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The coupling-constant dependence is derived in time-dependent current-density-functional theory. The scal-
ing relation can be used to check approximate functionals and in conjunction with the adiabatic connection
formula to obtain the ground-state energy from the exchange-correlation kernel. The result for the uniform gas
using the Vignale-Kohn approximation is deduced.
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Time-dependent functional density-functional theory
�TDDFT� �1� is developing rapidly as a tool for predicting
electronic response to laser fields, both weak and strong �2�.
For weak fields, linear response applies, and perhaps the
most popular present application of TDDFT is in calculating
optical response of molecules, including transition frequen-
cies �3�. For strong fields, TDDFT allows prediction of many
properties in response to intense laser pulses, such as high
harmonic generation �4�. It seems likely that TDDFT will
play a key role in the emerging field of electron quantum
control �2�.

The time-dependent scheme can also be used for strictly
ground-state properties by using the adiabatic connection
formula to compute the static exchange-correlation energy
�5–7�. Although using TDDFT to calculate ground-state
properties might seem an unwarranted complication, the ap-
proximate exchange-correlation energy functional within this
scheme has many useful properties. For example, it correctly
describes the static correlation for bond dissociation �8� and
can be used to calculate accurately van der Waals dispersion
energies �9–12�.

To use TDDFT in the adiabatic connection formula, one
must generalize the response functions to arbitrary coupling
constant �. In DFT, this has a very precise meaning, as the
density is held fixed while the Coulomb repulsion between
electrons is multiplied by � �5,6�. Coordinate scaling is used
to derive the � dependence of quantities in DFT �13�, or
current DFT �14�. It leads to many useful results, such as the
virial theorem for the exchange-correlation energy �13� and
exact conditions on that energy �15�. It can be used to check
that approximate functionals have the right scaling behavior
�16�.

Time-dependent current density functional theory
�TDCDFT� is a more general scheme where the current den-
sity is the basic variational parameter instead of the density
and it can include arbitrary magnetic fields. Unlike TDDFT,
TDCDFT can be approximated with local or semilocal func-
tionals without any conceptual difficulty �17� and is now
being used to calculate excitations of quantum wells �18,19�,
atoms �20�, molecules �21–24�, and single molecule transport
�25,26�. Five years ago, the connection between coordinate
scaling and the coupling constant was derived for TDDFT
�27�. The present paper generates analogous results within
the more general framework of TDCDFT.

TDCDFT �28,29� starts from the Schrödinger equation for
N electrons in a vector potential aext,

� 1

2�
i=1

N

�p̂i + aext�r̂i,t��2 + V̂ext + V̂ee�� = i
�

�t
� , �1�

where V̂ext denotes the one-body potential, V̂ee= 1
2�i,j=1

N �r̂i

− r̂ j�−1, and p̂i=−i�̂i. We use atomic units throughout �e2

=me=�=1�, and there is an implicit speed of light constant,
c, included in the vector potential, i.e., B=c� �A, where B
is the usual magnetic field. The physical results from the
Schrödinger equation above are invariant under the gauge
transformation

v̄ext�r,t� = vext�r,t� +
���r,t�

�t
, �2�

āext�r,t� = aext�r,t� + � ��r,t� , �3�

where � is an arbitrary function. The gauge freedom can be
used, for example, to remove the scalar potential by choosing
���r , t� /�t=−vext�r , t�.

As the density is the conjugate variable to the scalar po-
tential vext�r , t�, the conjugate variable to the vector potential
is the current density

ĵ�r,t� =
1

2�
i=1

N

	v̂i�t���r − ri� + ��r − ri�v̂i�t�
 , �4�

where v̂i�t�= p̂i+aext�r̂i , t�. The basic theorem of TDCDFT
�28,29� states that, for a given initial wave function, a given
j�r , t� is generated by at most one aext�r , t�, up to a gauge
transformation. The density and the current are related
through the continuity equation

dn�r,t�
dt

+ � · j�r,t� = 0. �5�

To derive the coupling-constant dependence, we first
transform the coordinates to �ri , t�= ��ri� ,�2t�� in Eq. �1�,

� 1

2�
i=1

N � p̂i�

�
+ aext��r̂i�,�

2t���2

+ V̂ext,�� +
V̂ee�

�
���� =

i

�2

�

�t�
��� ,

�6�

where the prime means that the quantity is evaluated at
�r� , t��, , and the scaled normalized wave function is ���
=�3N/2���r1� , . . . ,�rN� ,�2t��. Consistent with Ref. �27�, we
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define the scaled density by n��r , t�=�3n��r ,�2t�. Now we
also define the scaled current density

j��r,t� = �4j��r,�2t� . �7�

Continuity �Eq. �5�� remains satisfied for all �. Multiplying
Eq. �6� by �2 and omitting the primes,

� 1

2�
i=1

N

�p̂i + �aext��r̂i,�
2t��2 + �2V̂ext,� + �V̂ee��� = i

�

�t
��.

�8�

We define aext
� �j ,�0� as the vector potential for a system with

modified coupling constant �, which gives rise to current j
starting from wave function �0. Thus we identify

aext
� �j�,�0,���r,t� = �aext�j,�0���r,�2t� . �9�

Although the � dependence of the external potentials in Eq.
�8� is generally complicated, by virtue of the one-to-one cor-
respondence between current and potentials �28,29�, the vec-
tor potential appearing in Eq. �8� is that unique potential
producing current density j�r , t� from the initial wave func-

tion �0, with electron-electron interaction �V̂ee.
Next we apply the same argument to the Kohn-Sham sys-

tem, where the electrons are noninteracting �V̂ee=0� and
aext�r , t� is replaced by an effective vector potential, as�r , t�,
defined to reproduce the same current as the interacting sys-
tem. Since our previous argument does not depend on the
interaction, as

��r , t� also satisfies Eq. �9�. And the Hartree
vector potential, aH�r , t�=−�tdt�dr�e2n�r� , t�� / �r−r��,
satisfies the same scaling. From the definition of the
exchange-correlation potential, as=aext+aH+aXC, we see
that it must obey the same scaling as the other vector poten-
tials,

aXC
� �j;�0,�0��r,t� = �aXC�j1/�;�0,1/�,�0,1/����r,�2t� ,

�10�

where there is also a functional dependence on the initial
Kohn-Sham wave function �0, from as�r , t�. This is the cen-
tral result of this work.

When the vector potential is irrotational, i.e., can be
gauge transformed to a scalar potential, the TDDFT � depen-
dence of Ref. �27� can be derived from these more general
results. From the gauge transformation, Eqs. �2� and �3�, one
can see that an irrotational vector potential is transformed to
a scalar potential through �a /�t=−�v. Inserting Eq. �10�, we
find

�vXC
� �r,t� = ��aXC��r,�2t�/�t = �3��vXC��r,�2t� ,

�11�

where ��=� /���r�. Requiring the potential to vanish far
from the system we recover vXC

� �r , t�=�2vXC��r ,�2t� from
Ref. �27�. This relation can also be derived directly from Eq.
�8� by the same arguments used for the vector potential.

While Eq. �9� represents the most general form,
applicable to all TDCDFT applications, we next look at
the special case of the linear response of an elec-
tronic system. The susceptibility, �, is usually defined by

�n�r , t�=dr�dt���r , t ;r� , t���v�r� , t��, where �n is a small
change in density due to a small perturbation in the potential,
�v. We sometimes represent the previous equation as �n
=���v. Since we now have a vector potential, we can gen-
eralize the linear response to �j=�J��a. We restrict ourselves
to applying �time-dependent� perturbations on systems for
which the external potentials are static. The response can
then be considered as a functional of the ground-state density
only, not the current.

The scaling relation for the linear-response exchange-
correlation kernel in TDDFT is given in Ref. �30�. In TD-

CDFT the tensor analog is defined as fXC
I =�aXC/�j and we

can find the scaling relation with the functional differentia-
tion

aXC
� �n + �n��r,t� − aXC

� �n��r,t�

= �	aXC�n1/� + �n1/����r,�2t� − aXC�n1/����r,�2t�


= �� dr�dt�fXC
I �n1/����r,r�,�2t − t���j1/��r�,t��

= �� ��3d r̄���2d t̄�fXC
I �n1/��„�r,�r̄,�2�t − t̄�…

�j�r̄, t̄ �
�4 .

Equation �10� implies

fXC
�
J �n0��r,r�,t − t�� = �2fXC

I �n0,1/��„�r,�r�,�2�t − t��… ,

�12�

or, in frequency space,

fXC
�
J �n0��r,r�,	� = fXC

I �n0,1/����r,�r�,	/�2� . �13�

These results are needed to implement the TDCDFT version
of the adiabatic connection formula as shown below.

In the special case of a uniform electron gas,

fXC
�
J �n0��q,	� =

1

�3 fXC
I �n0,1/���q

�
,

	

�2� . �14�

The above relation implies that, for a uniform gas, knowing
the exchange-correlation kernel as a functional of the density
is the same as knowing the coupling-constant dependence;
this was used for the equivalent TDDFT case �30,31�.

There have been various approximations proposed for fXC

�32–34� and fXC
I �35,36� since they are such important quan-

tities. The main TDCDFT approximate functional currently
in use is the Vignale-Kohn �VK� functional �17�. It is a gra-
dient expansion in the current density, and uses as input the
q→0 limit of both the longitudinal exchange-correlation ker-
nel, fXC

L �	� �which is precisely the scalar fXC�	� of TDDFT�,
and the transverse kernel, fXC

T �	� of the uniform gas. We
have checked that the VK functional respects the above scal-
ing relation, Eq. �13�, provided that fXC

	L,T
�	� used in con-
structing the functional also respects the appropriate scaling.
The most recent approximation for these kernel components
is that of Qian and Vignale �36�. We verified that it satisfies
Eq. �14�, assuming the Landau parameters are invariant un-
der simultaneous scaling of the density and the coupling con-
stant.
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Just as for the exchange-correlation potential, the scaling
relation for the exchange correlation can be derived from
TDCDFT. When the vector potential is irrotational, the scal-

ing relation of fXC
I reduces to that of the scalar kernel fXC

�30�, via

�� �� �fXC
� �n0��r,r�,	�

= 	2fXC
�
J �n0��r,r�,	�

= 	2fXC
I �n0,1/����r,�r�,	/�2�

= �4�� ��� �� fXC�n0,1/����r,�r�,	/�2� .

�15�

Then, since fXC→0 as r→
 for any finite system, integra-
tion implies that the scaling of the current kernel reduces to
the scaling of the scalar kernel, fXC

� �n0��r ,r� ,	�
=�2fXC�n0,1/����r ,�r� ,	 /�2�, as in Ref. �30�.

Similarly to the adiabatic connection formula used in
ground-state DFT �5–7,37�, which relates the exchange-
correlation energy to the susceptibility, we introduce the
adiabatic connection for the ground state of a system with a
static scalar potential using current DFT susceptibility

EXC = −
1

2
�

0

1

d��
−



 d	

2�i
Tr����J − n0�r�1� � TJ�; �16�

the trace is Tr�aJ�=dr�iaii�r ,r� and TJ=−�� Vee�� /	2. The
symbol 1 stands for ��r−r���ij. The tensor susceptibility is
related to the exchange-correlation kernel through �38�

��J = �s
J + �s

J ��TJ + fXC
�
J ���J , �17�

where �s
J is the tensor susceptibility for the Kohn-Sham sys-

tem

�s,ij�r,r�,	� = n0�r�1

+ �
�,

�f� − f�
��

*�r��� i��r��
*�r���� j����r��

	 − �� − ��� + i�
,

�18�

where f is the occupation number, i.e., 1 for an occupied
state, 0 for an unoccupied one, and � is infinitesimal. The
Kohn-Sham wave functions and energies are denoted by �
and �.

In the special case of a homogeneous gas, the longitudinal
and transverse responses decouple, and reordering the terms
within the trace of Eq. �16� shows that only the longitudinal

components contribute to EXC, i.e., it reduces to the usual
scalar case. Lein et al. �30� tested a variety of approxima-
tions to the scalar fXC for the uniform gas to see how well
they reproduced the known correlation energy. To perform
the same test for the VK functional, we first note that, al-
though VK is a gradient expansion in the current, yielding
terms of order q2, these terms are actually zero order in q
when transformed back to the equivalent scalar kernel via
Eq. �15�. So we find that VK, inserted in the current adiabatic
connection formula, reduces to inserting fXC

L �	�= f XC
unif�q

→0,	� in the usual scalar adiabatic connection formula.
This approximation was already tested by Lein et al., and is
labeled “local RA” in their work. �Although they used a
different parametrization �34� from QV �36�, the results are
unlikely to depend strongly on such details.� They found
about a factor of 2 reduction in error relative to the adiabatic
local-density approximation �ALDA�. We have thus demon-
strated that, for the special case of the uniform gas, the VK
approximation, inserted in the current adiabatic connection
formula, improves over ALDA.

Carrying out a calculation of Eq. �16� on molecules or
solids is much more computationally demanding than the
usual ground-state calculations with approximate exchange-
correlation energy functionals, but is probably not much
more expensive than the scalar case. Such calculations are
presently being performed �37,39� because the use of the
adiabatic connection formula correctly describes the disso-
ciation of molecules �8� and dispersion energies �9–12�. The
exchange-correlation kernel of TDCDFT being better suited
to local or semilocal approximations than the pure density
theory �17�, we would expect that it would supersede
TDDFT when used within the adiabatic connection formula.

To summarize, we have used coordinate scaling to derive
the coupling-constant dependence of the exchange-
correlation potential in TDCDFT. We have derived the adia-
batic connection formula for TDCDFT, and shown how the
VK approximation performs for a uniform gas. We have also
given explicit formulas relating both potentials and kernels
in TDCDFT to their couterparts in TDDFT. Given both the
recent use of TDDFT exchange-correlation kernels in the
adiabatic connection formula, for calculating bond dissocia-
tion curves, and the use and tests of TDCDFT for excitations
in which TDDFT has shown limitations, it is clear that an
important application of this work is likely to be realized in
the near future.
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