-
trons, the ground-state energy of a given external (one-body)
potential v(r) can be found by minimizing

Ev[n] = F [n] +
∫

d3r n(r) v(r), (1)

where n(r) is a trial electron density and F [n] is a functional
defined by the Levy-Lieb constrained search [13] over all
antisymmetric wave functions � yielding n(r):

F [n] = min
�→n(r)

〈�| T̂ + V̂ee |�〉, (2)

where T̂ and V̂ee are the kinetic energy and Coulomb repulsion
operators, respectively. The KS equations [1] are single-
particle equations defined to reproduce n(r). Define the KS
energy as

ES,v[n] = T S[n] +
∫

d3r n(r) v(r), (3)

where T S[n] is the kinetic energy of the KS orbitals. The
Hartree-exchange-correlation energy, is then

EHXC[n] = Ev[n] − ES,v[n], (4)

so that the KS potential is v(r) + vHXC(r), where

vHXC(r) = δEHXC[n]/δn(r). (5)

Partition theory deals with the problem of dividing a system
into localized fragments. For molecules or solids,

v(r) =
∑

β

Zβ

|r − Rβ | =
Nf∑
α=1

vα(r), (6)
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where Zβ is the atomic charge of a nucleus at point Rβ , and
these are regrouped into Nf fragment potentials, vα(r). The
fragmentation is chosen based on the particular use of PT: e.g.,
one might atomize an entire molecule, or merely separate off
a well-known chemical species. The partition problem is then
to divide n(r) between the fragments, which is done by [4,5]
minimizing the sum of fragment energies, while ensuring the
sum of fragment densities matches the molecular density:

Ef = min
{nα}

⎧⎨
⎩

Nf∑
α=1

Evα
[nα]

∥∥∥∥∥∥
Nf∑
α=1

nα(r) = n(r)

⎫⎬
⎭ , (7)

where nα(r) is a density of the αth fragment.
Each fragment is in contact with a distant reservoir of

electrons [14], so its integral Nα need not be an integer. If
Nα = pα + να , pα an integer and 0 � να � 1, then [14]

F [nα] = (1 − να) F
[
npα

] + να F
[
npα+1

]
, (8)

where

nα(r) = (1 − να) npα
(r) + να npα+1(r), (9)

and the integer densities are ground states of a common
potential.

To establish a set of effective noninteracting fragments, we
define the partition energy functional as

Ep,{vα}[{nα}] = Ev[n] −
Nf∑
α=1

Evα
[nα] (10)

analogous to Eq. (4). Since δF [nα]/δnα(r) + vf,α(r) = µ at a
minimum, we find that each minimizing nα(r) is the ensemble
ground-state density of an effective fragment potential,

vf,α(r) = vα(r) + vp(r), vp(r) = δEp[{nα}]
δnα(r)

∣∣∣∣
min

. (11)

Thus PT maps a problem of interacting fragments into an
effective isolated fragment problem, just as the KS scheme [1]
maps the interacting electronic problem into a noninteracting
one.

Now consider a modern KS DFT calculation of the
molecule, using some approximation for XC in Eq. (4).
Writing Eq. (10) in terms of KS quantities, and functionally
differentiating

vp(r) = v(r) + vHXC[n](r) − vS[n](r)

− vα(r) − vHXC[nα](r) + vS[nα](r), (12)

where vS[n](r) = −δT S[n]/δn(r). Each fragment can be
solved using KSDFT, where the KS equation is

{− 1
2∇2 + vS,f,α[nα,n̄α](r)

}
φj (r) = εjφj (r), (13)

and vS,f,α(r) is the effective KS potential of the αth fragment,
found by adding vHXC[nα](r) to Eq. (11). Using Eq. (12), it may
be written as

vS,f,α[nα,n̄α](r) = vS[nα](r) + {v(r) + vHXC[n](r) − vS[n](r)},
(14)

where n̄α(r) = n(r) − nα(r). This central result gives the
fragment KS potential for a pair of trial densities, nα(r)

and n̄α(r), in terms of quantities from KS-DFT. At self-
consistency, Eq. (14) becomes a tautology, where only the
first potential remains. Similar expressions arise in density
embedding [15–22], but do not necessarily define fragments
that exactly reproduce the molecular density of an approximate
KS calculation.

The natural starting point of PDFT is to solve the KS
equations for each isolated fragment, generating their self-
consistent KS potentials, densities n(0)

α (r), and overlapped sum
n(0)(r). These are fed into Eq. (14) to produce a new set of
KS fragment potentials, and the procedure repeated until self-
consistency is reached. To illustrate, we performed a PDFT
calculation on a 12-atom 1d chain with 12 spin-unpolarized
noninteracting fermions, with potential

v(x) =
12∑

α=1

−1

cosh2[x + (α − 6.5)R]
. (15)

Atomic units are used throughout the illustration. We chose
complete atomization, so no fragment ever contains more than
two electrons. To find v

(k+1)
S,f,α (r) in Eq. (14), we know vS[n(k)

α ](r)
from the previous iteration, but vS[n(k)](r) is the KS potential
for a molecular trial density,

∑
n(k)

α (r). To find this [23], we
iterate [24]

v
(p+1)
S (r) = v

(p)
S (r) + γ [n(p)(r) − n(k)(r)], (16)

where n(p)(r) is the density found from potential v(p)
S (r), γ > 0

is a constant. This internal iteration is more expensive than a
single KS calculation, because we invert the KS problem for
each trial molecular density exactly. (Our aim is not speed,
but to reproduce the exact molecular density.) To find the
fragment occupations within the PDFT iteration, note that at
self-consistency, the chemical potentials of all the fragments
are equal, so choose N (k+1)

α = N (k)
α − 	(µ(k)

α − µ̄(k)), where
	 is another positive constant and µ̄ is the average of the
fragment chemical potentials, used in conjunction with Eq. (8)
for the functionals [25].

Figure 1 shows the atomic and molecular densities after
convergence. The molecular density is identical to that found

-20 -15 -10 -5 0
x

0

0.2

0.4

0.6

n(
x)

FIG. 1. (Color online) Solid line: The exact spin-unpolarized
ground state of 12 electrons in the potential of Eq. (15). Dashed
lines: The fractionally occupied fragment densities. By symmetry,
the other half of the density is simply the mirror image of that shown.
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FIG. 2. (Color online) The exact partition potential (solid line)
for the atomized chain and the fragment potential for the last atom
(dashed line). The ground state with an occupation of 0.77 in this
potential can be seen as the end fragment density in Fig. 1.

by direct solution of the eigenvalue problem for the entire
molecule, and doubly occupying the first six eigenstates, which
are delocalized over the entire molecule. We see a small
alternation between higher and lower densities throughout the
molecule. The fragment density occupations reflect this, being
0.77, 1.13, 0.98, 1.06, 1.02, 1.04 moving inward toward the
center of the chain. In Fig. 2, we show both the partition
potential and effective fragment potential for the last atom.
The (not very large) vp(r) polarizes the density toward the
molecular center, and shifts the density inward compared to
a free atom. The partition potential continues throughout the
whole chain, lowering each fragment potential in the bonding
region between atoms. The depth of these troughs oscillates,
reflecting the oscillation in occupations. In Fig. 3, we show the
convergence of the occupation numbers to their final values,
after some initial fluctuations.

Many features of PDFT are illustrated by our example. First,
the total energy of the molecule need never be calculated,
so that dissociation energies are found directly, not as the
difference of two huge numbers. To see this, define a relaxation
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FIG. 3. (Color online) The convergence of the fragment occupa-
tion values, Nα , during an exact PDFT calculation.

energy (similar to the promotion energy of Ref. [26]): Erel =
E

(0)
f − Ef , so that

Ep = Edis + Erel,Edis = E − E(0), (17)

where Edis is the electronic contribution to the dissociation
energy, which is negative for a bound molecule. But E0

f � Ef

because the isolated fragment energy is the minimum in Eq. (7)
without constraint, so Ep < 0. Since the fragment densities
will only be slightly distorted relative to the free fragments,
|Erel| should be small, so that Ep should be comparable to Edis.
In our example, Ef = −5.888 and Ep = −1.803 leading to
E = −7.691, exactly that of the direct solution. Since E

(0)
f is

−6, |Erel| � |Ep| � |E|.
Secondly, Eq. (14) is exact, but taking practical advantage

of PDFT requires some approximation (analogous to approx-
imating XC in the KS scheme). The exact partition energy
requires the molecular kinetic energy:

Ep = 
T S[nα] + 
EHXC[nα] +
Nf∑

α,β �=α

∫
d3r nα(r)vβ(r), (18)

where 
G[nα] = G[
∑

nα] − ∑
G[nα]. Although the exact

fragment T S and vS(r) would be known during a calculation,
approximations for 
T S would take full advantage of any
cancellation of errors (analogous to LDA for XC). Any local-
type approximation, such as finding vS[n](r) using only the
fragment’s density plus that of its neighbors, should make the
method O(N ). All attempts of orbital-free DFT to find useful
approximations to 
T S[n] have now a simple framework
in which to be tested [27]. Moreover, there are no formal
difficulties arising from taking density variations within a fixed
density, as the trial molecular density is simply the sum of the
fragment densities, which are varied freely. For embedding
calculations, a simple approximation would be to treat the
system plus some fraction of its environment (a border region)
exactly, and all the rest approximately. Since the KS potential is
typically near-sighted, such a scheme should converge rapidly.
Our example suggests that fractional electron transfer is vital
(more important than changes in normalized densities), but
must be accounted for in any accurate embedding scheme.

Thirdly, for the dissociation of molecules, one can also
see how to ensure correct dissociation energies within PDFT:
simply constrain occupations to be those of the isolated
fragments. For H2, we constrain the spin occupations on the
fragments to be 0 and 1. Of course, this is what happens
when symmetry is broken as the bond is stretched, and the
difficulty is in producing a scheme that seamlessly goes over
to (1/2,1/2) occupations as R reduces to the equilibrium value.
The value of our formalism is that it produces a framework for
both addressing these questions and constructing approximate
solutions.

Finally, there is a simple adiabatic connection formula
for PDFT. Consider scaling all bond lengths between frag-
ments by λ−1(keeping intrafragment densities fixed), where
0 < λ � 1. For each λ, we find those molecular densities
whose fragment densities match those of our molecule, and
define the corresponding partition energy, Ep(λ). At λ = 1,
we have the original molecule; as λ → 0, the bonds become
large and the fragments do not interact, so that Ep(0) = 0.
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For intermediate λ, the molecular density is simply that of the
fragments, overlapped a distance R/λ apart. Then

E = Ef +
∫ 1

0
dλ

dEp(λ)

dλ
. (19)

This allows all the methods of traditional intermolecular
symmetry-adapted perturbation theory (SAPT) [28] to be
applied to this problem, but with the advantage that the
fragment densities remain fixed. Interestingly, because the
fragments will generally have dipole moments, the partition
energy decays as 1/R3, so that the integrand above behaves
as λ2. (For physical systems that are well separated and have
attractive van der Waals forces, such effects must be canceled
by analogous terms in Erel.)

There has been considerable previous work on schemes
designed to allow a fragment calculation of a larger molecule,
either within the framework of orbital-free DFT or atomic
deformation potentials, sometimes producing the same (or
similar) equations. Among the earliest, Cortona’s crystal
potential (later called embedding potential) [15,16] is an

intuitive prescription for vp(r). But our formalism reproduces
the exact solution of the original problem, using only quantities
that are already defined in KS-DFT. For example, this is not
possible in general without the ensemble definition of Eq. (8),
which produces the correct self-consistent occupations (unlike,
e.g., the self-consistent atomic deformation method [17,18],
where this choice leads to a basis set dependence [19]). We also
never freeze the total density [20–22], but only ever consider
it as a sum of fragment densities. This avoids ever needing
density variations that are limited by some frozen total density,
which produces bizarre functional derivatives, different from
those of KS DFT. None of these issues arise once smooth
(e.g., local or gradient-corrected) approximations are made to
the kinetic energy functional [15,16,18], but they are vital in a
formally exact theory. Thus the present PDFT can be regarded
as a formal generalization of these pioneering works.
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