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We illustrate the main features of a recently proposed method based on ensemble density functional theory
to divide rigorously a complex molecular system into its parts (J. Phys. Chem. A2007, 111, 2229). The
illustrative system is an analog of the hydrogen molecule for which analytic expressions for the densities of
the parts (hydrogen “atoms”) are found along with the “partition potential” that enters the theory. While
previous formulations of chemical reactivity theory lead to zero, or undefined, values for the chemical hardness
of the isolated parts, we demonstrate they can acquire a finite and positive hardness within the present
formulation.

1. Introduction

In a series of recent papers,1-3 two of us have developed a
rigorous method for dividing a complex system into its parts
based on its electronic density.4-8 The underlying theory,
partition-theory (PT), was used to construct a formulation of
chemical reactivity theory (CRT)3 which, for the first time, is
consistent with DFT8,9 and is richer in structure than the
preexisting CRT.10-13

In PT,1-3 a sharp definition of the individual parts into which
the whole system is partitioned is achieved first by selecting
the nuclei of each putative part and maintaining these in the
positions in which they occur in the whole and then requiring
that the sum of the electron densities of the parts, each of which
is treated as though isolated, add up exactly to the electron
density of the whole (the density constraint). The electron
densities of the parts are then to be determined by minimizing
the sum of the density functionals of the individual parts with
respect to the densities of the parts subject to the density
constraint. The density functional used, that of ref 8 (PPLB),
allows for the existence of noninteger numbers of electrons
on each part, necessary, e.g., for the definitions of electro-
negativity12 and hardness,13 for key indices of chemical reactiv-
ity,3 and for incorporating covalent bonding between inequiv-
alent parts.

The minimization proceeds via a Legendre transformation,
which introduces a partition potential14 VP(r ) as the Lagrange
multiplier of the density constraint. Thus, the formalism can
become computationally complex. First the electron density of
the whole system must be determined. Then, the densities of

the parts must be determined simultaneously withVP, all of
which is required to set the stage for the determination of mutual
reactivities between parts, though certain self-reactivities can
be determined for each species alone without reference to a
larger system.3

Accordingly, in the present paper, we develop the partition
theory in detail for an extremely simple system to exhibit its
main features explicitly. The illustrative system is an analog of
the hydrogen molecule in which the electrons move in one
dimension along the molecular axis without interacting, and the
nuclear Coulomb potentials are replaced by attractiveδ-function
potentials. As a consequence of these extreme simplifications,
many quantities of interest can be determined analytically in a
transparent manner, including the electron density of the
molecule, of its parts (the “atoms”), and the partition potential
at all internuclear separations.

In section 2, the model is defined and the molecular density
obtained. In section 3, the parts are defined and shown to have
one electron each, and a polar representation for their wave
functions is found which facilitates the minimization. In section
4, the minimization is carried out, resulting in an Euler equation
for the polar angleâ(x) of that representation.â(x) is found in
section 5 and used to determine the partition potentialVP in
section 6. The principle of electronegativity equalization
formulated in refs 2 and 3 is shown to hold in section 7. Also
in section 7, the hardness3 of the isolated H atom is calculated,
shown to be nonzero, and correlated with the strength with
which its electron is bound. Thus, despite the fact that the model
is a caricature of the real system, meaningful features of the
partition theory are indeed illustrated by it, as discussed in the
concluding section, 8.† Part of the “Giacinto Scoles Festschrift”.
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2. 1D-H2: Independent Electrons Moving in Attractive
δ-Function Potentials in One Dimension

Our task is to partition an analog of the H2 molecule15 in
which two electrons move independently inδ-function nuclear
potentials in one dimension into parts, analogs of H atoms. Each
H atom has, by symmetry, only one electron, so the need for
the PPLB density functional is avoided. Indeed no explicit use
of density-functional theory is required for either the molecule
or the atoms. Our partition will therefore parallel the wave
function approach of Rychlewski and Parr,16 where the H2
molecule was partitioned by requiring that the pseudo-H atom
energies were minimally promoted from the ground state values
of the unperturbed H atoms and their densities added up to the
correct molecular density.

The ground-state wave functionψ0 and energyE0 of an
isolated H atom are (atomic units are used throughout):

In eq 2.1,-Z is the strength of theδ-function potential. To
draw the analogy closer to real hydrogenic atoms, one could
equateZ to the nuclear charge.

The ground-state energyE(N ) 1) of one electron moving
independently in the twoδ-function potentials centered atx )
(a is E(N ) 1) ) -κ2/2, whereκ satisfies

The corresponding wavefunction is

where

Note thatκ f 2Z asa f 0 (united atom limit) andκ f Z as
a f ∞ (separated atom limit).

The two-electron molecular electron density is given by

and the total energy of the molecule is

where N is the number of electrons in the molecule. The
chemical potential of the molecule is therefore

3. Parity Decomposition

We now partition the molecule into two partsR ) 1,2, each
having a real one-electron wave functionψR, localized around
-a and+a respectively, so thatnM(x) is given by

wherenR(x) is the electron density of each partR ) 1, 2 treated
independently. The “atomic” wavefunctions are given by

They are mirror images of each other

and both are normalized.
We now decompose theψR into their symmetric,ψs(- x) )

ψs(x), and antisymmetric,ψa(- x) ) - ψa(x), parts by a rotation
within the function space they span

The rotation leaves “lengths” within the space invariant so
that

We next introduceâ ) â(x), a polar angle in the function space

so that

Because theψR values are non-negative,|â| cannot exceedπ/4.
Furthermore,â must be an odd function ofx, to ensureψR is
also odd. This also guarantees normalization ofψR.

4. The Euler Equation for â(x)

To apply PT,2,3 begin with the original Hamiltonian

Then divide the system into overlapping regions, each with a
given number of electrons. In this case, we choose one electron
on the left, and the other on the right. Thus, we have two
1-electron problems:

The PT problem is to minimize

subject to normalization of the wavefunctions but also to the
constraint that the total density equal the original molecular
density, eq 3.1. (Without the latter constraint, we’d obviously
find ψ1,2 ) ψ0(x ) -a)). In the polar representation of section
3, both density and normalization constraints are automatically
satisfied, so the partition problem becomes simply minimizing
ε as a functional ofâ. That functional is

ψ0(x) ) xZe-Z|x| (2.1)

E0 ) -Z2/2 (2.2)

κ ) 2Z/(1 + tanhκa) (2.3)

ψM(x) ) Beκ(a-|x|) , |x| > a

) B
coshκx
coshκa

, |x| < a} (2.4)

B ) κ
1/2[1 + κa

cosh2 κa
+ tanhκa]-1/2

(2.5)

nM(x) ) 2|ψM(x)|2 (2.6)

EM(N ) 2) ) 2EM(N ) 1) ) - κ
2 (2.7)

µM ) E(2) - E(1) ) E(1) ) - κ
2/2 (2.8)

nM(x) ) n1(x) + n2(x) (3.1)

ψR(x) ) xnR(x) (3.2)

ψ2(x) ) ψ1(- x) (3.3)

ψ1 ) 1

x2
(ψs + ψa), ψ2 ) 1

x2
(ψs - ψa) (3.4)

ψs ) 1

x2
(ψ1 + ψ2), ψa ) 1

x2
(ψ1 - ψ2) (3.5)

nM ) ψs
2 + ψa

2 (3.6)

ψs ) xnMcosâ, ψa ) xnMsin â (3.7)

ψ1,2 ) xnM/2(cosâ ( sin â) (3.8)

H )
1

2
∑

i)1,2

pi
2 - Z ∑

i)1,2

[δ(xi - a) + δ(xi + a)] (4.1)

HR ) p2

2
+ VR, V1,2 ) - Zδ(x - a) (4.2)

ε ) (ψ1, H1ψ1) + (ψ2, H2ψ2) (4.3)

ε ) ∫dx {1
2[14 n′2M

nM
- 1

2
n′′M + nM(â′)2] +

1
2
nM[(V1 + V2) + (V1 - V2) sin 2â]} (4.4)
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Varying it yields

Integrating by parts, as usual, leads to

Forε to be stationary with respect to arbitrary variationsδâ of
â, both terms contributing toδε in eq 4.6 must vanish. The
Euler equation which results from the vanishing of the second
term in eq 4.6 is

The vanishing of the first term in eq 4.6 sets the boundary
condition at infinity on the Euler equation, eq 4.8. There are
two possibilities, the vanishing ofâ′ at infinity or the fixing of
â there so thatδâ must vanish. As we shall see in section 5,
imposing the latter results in an unacceptable divergence inâ′
at infinity. We therefore impose the boundary condition

5. Solving for â(x)

Equation 4.8 becomes

subject to the boundary conditions in eq 4.9 and

The general solution of (5.1) is

wherec1 andc2 are constants. As implied above in section 4, if
c1 does not vanish,â′ diverges exponentially at infinity,
according to eq 5.4, becausenM goes exponentially to zero, so,
in accordance with eq 4.9,c1 vanishes for|x| > a, andâ(x) is
constant there

For |x| < a, we can rewrite eq 5.6 as

which implies that

From (5.8) we can relatec1 to âa via eq 2.6

Inserting (5.9) forc1 into eq 5.4 and the result into the BC (5.2)
or (5.3) produces an equation forâa

Inserting eqs 5.9 and 2.6 into eq 5.7 yields the remarkably simple
result

Equations 5.6, 5.10, and 5.11, together with eq 2.3, provide a
complete analytic solution forâ(x) and through eqs 3.5 and 3.8
for theψR. In Figure 1, we shownM, n1, andn2 vs x for Z ) 1
anda ) 1. We see that each localized density spreads into the
neighboring region and looks quite similar to an atomic density.
To see the differences from isolated atomic orbitals, in Figure
2 we make the distance smaller (a ) 0.3), and show the right-
side “atomic” orbitalψ1(x) (solid line) and compare it with the
pure exponential orbitalψ0(x) of eq 2.1 (dashed line). The orbital
ψ1 resemblesψ0 and tends to it for largea, but is distorted
with respect to it for smalla. Its maximum is still a cusp atx
) a, but it also shows a second cusp atx ) -a. Sinceκ > Z
always, (eq 2.3), and eitherψ1 or ψ2 is proportional toψM for
|x| > a, whereâ ) âa is constant, the PT atomic densities and
orbitals decay more rapidly than isolated atoms. Since their
normalization is the same, this in turn means enhanced density
between the “nuclei” , due to bonding. In Figure 3, we show
â(x) for Z ) 1, anda ) 0.1, 1, and 10. Qualitatively, from eq
5.11

and if Za . 1 (large separation),âa = π/4 while if Za , 1
(small separation),âa = a. The interpretation of these results is
given in terms of (3.8), outside the bond region. Ifâa is small,
both “atoms” share the density in each outside region. But if
âa is close to π/4, each atom dominates on its own side,
consuming the entire density there.

Atomic densities with the same qualitative features were
obtained for the pseudo-H atoms in the partitions of the H2

molecule performed by Palke17 and Guse,18 and discussed
subsequently by Parr.19 Our work is particularly close to that
of Guse,18 since, along with the pseudo-atom densities, he also
obtained the partition potential for fixed internuclear separation,
for both H2 and H2

+. We find here analytic solutions for the

â(x) ) ∫-a

x
dx′

c1

nM(x′)
- âa (5.7)

âa ) 1
2∫-a

a
dx

c1

nM(x)
(5.8)

c1 )
2κB2âa

cosh2κa tanhκa
(5.9)

âa ) Z
2κ

sinh 2κa cos 2âa (5.10)

â(x) ) tanhκx
tanhκa

âa, 0 < |x| < a (5.11)

â(x) = âa
x
a
, x < min(1/κ, a)

) âa, x > min(1/κ, a)

δε ) ∫ dx {nMâ′δâ′ + (V1 - V2)nM cos 2âδâ} (4.5)

δε ) 2nâ′δâ|x)-∞
x)+∞ +

∫ dx{- d
dx (nM

dâ
dx) + (V1 - V2)nM cos 2â}δâ (4.6)

- d
dx (nM

dâ
dx) + (V1 - V2)nM cos 2â ) 0 (4.7)

d
dx (nM

dâ
dx) + Z(δ(x - a) - δ(x + a)) nM cos 2â ) 0 (4.8)

â′(x) ) 0, |x| ) ∞ (4.9)

d
dx (nM

dâ
dx) ) 0, |x| * a (5.1)

â(a-) ) â(a+) ≡ âa

â′(a-) - â′(a+) ) Z cos 2âa
} x ) a (5.2)

â(- a+) ) â(- a-) ) - âa

â′(- a-) - â′(- a+) ) Z cos 2âa
} x ) -a (5.3)

dâ(x)
dx

)
c1

nM(x)
(5.4)

â(x) ) ∫x
dx′

c1

nM(x)
+ c2 (5.5)

â(x) ) âa x > a
) - âa x < - a} (5.6)
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quantities he found numerically, and we use them to compute
chemical reactivity indices within the new formulation of CRT.3

6. The Partition Potential

The one-electron wave functionsψ1(x) and ψ2(x) are not
eigenstates of the part-HamiltoniansH1 andH2 of eq 4.2. The
natural question arises: What are they eigenstates of? The
partition theory of refs 1-3 dictates that they are eigenstates
of the modified single-electron HamiltoniansHR

P ) p2/2 + VR,
R ) 1,2:

where the eigenvalue, regardless of the partR, is precisely
equal to the molecular chemical potentialµM of eq 2.8. For each
R, VR can be viewed as the exact version of the “effective
external potential” concept discussed by Ayers and Parr in ref
20. The potentialVP(x) is thepartition potentialthat we now
construct explicitly. Summing overR and dividing byψ1 + ψ2

yields a symmetric expression forVP

ψ1 andψ2 can be reexpressed in terms ofψs andψa, eq 3.5.
Noting that

using eq 3.7 forψs,a, and taking theδ-function character ofVR
into account results in

The molecular wave functionψM satisfies the Schro¨dinger
equation

which can be used to transform eq 6.5 to

Using eq 6.4, the Schro¨dinger-like equation forâ, eq 4.8, can
be rewritten as

Multiplying eq 6.8 by tanâ, invoking the oddness ofâ and the
δ-functions inV1 andV2, and subtracting the result from eq 6.7
yield for VP

Inserting our previous result forâ(x), eqs 5.6 and 5.11, into eq
6.9 yields an explicit result forVP

whereθ(y) ) 0 for y < 0, 1 for y > 0 is the Heaviside step
function. Equation 6.10 shows thatVP(x) vanishes for|x| > a,
has attractiveδ-functions at (a whose weights increase
monotonically from 0 to1⁄2Z asZa decreases from infinity to
zero, and has an attractive inverse cosh4(x) component for|x|
< a. For the united atom case,Za V 0, V1 + VP ) V2 + VP ) 2V1

simply reproduces the molecular potential, andψ1 ) ψ2 ) ψM

as they should. Figure 4 displaysVP vs x for fixed Z ) 1 and
representative values ofa. The partition potential is almost flat
for small separations, a wide well in between the two atoms
for intermediate separations, and a narrow well that is far from
both atoms at large separations. Figure 5 displays the weights
of the δ-function components ofVP divided byZ vs a.

As shown in ref 3, the Kohn-Sham (KS) HOMO eigenvalue
of each part must be identical to the chemical potential of the
whole in the added presence ofVP. In our simple example, the
KS potential of a part reduces to the nuclearδ-function potential
of one H atom. AddingVP to the nuclear potential must therefore
transform the HOMO energyE0, eq 2.2, of the isolated atom to
the more negative HOMO energy of the moleculeE(N ) 1) )
-κ2/2, which is its chemical potential (eq 2.8).VP must be
attractive to do that, which it is, from eqs 6.9 and 6.10. In our
simple example,VP makes theδ function of the atom more
negative, adds the attractive inverse cosh4 potential between the
atoms, and adds an attractive ghostδ function at the position

Figure 1. Molecular densitynM(x) (solid), and “atomic” densitiesn1-
(x) andn2(x) (dotted) forZ ) 1 anda ) 1.

Figure 2. Right-side “atomic” orbitalψ1(x) (solid) and pure exponential
orbital ψ0(x) (dashed) forZ ) 1 anda ) 0.3.

Figure 3. â(x) vsx, as given by eq 5.11, for fixedZ ) 1 and 3 different
values ofa.

VP ) µM +

1
2ψM cosâ

d2

dx2
(ψM cosâ) - 1

2
(V1 + V2)(1 + tanâa) (6.5)

- 1
2

d2ψM

dx2
+ (V1 + V2)ψM ) µMψM (6.6)

VP ) - 1
2{[ 2

ψM

dψM

dx
dâ
dx

+ d2â
dx2] tanâ +(dâ

dx )2} +

1
2

(V1 + V2)(1 - tanâa) (6.7)

- 1
2 [ 2

ψM

dψM

dx
dâ
dx

+ d2â
dx2] + 1

2
(V1 - V2) cos 2âa ) 0 (6.8)

VP ) - 1
2 (dâ

dx)2
+

1
2
(V1 + V2)[1 - (1 + cos 2âa) tanâa] (6.9)

VP )
µMâa

2

tanh2
κa

θ(a - |x|)
cosh4 κx

+ 1
2
(V1 + V2)[1 - sin 2âa] (6.10)

(p2

2
+ VR)ψR ) µMψR, R ) 1,2 (6.1)

VR ) VR + VP (6.2)

VP ) µM - 1
ψ1 + ψ2

p2

2
(ψ1 + ψ2) -

V1ψ1 + V2ψ2

ψ1 + ψ2
(6.3)

nM ) 2ψM
2 (6.4)
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of the other atom to force the wave function to decay sufficiently
rapidly outside the molecule.

In the limit of infinite separationV1 + VP reduces toV1 and
V2 + VP reduces toV2, except for|x| < a, where the attractive
potential

persists. This potential has at least one additional bound state,
but with binding energy less than|E0|. Thus, it is unoccupied,
and does not affect our results. Thea-dependence of this state’s
energy is shown for fixedZ in Figure 6. For very large
separation between the atoms, it is localized at the center of
the inverse cosh4(x) component ofVP, but it rapidly delocalizes
for smaller separations. In particular, forZ ) 1, it is highly
delocalized whena < ∼ 1.4, where it vanishes into the
continuum.

7. Susceptibility and Hardness

Having found the partition potential, we now illustrate the
construction of reactivity indices. In the CRT of ref 3, each

partR is represented by an ensemble of PPLB type containing
contributions with only two integer electron numbers,pR and
pR+1. The principle of electronegativity equalization is expressed
as the equality of the chemical potential of each part in the
presence of the partition potential,µR

P, to the chemical poten-
tial of the molecule,µM

The µR
P are defined as the difference between the ground state

energies ofR for pR + 1 andpR electrons in the presence ofVP

and similarly forµM

In our simple example,µM is given in eq 2.8. The relevant
value of pR is zero, so thatµR

P is just ER
P(1), the lowest

eigenvalue of

with HR given by eq 4.2 andVP by eq 6.10. The explicit
construction of VP in section 6, not possible in general,
guarantees that eq 7.1, and therefore that electronegativity
equalization holds. In the general case, a modification of the
Car-Parrinello scheme21,22guarantees electronegativity equal-
ization.

The susceptibility of partR measures the response of the
density of partR to a small change in the potentialVR of eq
6.2:

For two electrons, it is simple to show that

whereGR(µM; x, x′) is given by theE f µM limit of

andGR is the Green’s function for partR:

Figure 7 shows the susceptibility of the right “atom” for
various interatomic separations when the perturbing potential
is added atx0 ) 3 (the numerical calculations were done as
described in the Appendix). Electron density flows away from
x0, building up a peak atx0 (positive because of the minus sign
in the definition oføR, eq 7.5), and a negative peak at the closest
maximum of the charge density, i.e., ata. With the analytic
Green function of an isolated “atom”23 and eqs 7.6-7.7,øR can
be obtained analytically in the large-separation limit:

Figure 4. Partition potentialVP, eq 6.10 for fixedZ ) 1 and 3 different
values ofa : a ) 0.1 (upper panel),a ) 1 (middle) anda ) 10
(bottom). Theδ-functions at(a are indicated by arrows.

Figure 5. Weights of theδ-function components ofVP divided byZ
as a function ofa for fixed Z ) 1, from the second term of eq 6.10.
The inset showsâa vs a.

Figure 6. Energy as a function ofa, in atomic units, for the two lowest-
energy solutions of eq 6.1.Z ) 1for this plot.

VP(x) )
π2E0

16
1

cosh4 Zx
, |x| < a (6.11)

µR
P ) µM, ∀R (7.1)

µa
P ) ER

P(pR + 1) - ER
P(pR) (7.2)

µM ) EM(NM) - EM(NM - 1) (7.3)

HR
P ) HR + VP (7.4)

øR(x,x′) ) -
δnR(x)

δVR(x′)
(7.5)

øR(x,x′) ) - 2ψR(x)GR(µM; x, x′)ψR(x′) (7.6)

GR(E; x x′) ) GR(E; x, x′) -
ψa(x)ψ(x′)

E - µM
(7.7)

GR(E; x, x′) ) [E - (p2

2
+ VR)]-1

(x, x′) (7.8)

øR(x,x′) ) 2e-Z|x|{e-Z|x-x′| - [12 + Z(|x| + |x′|)] ×

e-Z(|x|+|x′|)}e-Z|x′| (7.9)
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We now construct the susceptibility of the whole system,øP,
by adding together the susceptibilities of the parts

The inverse oføP determines the hardness matrixηRâ as shown
in refs 2 and 3:

where the Fukui function of partR, fR(x)

is simply equal toψR
2(x) for two noninteracting electrons, since

nR(NR, x) ) NRψR
2(x) (see also refs 24 and 25). Thus, we have

Figure 8 shows the self-hardnessηRR for an isolated H-
“atom”, as a function ofZ. The constancy of the hardness for
largeZ can be understood qualitatively as follows. The inverse
susceptibility has units of energy times length squared. When
Z is large, it establishes a length scale inversely proportional to
Z, and an energy scale proportional toZ2, so theZ dependence
cancels out in the inverse susceptibility. To obtain the hardness,
we multiply øP

-1 on the left and right by the Fukui function,

which has the dimension of inverse length. Integrating over
position on the left and right then cancels out theZ dependence
arising from the Fukui functions, and the result is aZ-
independent hardness.

Do real systems follow such behavior? There is no indication
that they do (see discussion of ref 26 about hardness of
isoelectronic series), but the possibility is not ruled out either.

8. Conclusions

Despite the extreme simplicity of the 1D-H2 model analyzed
herestwo non-interacting electrons moving in 1D under the
influcence of two equivalent attractiveδ-function potentialss
that model allows us to illustrate the essential features of our
partition theory and of key indices of our chemical reactivity
via straightforward analysis and easy computations.

We have shown that the electron density of the molecule can
be decomposed exactly into a sum of atomic densities, a rigorous
solution of the “atoms-in-molecules” problem.27

Electronegativity equalization28 is built into the partition by
the symmetry of the problem, so this homonuclear model does
not illustrate that principle as well as a heteronuclear model
would. Nevertheless, the current example does illustrate a key
feature of the new CRT, the chemical context dependence of
the reactivity indices, in this case the electronegativity of a part,
introduced through the presence ofVP in the Schro¨dinger
equation forψR, cf. eq 7.4. It also demonstrates that the partition
potential remains finite as two atoms separate, but has no effect
on the partitioning after separation.

Another serious shortcoming of the earlier formulations of
DFT-based CRT is the vanishing of the hardness, defined as
the second derivative of the ground state energy with respect
to electron number. To compensate for this deficiency, the
second derivative is commonly replaced by the second finite
difference of the energy with respect to integer number,I-A,
whereI is the ionization energy at given integer number andA
is the corresponding electron affinity.10,11 Even that cure fails
in the present case of noninteracting electrons for whichI ) A
and the redefined hardness vanishes. However, we have shown
explicitly here that the self-hardness, as defined in ref 3, of an
isolated “atom” is positive. Interestingly, the hardness saturates
as the ionization energy of the “atom” increases, raising the
very interesting question of whether such a saturation of
hardness with ionization energy exists in real systems. For this
model, a strong positive correlation between hardness and
ionization energy exists only over the limited range ofZ between
0.4 and 0.7.
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This paper is dedicated to Professor Scoles on his 72nd birthday.
Although all three authors are practitioners of the black art of
density functional theory (not one of Giacinto’s favorite
methods, except perhaps to complain about), in his honor this
work in no way uses or depends on DFT but is of very general
chemical interest. We therefore have a small hope that he might
like it.

Appendix

Numerical Calculation of the Susceptibility. We first
obtainedGR(E; x, x′) according to the following well-known
prescription29

Figure 7. Susceptibilityø(x0,x) of the right “atom” obtained from eqs
7.6-7.8, as indicated in the Appendix, whenx0 is set to 3 au. Each
panel corresponds to a different value of the internuclear distance,a.
The lower-left panel showsø(x0,x) when a is just below (solid) and
just above (dotted)x0.

Figure 8. Self-hardness vsZ in the separated-atom limit (atomic units).

øP(x, x′) ) ∑
R

øR(x, x′) (7.10)

ηRâ ) ∫∫ dx dx′ fR(x)øP
-1(x, x′)fâ(x′) (7.11)

fR(x) )
dnR(Na, x)

dNa
(7.12)

ηRâ ) ∫∫ dx dx′ ψR
2(x)øP

-1(x, x′)ψâ
2(x′) (7.13)

GR(E; x, x′) ) 2
ψR,L(E, x<)ψR,R(E, x>)

W[ψR,L, ψR,R]
(A.1)
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wherex< ) inf(x, x′), x> ) sup(x, x′)

and the orbitalsψR,L andψR,R are solutions of

satisfying left and right-boundary conditions, respectively:

The potentialVR(x) of eq A.3 is given by eq 6.2, with the
partition potential VP(x) of eq 6.10. The computations of
ψR,L,R(E,x) were carried out atE ) µM ( ∆E with ∆E
chosen for numerical convenience, i.e., large enough so that
supx,x′|GR(µM (∆E)| does not become so large as to be
inconvenient on the one hand, and small enough so that
(1/2)[GR(µM + ∆E) + GR(µM - ∆E)] does not differ significantly
from its limit at∆E V 0. We then calculatedGR of eq 7.7 as
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W[ψR,L, ψR,R] )
ψR,L(E, x)ψ′R,R(E, x) - ψ′R,L(E, x)ψR,R(E, x) (A.2)

[p2

2
+ VR(x)]ψR,L,R(E, x) ) EψR,L,R(E, x) (A.3)

|ψR,L(E, x)| V 0, x V - ∞ (A.4)

|ψR,R(E, x)| V 0, x v ∞ (A.5)

GR(µM; x, x′) )
1
2
[GR(µM + ∆E; x, x′) + GR(µM - ∆E; x, x′)] (A.6)
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