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Recent progress in measuring the transport properties of individual molecules has triggered a
substantial demand for ab initio transport calculations. Even though program packages are com-
mercially available and placed on custom tailored to address this task, reliable information often is
difficult and very time consuming to attain in the vast majority of cases, namely when the molecular
conductance is much smaller than e2/h. The article recapitulates procedures for molecular trans-
port calculations from the point of view of time-dependent density functional theory. Emphasis is
describing the foundations of the “standard method”. Pitfalls will be uncovered and the domain of
applicability discussed.

I. INTRODUCTION

In an impressive sequence of experiments, it has re-
cently been demonstrated that measuring the current
voltage (I-V) characteristics of an individual molecule
has become feasible. [1–8] Each molecule is an inter-
esting species in itself exhibiting individual signatures in
each IV-curve, such as step positions and heights [9] or
inelastic excitation energies. [10, 11] For this reason, a
clear demand for ab initio transport calculations of single
molecules has emerged in recent years.

Such calculations are a difficult enterprise, because
they must meet simultaneously two requirements. Pow-
erful methods exist to deal with each one separately, but
the combined problem still is one of the challenging ad-
ventures of theoretical physics and quantum chemistry.

Difficulty number one is that a molecule is a genuine
many-body system, where the mutual interaction of the
particles is important for understanding its properties.
These include, in particular, the energy and shape of the
(effective) molecular quasiparticle orbitals. Some of the
salient aspects, such as the position of the molecule’s
atoms, the symmetry of molecular orbitals and their rel-
ative energies, are often described accurately by effective
single-particle theories, such as density functional theory.
For less basic questions, concerning for instance excita-
tion energies or details of the electronic charge distribu-
tion, polarization, and charging effects, an advanced ma-
chinery equipped with methods and codes from quantum
chemistry and electronic structure calculations is avail-
able.

Difficulty number two is related to the fact that a
transport calculation investigates the effect of coupling
the molecule to a macroscopic electrode, i.e. a reservoir
with which particles (and energy) can be exchanged. It
is the associated broadening of the molecular energy lev-
els which is supposed to be understood quantitatively in
transport calculations and therefore the coupling has to
be modelled with great detail and care.

While the first difficulty can be resolved for sufficiently
small molecular systems, the second one requires includ-

ing many electrode atoms, i.e., a great number of degrees
of freedom, in order to properly extrapolate to the macro-
scopic limit. These conditions are mutually exclusive (al-
most), and this is the particular challenge in molecular
scale transport calculations with ab initio methods.

In reality, any ab initio transport calculation begins
with a compromise accepting strong, often uncontrolled,
approximations when dealing with one of the two men-
tioned difficulties. In the present “standard approach to
molecular conductance” [12–14] a drastic simplification
on the many-body side is being made. One is accept-
ing the Kohn-Sham energies and orbitals that appear
in structure calculations based on ground-state density
functional theory (DFT) as the legitimate single particle
states for a selfconsistent scattering theory of transport.
The procedure has the tremendous advantage that in-
cluding the reservoirs is then a very well defined process,
if sufficient care is taken. For practical purposes, a formu-
lation in terms of non-equilibrium Green’s (or “Keldysh”)
functions is advantageous and therefore often used. [15]
For non-interacting particles the theory is equivalent to a
Landauer-Büttiker theory of transport[16, 17]. For KS-
particles a slight generalization is introduced, in which
the electronic charge distribution is calculated selfconsis-
tently in the presence of the bias voltage.

Clearly, the use of DFT for the scattering states al-
ready includes many non-trivial interaction effects be-
yond the electrostatic Hartree interaction – Fermi liq-
uid (FL) renormalizations in the language of condensed
matter physics – even on the level of local or gradi-
ent corrected density approximations (LDA,GGA). [18]
Still, ground and excited states of correlated electron
systems are not single Slater determinants and there-
fore the validity of applying scattering theories designed
for non-interacting particles to interacting systems is not
straightforward to establish. Moreover, including cor-
relation effects beyond FL renormalizations, which can
be very important for transport characteristics like the
Coulomb blockade or the Kondo resonance, is not incon-
ceivable in a single determinant theory, but it certainly
requires density functionals advanced far beyond LDA. In
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this respect it is tempting to use the advanced machinery
of quantum chemistry to calculate a better approxima-
tion for correlated many-body states including more than
one Slater determinant, however, this approach also has a
serious drawback because it is limited to relatively small
system sizes. The bare molecule appearing in typical
transport experiments consists of typically 5-10 aromatic
rings, which is a size already at the limits of what corre-
lated methods could still reasonably deal with. Includ-
ing in addition 10-200 metal atoms in order to accurately
model the coupling to the leads in a controlled way ap-
pears to be out of reach at present. For this reason, only
very few attempts limited to small molecules have been
made in this direction. [19]

In this article, we describe three principle approaches
to transport calculations based on time-dependent den-
sity functional theory (TDDFT). We shall first present a
brief account of the basic principle strategies. Then, we
explain in more detail one of them, the standard method
of ab initio transport calculations. In Section II, we dis-
cuss an attempt to justify the procedure from the point
of view of TDDFT [20–22], list loose ends and apparent
conceptual difficulties.

Since the exchange-correlation potential VXC(x) is not
known exactly, in any practical calculation approxima-
tions like LDA have to be admitted. These are not con-
trolled any more when one deals with realistic molecules.
As a consequence, in addition to conceptual problems,
appreciable artefacts related to approximate functionals
can emerge, which have been well studied for standard
DFT applications in quantum chemistry and electronic
structure theory, and which carry over to transport cal-
culations as well. [23] A brief list of deficencies most
important for transport purposes has been included in
Section III.

II. TDDFT AND TRANSPORT

Time dependent DFT is a well established generaliza-
tion of (ground state) density functional theory and has
been introduced by Runge and Gross [24] and expanded
on by van Leeuwen [25].

RG-Theorem: For any interacting fermion system
there is a unique dual system of non-interacting
fermionic quasiparticles with the following prop-
erty: the time dependent density of original and
dual particles is identical for any driving field
Vex(t); the time evolution of dual (“Kohn Sham”
or KS) fermions is governed by a Schrödinger-type
equation decorated with a Hartree term and an ex-
change correlation potential VXC[n], which can be
expressed as a functional of the time dependent
particle density and its history, n(x, t) . In the
genereral case, VXC[n] depends on the full many-
body state at the initial time t=0.

Because the Runge-Gross-Theorem guarantees that
the dual system delivers the exact time evolution of the
interacting particle density, also longitundinal transport
currents can be calculated by exploiting the continuity
equation [50],

ṅ(x, t) +∇ · j(x, t) = 0,

where a dot denotes a time-derivative. This observation
underlies all applications of TDDFT to transport.

Quite generally, transport can be investigated in sev-
eral different languages, which all are equivalent in
the regime where their validity overlap. Even though
we’re ultimately interested in the standard method, the
TDDFT version of the others will give valuable informa-
tion, too. Therefore we shall briefly discuss them as well.
We begin, however, by recalling the basic formalism of
TDDFT.

A. TDDFT formalism

TDDFT is a machinery for propagating a density in
time, not a many body wavefunction. Hence, as a pre-
requisite for applying the method an initial density (t=0)
is required. It needs to be represented as a single Slater
determinant |0〉 constructed from a (complete) set of ef-
fective single particle states φm . This is always possi-
ble, if at t<0 the system is in its ground state; then the
KS-orbitals of ground state DFT are obvious candidates
for φm. In this case, one has for the density matrix at
t = t′ = 0

n(x,x′) =

occ.∑

m

φ∗m(x)φm(x′). (1)

Time evolution of the state |0〉 together with its density
matrix is mediated via Hs:

Hs = − 1

2m

∫
dx ψ†(x)∆ψ(x)+VH[n(t)]+VXC[n(t)]+Vex(t)

(2)
with

VH[n(t)] =
1

2

∫
dx vH[n](x, t) ψ†(x)ψ(x) (3)

where vH(x, t) =
∫
dx′ n(x′; t)/|x− x′| and

VXC[n(t)] =

∫
dx dx′ vxc[n](x, t) ψ†(x)ψ(x). (4)

The nontrivial aspects originate from the fact that the
orbitals φm(t) are not eigenstates of Hs at t > 0.
Hs can be explicitly time dependent in the probing

potential, Vex(t). An implicit dynamics exists via the
Hartree and exchange-correlation terms, that depend on
the time dependent particle density n(x, t). A few re-
marks about the potential vxc[n] debuting here are in
place.
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(a) The exchange correlation potential vxc[n] is not just
a density functional. Its precise definition requires spec-
ification of the initial many body state at t = 0. But, for
an initial non-degenerate ground state the dependence on
the initial wavefunction is replaced by the initial density,
thank to the Hohenberg-Kohn theorem.

(b) TDDFT strictly applies only to finite systems, and
a generalization that uses the current as the basic variable
is needed for infinite systems.

(c) In practice, it might be advantageous for the con-
struction of useful approximations to allow for a more
general, offdiagonal structure of vxc[n](x,x′; t, t′) that
could also include (time dependent) gauge fields. Sim-
ilarly, one can also consider vxc[n] as a functional of the
full density operator n(x,x′; t, t′), rather than only its
diagonal elements, which is the particle density. Thus
additional observables, like the current density, are in-
troduced into the Hamiltonian. In statistical mechanics
this is a standard recipe in order to eliminate a history
dependence in kinetic equations[26], and here it serves
exactly the same purpose [27].

Structure of XC potential if Vex is weak

In this subsection, we analyze the non-equilibrium
piece of the vxc[n] potential. The idea is to exploit the
fact, that it can be related to known correlation functions
if the probing potential Vex is weak.

We begin by recalling some basic facts of the theory
of linear response for TDDFT. Since the density evolu-
tion of dual and original system, n(x, t), coincide, they
exhibit in particular the same susceptibility for the den-
sity, χ(x,x′, t − t′), which describes the linear response
to Vex(t). What is usually measured is not the response
to a probing but rather to the total electric field, which
is the sum of external and induced (screening) fields. An
important example is the linear conductance. It is the ra-
tio of the current and the measured (total) electrostatic
voltage drop at the resistor: I/Vbias.

The corresponding response function is the Hartree-
irreducible correlator:

χ−1
irr ≡ χ−1 + fH

(fH(x,x′)=1/|x−x′|). In TDDFT the operator χirr can
be decomposed even further. Namely, the TDDFT
Hamiltonian Hs has two pieces that react to density mod-
ifications. In addition to VH incorporating the electro-
static screening, there is also an induced effect on VXC,

χ−1
irr = χ−1

KS − fxc, (5)

which can be split off in the same manner as fH. The
truncated correlator χKS describes the (bare) response of
ground state DFT. The promised connection between the
correlator χirr and vxc[n] is mediated via the XC kernel:

fxc(x,x
′; t− t′)=δvxc[n](x, t)/δn(x′, t′). (6)

Relations (5,6) are very useful, because due to a beau-
tiful series of works by Kohn, Vignale and collaborators
there is a simple approximation to the non-equilibrium
contribution to χirr. [27, 28] In fact, these authors reveal
the full hydrodynamic structure of χ−1

irr by exploiting the
relation to the phenomenological theory of quantum liq-
uids.

In their analysis, fxc is the sum of two very different
pieces:

fxc = fadia
xc + fnon−eq

xc (7)

where fadia
xc =δvgsxc [n]/δn and a gradient expansion of

fnon−eq
xc is given by fVK. The first term is fully anal-

ogous to fH and it describes the exchange-correlation
screening of the ground state DFT Hamiltonian to the
probing field. Only in the second piece many body ef-
fects of a genuinely non-equilibrium nature appear: it
incorporates the visco-elastic response of the electronic
quantum liquid. Since the emerging term is local and
dissipative, the corresponding forces are not conserva-
tive. This means, that fVK cannot be incorporated as a
pure density coupling – i.e. a potential term – in Hs, but
gives rise to a (time dependent) gauge field, instead, and
is only described as a current-dependent kernel.

B. External driving field

In this section we return to the transport problem in
TDDFT. To investigate transport currents generated by
an external driving field, one needs to supplement Hs

with an inhomogenous electric potential, Vext(q, ω), to-
gether with electrodes. [56] Practical applications with
this approach in TDDFT suffer from the fact, that before
one can perform the dc-limit (ω→0), one first has to take
the thermodynamic limit (q→0) of infinite system size.
In realistic calculations this is usually a very cumbersome
excercise.

From a conceptual point of view, thinking about cur-
rents as generated by weak external driving fields is re-
warding, however, because one is led back to the Kubo
formula and the theory of linear response. We thus can
directly apply results from the preceeding section and in
particular investigate the effect of visco-elasticity on the
current flow.

1. Kubo formula

The Kubo formula provides an exact relation between
the current density and the driving external and induced
(effective) electric fields, that appear in the TDDFT cal-
culation [29]:

j(x, ω) =

∫
dx′ σKS(x,x′, ω) [Eex +EH +Exc] (x′, ω).

(8)
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where σ is the non-local conductivity tensor and where
the electric fields derive from the potential terms given
in Eq. (2). As always, susceptibilities for particle densi-
ties χKS and currents σKS are related via the continuity
equation:

∂tχKS(x,x′, t) = −
3∑

i,j=1

∇i∇jσKS,ij(x,x
′, t). (9)

The structure analysis II A suggests to split the full cur-
rent density into a bare response, j0, and a remaining
piece, jVK:

j = j0 + jVK. (10)

We discuss the second term first. It is driven by a force
field, EVK,

jVK(x, ω) =

∫
dx′σKS(x,x′, ω)EVK(x′, ω). (11)

that is associated with fVK. In the hydrodynamic limit
considered by Vignale et al. [28] it has an interpretation
as visco-elastic force internal to the electron liquid, that
can be described by the stress tensor, ςij (unperturbed
density: n0(x)):

EVK,i(x, ω) = n0(x)−1
3∑

k=1

∇kςik(x, ω). (12)

The relative magnitude of jVK is small as compared to
j0, since the viscosity, η, of the electron liquid is quite
small. Based on the homogenous value of η in two and
three spatial dimensions a rough analytical consideration
can give an estimate. [29] The ratio jVK/j0 is expected
to be typically of the order of 10% or less. In a numerical
study the viscous corrections to the conductance of the
benzene-dithiol molecule have been explicitly calculated.
The effect is small, roughly 5%, as expected. [30]

Note, however that the previous conclusion is to be
taken with a grain of salt. Strictly speaking, the explicit
derivation of Eq. (12) assumes, that the inhomogeneities,
which provide the “surface” for the viscous friction to
appear, are very smooth: in the period ω−1 of the prob-
ing field, the electron should travel a distance not larger
than the typical spatial scale ` on which the inhomogen-
uous background changes, vF/ω�`. Applying this con-
dition to molecules and assuming kF` ∼ 1, one would get
vFkF � `ω, which is satisfied only at optical frequencies
of the order of eV, but not in the dc limit. Neverthe-
less, the qualitative finding of the mentioned estimates –
namely that viscocity effects tend to be small – should be
indicative, because the (transverse) momentum exchange
between electrons at low temperatures is a rare process
due to phase space constraints. We believe that this ba-
sic principle pertains to electrons in a molecule as well.
[57]

We thus propose that the dominating contribution in
Eq. (10) is given by the response to the reactive forces,

j0(x) =

∫
dx′ σKS(x,x′) [Eex +EH −∇x′v

gs
xc] (x′), (13)

where our notation suppresses the ω-dependence.

2. Bias voltage and Kohn-Sham voltage drop

The expression (13) for the current density can be sim-
plified, if we assume, that the dependence of the forces on
the coordinate, x⊥, perpendicular to the current path, z,
is negligibly weak. This assumption is not necessarily a
good one for quantitative questions, but it allows us to
discuss more clearly the difference between σKS and the
conductivity, σirr, measured in typical transport experi-
ments:

j(x) =

∫
dx′ σirr(x,x

′) [Eex +EH] (x′). (14)

If we make the proposed step and neglect the x⊥ de-
pendence of the forces, we can integrate both sides of
(14) over any cross section, and obtain

I = G Vbias (15)

with a conductance

G =

∫
dx⊥dx

′
⊥σirr(x⊥,x

′
⊥; z, z′). (16)

Due to particle number conservation, the cross-sectional
integrals render the sum independent of z, z′ in the dc-
limit, ω→0. As usual, the bias voltage is given by

Vbias =

∫ xr

xl

ds [Eex +EH[n]] (s). (17)

where s(t) is any path connecting the left with the right
hand side of the molecule. Vbias should be picked up
between points xl and xr sufficiently far away from the
scattering region, in the near asymptotics, where the elec-
trostatic potential energy surface has turned constant.

The same procedure can be repeated also for Eq. (13)

I = GKS VKS (18)

with an expression for GKS completely analogous to (16).
We have introduced the KS-voltage drop, VKS, given by
the sum of all KS-forces, Eq. (13), along s(t),

VKS = Vbias + Vxc; Vxc = −
∫ xr

xl

ds Exc(s). (19)

In the spirit of Eq. (10), we can decompose the deviation,
Vxc, of the measured bias and VKS into two pieces

Vxc =

∫ xr

xl

ds ∇sv
gs
xc[n](s)−

∫ xr

xl

ds EVK(s). (20)
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The first term can be integrated trivially: vgs
xc[n](xl) −

vgs
xc[n](xr). If the left and right hand side electrodes con-

sist of the same material, then this difference can be non-
vanishing only due to long range terms in vgs

KS. In par-
ticular, local approximations like LDA or GGA cannot
give a finite contribution in the XC part. The second
term in Eq. (20) describes the genuine non-equilbrium
forces, that result from the viscosity of the elctron liquid
discussed above.

Eqs. (18) and (19) demonstrate, that a KS-particle be-
haves under bias very differently from a physical quasi-
particle. The only long range forces, that the physi-
cal particle realizes upon applying Vex are of the pure
Coulomb type. For this reason, the bias voltage must be
exactly equal to the difference in electro-chemical poten-
tials:

Vbias = µL − µR.

Interaction terms (beyond Hartree-level) do not occur.
By contrast, the KS-particle experiences an effective volt-
age VKS, that can be quite different from Vbias. This way
of including interaction effects by adding the corrective
term Vxc to the voltage drop is not very physical. A dif-
ficulty appears, that comes back on us in the next two
subsections.

C. Initial value problem

The second access to transport investigates an initial
value (so called “relaxation”) problem without any ref-
erence to a driving external field Vex. One considers a
molecule and two reservoirs, left and right (L,R). At
t < 0 the molecule is coupled to and in equilibrium with
L. At t = 0 a coupling to R is being switched on and
the time evolution with Hs begins, as described in sec-
tion II A. A current, I , starts to flow at t > 0, if L and
R are not in equilibrium with one another. I is related
to the time derivative of the number of particles in the
electrodes, NL,R,

I(t) = −ṄL = ṄR. (21)

As in the previous case, the current may be obtained via
the continuity equation from an explicit TDDFT propa-
gation of the electronic density. Since relaxation involves
processes on all time scales, in principle the response
function χ(ω) can be extracted at all frequencies larger
than the inverse observation time.

Also, the drawbacks of this approach are similar to the
previous case: one has to include big reservoirs and to
propagate many time steps if long time, low frequency
properties, such as steady-state currents, are to be ad-
dressed. Due to this difficulty, the relaxation method
with TDDFT has been applied mainly to obtain the
high frequency response. In an incarnation where a step
potential is switched on at t=0, it has also been used
for transport studies in non-interacting model systems,

but not for a full-fledged realistic TDDFT calculation,
yet. [31] However, we mention that an application of the
method for model studies of strongly correlated transport
in interacting Hubbard chains has recently been very suc-
cessful using the density renormalization group method.
[32]

For our purpose, the formulation of transport in terms
of an initial value problem is conceptually important, be-
cause it allows us to link time propagation of the density
(TDDFT) with DFT-scattering theory.

Indeed, let us perform the following “Gedanken exper-
iment” in which we allow ourselves to work with perfect
reservoirs, and where we can do the time propagation of
the density up to any time we wish. At the initial stages,
0 < t � ttrans, we shall encounter transient phenomena,
which render the particle density near the contact region
time dependent. Only at a much later stage, t � ttrans

we arrive at the asymptotic non-equilibrium situation.
In order for the usual scattering formalism to be appli-

cable, the asymptotic current carrying state of TDDFT,
|QS〉, should meet the following conditions:

c1: At zero temperature |QS〉 is a single Slater determi-
nant of left and right moving scattering states, ψl,r,
which are eigenstates of the asymptotic TDDFT
Hamiltonian Hqs. The associated quasi-static KS-
density matrix (definition see Eq. (22)) is invariant
under time translations: nqs(x,x

′; t− t′).

c2: The potential vxc[n] takes an asymptotic form which
is independent of the history.

c3: The KS-scattering states are occupied according to
Fermi-Dirac distributions, fL,R, carrying the tem-
perature and chemical potential of the reservoirs
that they emanate from.

Discussion: Very little rigorous is known about the
true nature of the non-equilibrium state of the interacting
electron liquid. For this reason our discussion can be no
other but very qualitative.

Condition c1 puts a strong requirement on the physical
relaxation process. Because the equal time density ma-
trix nqs(x,x

′; 0) is time independent at t� tdiss, particle
and current densities must have become stationary:

R: After transient phenomena have died out, at t �
ttrans a quasi-stationary non-equilibrium state is
reached. “Quasi-stationarity” in this context is
meant in the strong sense, in which the time evolu-
tion of the particle and current densities have come
to a standstill.

It is plausible, that this requirement is always fullfilled
in the linear regime of small voltages µL−µR. [58] For
non-interacting particles, this is certainly true also in the
non-linear case. [54] The situation is much less clear for
interacting particles in the non-linear voltage range. In
fact, due to the non-linear nature of the kinetic equations
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one suspects that phenomena like turbulence should oc-
cur. [33] This would imply densities and currents fluctu-
ating in time even at t� ttrans, so that R is not strictly
satisfied. [55]

If indeed the quantum liquid goes turbulent, then part
of the memory of the intial conditions never is lost. This
is, because even small microscopic details in the initial
values of the relevant kinetic fields (particle densities,
currents etc.) will in general invoke a different dynamics
at later times. For this reason, validity of c2 is not guar-
anteed. However, usually there is no interest in a precise
set of initial conditions. Possibly, a suitable averaging
procedure (either over initial conditions or over a small
time interval) could reestablish c2 in an effective sense.

Returning to the case of small biases, let us emphasize
that even if |QS〉 is a single Slater determinant, validity of
c3 is not automatically guaranteed. In order to see this,
we imagine a surplus of particles in one reservoir (T=0),
so that an electro-chemical potential difference maintains
a particle flow to the other reservoir. If it is correct, that
all current is carried by the scattering states in energy
window situated between µL and µR, then we find that
the current linear in the voltage is necessarily given by
GKS(µL−µR). The correction term Vxc is missing, so
we arrive at a statement contradicting Eq. (18). This
is the difficulty, already alluded to at the end of the last
subsection. We will come back to it again in the following
subsection.

D. Scattering approach

It is the advantage of scattering theory that all infor-
mation is encoded in scattering states and no reference
to time propagation is being made. The idea is to re-
place the initial value problem by an equivalent boundary
problem. This is the philosophy adopted by the standard
method of molecular transport calculations. Its persua-
sive, charming aspects are: (i) the method is stationary
and (ii) the reservoirs are relatively easy to include.

The most important problematic aspect is that up to
now a rigorous justification of the approach has not been
given, and it is not obvious that it should exist. The
validity of the scattering formalism has been rigorously
established only for non-interacting particles. Whether
the conditions c1-c3 formulated in the preceeding section
are really met, so that the treatment is legitimate also
for KS-particles, is not fully clear at present. If they are
taken for granted, the following selfconsistency procedure
can be justified, which in essence is the standard method.

One starts with a guess for the equal time density oper-
ator nqs(x,x

′). Condition c2 ensures, that nothing more
is needed in order to construct a first approximation for
the Hamiltonian Hqs – provided the functional vxc[n] is
given, of course.

In order to start the next iteration, one should know
how to construct a better guess for the density opera-
tor from Hqs. This is where c3 and again c1 kick in:

according to c1 scattering states can be found as the
eigenstates of Hqs, which then can be filled up succes-
sively in order to obtain |QS〉 and the improved density
matrix. The procedure is completely analogous to the
case of non-interacting particles:

nqs(x,x
′) =

∑

l

fR(εl) ψ
∗
l (x)ψl(x

′)

+
∑

r

fL(εr) ψ
∗
r (x)ψr(x

′). (22)

At the end of the iteration cycle, selfconsistency is
reached. This means that scattering states have been
found in an effective potential that incorporates already
the shifts in the charge distribution characteristic of the
non-equilibrium situation which also generates the cur-
rent.

The bottom line is that under the assumptions c1-c3
there are only two minor differences between a ground
state calculation and a standard dc-transport calculation:

1. A non-equilibrium density operator calculated from
Eq. (22) replaces the ground state expression Eq.
(1) (to be obtained with fL = fR).

2. In principle, a quasi-stationary functional should
replace the ground state functional. In actuality,
due to lack of any better choice, common ground
state functionals are employed leading to additional
artefacts, Section III.

E. Standard method and Kubo formula:
discrepancies

The calculation of the dc-current can proceed directly
from Eq. (22) which leads to a Landauer-Buttiker type
description,

I =

∫
dE T (E, µL, µR) [fL − fR] , (23)

where the transmission function, T , has been introduced.
The kernel T (E, µL, µR) can be expressed by the resol-
vent operator

G(E) = (E −Hqs − ΣL − ΣR)−1

and self energies ΣL,R, which represent the boundary
conditions at the surface of the electrodes. [34] One has

T (E, µL, µR) = tr ΓLGΓRG
† (24)

where ΓL,R = i(Σ − Σ†)L,R. [20] For non-interacting
particles, Eqs. (23,24) are equivalent to the Landauer
formula and give the exact current. [12] The Landauer
conductance, Gqs=T (εF)e2/h, is the response of the cur-
rent linear in the applied electro-chemical potential dif-
ference

I = Gqs(µL−µR). (25)
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(We choose the nomenclature in the spirit of Sec.
II B 2.) For non-interacting particles, rigorous results ex-
ist, which show that the Landauer conductance and the
conductance obtained from the Kubo-conductivity, σirr

coincide. [35] This is true, because in the absence of in-
teractions

G = GKS = Gqs. (26)

However, the KS-particles are not truely non-
interacting. This expresses itself in the fact that G6=GKS,
in general, because VXC 6=0. In the present standard ap-
proach, one has Gqs=GKS. Therefore, a term in the
current proportional to VXC is ignored. In order to in-
clude this term, one would have to manipulate the XC-
functional used in Hqs such that the bare dc-current re-
sponse becomes χirr rather than χKS. Note, that it is
known that even within LDA the terms ignored can be
important. Including them on the level of “adiabatic”
LDA can shift resonances and therefore have a substan-
tial impact on a transmission characteristics. [36]

III. GROUND STATE DFT: ARTEFACTS OF
LOCAL DENSITY FUNCTIONALS

In this section, we discuss some well-known limitations
of common density functional approximations, and their
implications for transport calculations. [49]

By common density functional approximations, we
will mean the original local density approximation of
Kohn and Sham[40], the generalized gradient approxi-
mation, employing both the density and its gradient, eg
PBE[41], and hybrids of GGA with exact exchange, such
as PBE0[42] and B3LYP[43–45].

There are a variety of related deficiencies of all these
approximations. The first is that they fail for one-
electron systems, in which the exchange energy should
exactly cancel the Hartree, while the correlation energy
should vanish. The above density functionals gener-
ally fail this requirement, and are said to have a self-
interaction error, meaning that the electron is incorrectly
interacting with itself. [48]

A related difficulty is that the ground-state KS po-
tential in such approximations is poorly behaved. For a
neutral system, the exact KS potential decays as−1/r for
large distances. But with these approximations, the po-
tential decays too rapidly, in fact exponentially with dis-
tance, due to the local dependence on the density. (Hy-
brid functionals do have a fraction of −1/r, but not the
right amount.) This leads to potentials that are far too
shallow overall, and HOMO’s (highest occupied molecu-
lar orbitals) that are insufficiently deep.

The exact KS HOMO can be proven to be equal to
the negative of the ionization potential, but this is not
even roughly true for approximate KS potentials, for rea-
sons given above. Thus the charge density in tail regions,
i.e. where the density is low, is inaccurate. Furthermore,
whenever a localized system is in weak contact with a

reservoir, so that the average particle number on the sys-
tem can be continuous, the exact KS potential jumps
by a (spatially) constant amount whenever the particle
number passes through an integer[46, 47]. This behavior
is entirely missed by the above approximations, which
smoothly interpolate between either side of this discon-
tinuity.

These difficulties are either largely or totally overcome
by the use of orbital-dependent functionals. The first
popular one of these was SIC-LDA, the self-interaction
corrected local density approximation, as introduced by
Perdew and Zunger[48]. These days, many codes have
been developed to handle orbital-dependent functionals
and to find the corresponding KS potential, via the opti-
mized potential method (OPM), a.k.a. optimized effec-
tive potential (OEP). Exact exchange potentials have the
correct decay, their HOMO’s are close to the negative of
the ionization potential, and they jump discontinuously
at integer particle number. [53]

How does all this affect transport calculations? There
are two principal effects, one obvious, the other less so.

In the first, since transport is often a weak tunnelling
process, the position of the molecular levels relative to the
leads greatly affects the calculated current. If a molecule
is weakly coupled to the leads, there is every reason to
think that standard functional approximations will make
huge errors in the calculation of currents. The levels will
be misaligned not only in the equilibrium situation, but
will respond completely wrongly to the transfer of charge
into a localized molecular orbital. [51]

These deficiencies in common ground state function-
als may be the reason why present DFT-calculations fail
to correctly reproduce elementary ground state proper-
ties that manifest themselves in the transport charac-
teristics. The most prominent example is the Coulomb
blockade phenomenon, which usually is not reproduced
quantitatively. [37] It is less well appreciated, that also
the Kondo-effect belongs to this category of phenomena.
Its manifestation is an extra resonance in the spectral
function of the molecule at εF, the Abrikosov-Suhl reso-
nance. In principle, this resonance is a ground state prop-
erty. It affects the total charge on the molecule and for
this reason it should be detectable with DFT, provided
an appropriate (so far unknown) functional is used.

Furthermore, density functional approximations will
artificially smear out a sharp resonance into a much
weaker peak, spread out sometimes over several eV, be-
tween the LUMO of the uncharged molecule and the
HOMO of the charged molecule. [29] This effect has al-
ready been demonstrated in calculations on simple mod-
els [51], and has recently been seen in a full OEP cal-
culation. [52] Of course, for molecules that are chemi-
cally bonded to the leads, there is no region of very low
density, and the potential should be reasonably accurate
within the common approximations. So another question
is: how big an effect is this in real experiments?

The second effect is more subtle, but could be more
important in the chemically-bonded situation, perhaps.
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The standard approximations, being local in nature,
yield no XC correction to the potential drop across the
molecule. In the language of the previous section, VKS

is identical to the real electrostatic potential drop, Vbias.
But there is no reason that this should be true in real-
ity, or in a more accurate calculation. Thus an exchange
calculation should produce a finite effect. As mentioned
above, a current-dependent approximation (VK) indeed
produces a small, but finite, effect. Such calculations,
performed self-consistently and at finite bias, need to ac-
count for this drop, and correct the Landauer formula to
account for it. This means that the conductance is not
just proportional to the transmission through the self-
consistent KS potential. In one spatial dimension this
means, that the current must be calculated using the to-
tal potential drop, including the XC contribution, and
this must be divided by the electrostatic potential drop.
In this case, it is hard to see how a simple single-particle
effective potential could produce the exact conductance.
[29]

Conclusion

The various issues that we have discussed – validity
of a scattering approach, neglect of VXC, deficiencies of
commmon density functional approximations – raise se-

rious doubts about the accuracy of the present standard
method for transport calculations. How quantitatively
significant these errors are is only poorly understood, at
the moment. For such an estimate, time and orbital-
dependent calculations are an important tool. [31] To
gain further insight, it is important to go also beyond
(TD)DFT. Work in this direction is in progress. Propos-
als include approaches based on a configuration interac-
tion [19], the GW -method [38], and the LDA+U formal-
ism [39]. All of the proposed directions have their virtues
and drawbacks. It remains to be seen which one of them
turns out to be most suitable to deliver conductances of
real, large molecules which require a controlled handling
of electrode effects.
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