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Communication: Ionization potentials in the limit of large atomic number
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By extrapolating the energies of nonrelativistic atoms and their ions with up to 3000 electrons
within Kohn–Sham density functional theory, we find that the ionization potential remains finite
and increases across a row of the periodic table, even as Z → ∞. The local density approxima-
tion for the exchange contribution becomes more accurate (or even exact) in this limit. Extended
Thomas–Fermi theory matches the shell average of both the ionization potential and density change.
© 2010 American Institute of Physics. [doi:10.1063/1.3522767]

A central problem of electronic structure is the calcu-
lation of the ground-state energy of the electrons of any
atom, molecule, or solid, within the nonrelativistic Born–
Oppenheimer limit. Density functional theory (DFT) is a pop-
ular choice, balancing computational efficiency with useful
accuracy. The original DFT was that of Thomas1 and Fermi,2

TF theory, in which a local density approximation is made
for the kinetic energy and the electron–electron repulsion is
approximated by the simple Coulomb energy of the charge
density. In the 1970s, Lieb and co-workers3 showed that the
TF energy becomes relatively exact for neutral matter as
Z → ∞ in a specific way. The energy, E , grows in magni-
tude as Z7/3, where Z is the total charge. For atoms and their
ions, the leading corrections in powers of Z−1/3 were found
by Scott,4 Dirac,5 Schwinger and others,6, 7 as summarized
by Englert.8 These corrections are given exactly by extended
Thomas–Fermi (ETF) theory, which includes both the gradi-
ent correction for the kinetic energy (one-ninth the von Wei-
sacker functional9), and the local density approximation for
exchange (LSDX10).

However, TF theory and its extensions are insufficiently
accurate to predict chemical properties.11 Modern DFT uses
the Kohn–Sham (KS) scheme, in which only a very small
fraction of the total energy, the exchange-correlation (XC),
need be approximated. But the idea of asymptotic correct-
ness was recently extended to KS, relating the success of
exchange generalized gradient approximations (GGAs) such
as Perdew–Burke–Ernzerhof (PBE) (Ref. 12) for total ener-
gies to their recovery of the (Z1) term in the expansion of
the exchange energy.13, 14 The relation between semiclassi-
cal and local density approximations15 contributed to the cre-
ation of the recent PBEsol (Ref. 16) and revTPSS (Ref. 17)
functionals.

But total electronic energies are irrelevant to chemistry.
Only differences matter, such as the ionization potential of an
atom (I is the energy difference between the positive ion and
the neutral) or the dissociation energy of a chemical bond.
How relevant are asymptotic expansions for these quantities?
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The asymptotic expansion for E is in powers of Z−1/3, so
if I remains finite as Z → ∞, the neutral and ion energies
must agree for the first seven powers in such an expansion, a
truly remarkable balancing act between quantum effects, the
Pauli principle, and the Coulomb forces of nuclear attraction
and interelectron repulsion. That I remains bounded has been
proven within Hartree–Fock.18 In this paper, we demonstrate
by both calculation and analysis that (i) I has no single limit
as Z → ∞, but remains column dependent; (ii) each column
has a finite limit; (iii) the local (spin) density approximation
(LSD10) of KS theory becomes very accurate (if not exact) for
I for certain cases; (iv) ETF theory becomes very accurate (if
not exact) for the average of I over an entire shell; (v) the
shell-averaged difference in density between the neutral and
its ion approaches that of TF.

Our most important results are shown in Fig. 1. We plot
I from various calculations, extrapolated to infinite row num-
ber, versus the column number for main-group elements (s
and p valence shells). We calculate exchange exactly,19, 20 us-
ing the optimized effective potential (OEP, which here should
be indistinguishable from Hartree–Fock21), extrapolating all
values to Z → ∞. At the exchange level, LSD and PBE are
almost exact for p-valence elements, and are highly accu-
rate but inexact for the s-valence cases. Furthermore, ETF
yields8 a single number (3.15 eV), very close to the s- and p-
average (3.02 eV). When correlation is included, gradient ef-
fects are slight, and it is in the regime of large electron number
that approximate density functionals work best, sometimes
exactly.13, 15, 22 We speculate that LSDX on accurate densities
becomes almost exact in this limit for p-shell cases, that ETF
is exact for some shell-average, and that our XC results are ex-
tremely accurate and practically impossible to calculate with
any other method.

To understand why local functionals become accurate in
this limit, begin with total energies of neutral atoms, whose
large-Z expansion is

EQ(Z ) = −c(0)
q Z7/3 + 0.5 Z2 − c(2)

q Z5/3 + · · · , (1)

where EQ(Z ) is the energy of an atom with atomic num-
ber Z and charge Q, and the c( j) are coefficients depending
on the degree of ionization, q = Q/Z . We use atomic units
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FIG. 1. Ionization potentials of the main groups in the limit of large row
number of the periodic table, calculated using exact exchange, the local (spin)
density approximation, and PBE; ETF denotes extended Thomas–Fermi
theory.

throughout. The neutral coefficients were derived by semi-
classical analysis.6, 7 The TF energy is exactly −c(0)

q Z7/3.
The second term4 comes from the region around the nucleus
and must be treated quantum mechanically. The third term is
derivable in ETF theory,6 of which 2/11 arises from the gra-
dient correction to the kinetic energy, and 9/11 from LSDX.

The extension of these ideas to I has proven more dif-
ficult. Terms of higher order than those shown in Eq. (1)
oscillate7 with Z , as a precursor to the periodic variation of
chemical properties that is missed by ETF but well-described
in KS DFT. The oscillations in I dominate over trends with
Z−1/3. While numerous studies exist in the literature23 for
fixed electron number N with Z → ∞, we are interested
in I (Z ) = E1(Z ) − E0(Z ) as Z → ∞. Within TF theory,
Lieb proved24 that I does not grow with Z , and by con-
sidering c(0) as q → 0, Englert showed I TF → 3�−2/3/7a
≈ 1.29 eV, where � = 32.729 416 is a known constant,8 and
a = (9π2/128)1/3. Even this simple result requires explana-
tion, because μ, the chemical potential, is zero for the neu-
tral atom in TF theory, suggesting I should be too. But the
TF energy is the smooth envelope of EQ(Z ) as a function
of Q, whereas the true energy consists of line segments be-
tween integer values.25 Thus μ = ∂ E/∂ Q = −I for the exact
system, but the TF energy behaves as Q7/3 for small Q. So
μT F = 0, but the better value of I T F is the energy difference8

with Q = 1.
Next we discuss KS DFT, in which the (noninteracting)

kinetic energy is not approximated, but is found exactly from
the KS orbitals. We perform KS self-consistent calculations
for atoms and ions up to 2938 electrons using LSD and PBE
XC functional approximations, as well as the exact OEP ex-
change. These were done using the Engel code,21 but with
tightened convergence criteria and maximum numbers of or-
bitals, and a logarithmic radial grid with 800 points. In Fig. 2
we show I vs Z−1/3 for each main-group column of the pe-
riodic table. In all cases, the behavior is almost linear as a
function of Z−1/3 for all Z � 169, so we extrapolated these
curves using a parabolic fit in Z−1/3 and found the ioniza-
tion energy for Z → ∞ as shown in Fig. 1. The spherical
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FIG. 2. OEP ionization potential I (in eV) vs Z−1/3 for main groups of the
periodic table. Also shown with green lines is the noble atoms LSDX curve.

approximations of the density (LSD, PBE) and of the poten-
tial (OEP), used in the Engel code (see Ref. 20), give errors
less than 0.1 eV for I . We use electronic configurations based
on the Aufbau principle and Madelung rule.26 For the noble
gases, Z = n(n2 + 6n + 14)/6 − �(n)(n/2 + 1), where n is
the row number and �(n) = 0 for even and 1 for odd rows.
The greatest n in our calculations is 25.

To understand in detail the results shown in Fig. 1, which
are also tabulated in Table I, we begin at the exchange level.
Both PBE and LSD exchange are almost identical to the OEP
values for the p-group elements, with a maximum differ-
ence between them of 0.02 eV, and of either from OEP of
0.08 eV. This is not so for the alkalis and alkali earths, pre-
sumably because they have only one or two electrons out-
side a closed shell, with accompanying self-interaction er-
ror of approximate functionals. But, between group II (alkali

TABLE I. Extrapolated ionization potentials I (eV) of main group ele-
ments. Mean absolute differences (m.a.d.) are taken relative to OEP for
X, and PBE for XC. The last two columns show the electron affinity A
(eV) (estimated as I − 1/〈r〉 in atomic units) and the average radius 〈r〉
(bohr) of the ionization density, in the Z → ∞ limit, using PBE. For ETF,
I = 3.15 eV, 〈r〉 = 10.58 bohr (Ref. 8), and A = 0.58 eV.

X XC

Group LSD PBE OEP LSD PBE A 〈r〉

I 1.56 1.66 1.42 1.90 1.77 − 0.15 14.13
II 1.77 1.89 1.65 2.41 2.27 · · · 13.56

s- m.a.d. 0.13 0.24 0 0.13 0

s- avg 1.67 1.78 1.54 2.16 2.02 − 0.15 13.85

III 2.64 2.64 2.62 3.25 3.11 0.43 10.16
IV 3.17 3.16 3.17 3.75 3.69 0.92 9.82
V 3.64 3.64 3.71 4.21 4.21 1.34 9.49
VI 3.26 3.26 3.18 4.26 4.12 1.21 9.35
VII 3.81 3.79 3.76 4.72 4.62 1.62 9.07
VIII 4.29 4.29 4.37 5.16 5.11 · · · 8.82

p- m.a.d. 0.05 0.05 0 0.08 0

p- avg 3.47 3.46 3.47 4.23 4.14 1.10 9.45
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FIG. 3. Exchange contribution, averaged over shell, to ionization potential
for Bohr atom with many electrons; blue circles are exact, open circles are
LSDX on exact density, and black dashed line is LSDX on TF density. Solid
lines are cubic fits to the last ten circles.

earths) and group III are the various transition series. Thus, in
the limit of large Z , the outer p electrons of groups III–VIII
have orbitals that overlap strongly with those of many other
electrons.

In fact, Englert also showed that the TF result is not cor-
rect as Z → ∞. The terms of O(Z5/3) in Eq. (1) also yield
a finite contribution, which is included in ETF, yielding an I
of 3.15 eV, very close to the average over both s- and p-shell
values (3.02 eV).

To check that this is no accident, consider the simpler
system of atoms with an infinitesimal electron–electron re-
pulsion, λ, sometimes called Bohr atoms. The orbitals are
hydrogenic, requiring no self-consistency and simplifying
the integrals.27 One finds that I TF is exact for large Z at
λ = 0. In Fig. 3, we show the exchange correction (divided
by λ) to I for LSDX applied to the TF density [yielding
8(2/3)1/3/(3π2) ≈ 0.2360], to the exact densities (each av-
eraged over entire shells), and exactly. All three match as
Z → ∞, but a small error remains if, e.g., just the s-shell is
used. Thus we speculate that for real atoms, LSDX (in a KS
calculation) matches the average of exchange-only OEP over
an entire shell (including its transition series) as Z → ∞.

Next, we discuss the DFT calculations with correlation,
which remains finite as Z → ∞ and varies across a row. The
differences between PBE and LSD are relatively small, giv-
ing greater confidence in both. The maximum deviation be-
tween them for p-elements is 0.14 eV, comparable to the de-
viations of these functionals at the exchange-only level from
OEP for the alkali and alkali earths. Thus the gradient cor-
rections are not vanishing, suggesting that while both calcula-
tions are accurate, neither is exact. The PBE average, 3.61 eV,
is our best estimate of a universal ionization potential, defined
as the limit of I averaged over the nth shell, as n → ∞.

The other major descriptor of chemistry is the electron
affinity A(Z ) = E0(Z ) − E−1(Z ). Within LSD or PBE, the
first negative atomic ion of energy E−1(Z ) has no stable solu-
tion, but A(Z ) can still be estimated28 via a charged conductor
model, in which I − A = 1/〈r〉, and 〈r〉 is the centroid of the
added charge. Define the radial ionization density as

�nR(Z , r ) = 4πr2 (n0(Z , r ) − n1(Z , r )) , (2)
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FIG. 4. Q = 1 ionization density, 4πr2(natom(r ) − nion(r )), as Z → ∞ for
the average over the groups III–VIII, for the alkali series, and within TF the-
ory. We use LSDX KS densities.

which integrates to 1. Then choose 〈r〉 = ∫ ∞
0 drr�nR

(Z , r ). Table I shows PBE Z → ∞ limits for I , 〈r〉, and A.
Averaging over s and p, our best estimate for a universal value
of A is 0.78 eV.

We next extrapolate the ionization density via

�nR(Z , r ) ≈ β�nR(Z0, βr ) + γ d[�nR(Z0, r )]/dr, (3)

which correctly integrates over r to 1. Here Z0 = 2935,
β = 1 + b(Z−1/3 − Z−1/3

0 ), and γ = c(Z−1/3 − Z−1/3
0 ), with

fit parameters b = 5 and c = −2. Finally, we also averaged
over the six p-shell curves, to find the results shown in Fig. 4.
The TF solution for the infinitesimally charged ion has a finite
size,8, 24 i.e., rc = limZ→∞ r0(Z ) = a �2/3 ≈ 9.0588 bohr
≈ 4.8 Å. Beyond this radius, �nTF

R (r ) is just the radial
density of the neutral, which has reached its asymptotic form,
decaying as 1/r4. The maximum of this curve is about 0.1830
at r = 8.855 bohr. The agreement between the extrapolated
p-shell densities and the TF theory is remarkably good, but
not exact, while the extrapolated alkali ionization density is
very different.

Finally, we justify why such large atomic numbers (larger
by a factor of 10 than those of Ref. 29) are needed to get these
results. Because of the scaling with Z−1/3, even Z = 125 only
makes Z−1/3 = 0.2, while Z > 1000 brings Z−1/3 below 0.1,
making the extrapolation much more reliable. In Fig. 5, we
show accurate ionization densities for the eighth column of
the extended table at finite Z . The scaling of the TF ionization
density is quite different from that of the exact solutions: Be-
fore extrapolation, even at Z = 2935, the TF ionization den-
sity agrees much better with that of the alkalis, not the p-
shell average. For the same reasons, having HF energies for
only Z � 100, Englert erroneously concluded that I ETF was
the limit of the alkalis, not the shell-average (see Fig. 4 and
its discussion in Ref. 8).

Thomas–Fermi theory produces the first term of Eq. (1)
and extended TF yields an average Z → ∞ limit for the ion-
ization energy, but no periodic variation of chemical prop-
erties, and (from TF) no binding11 of atoms in molecules
or solids. Within nonrelativistic KS theory, any reasonable
approximation to the XC energy with the correct uniform-
density limit for exchange will produce the total-energy
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FIG. 5. Same as Fig. 4, but for the noble-gas column of the periodic table at
various finite Z and in the limit Z → ∞.

expansion of Eq. (1) and a finite column-dependent Z → ∞
limit for the ionization energy. It appears that LSD is ex-
tremely accurate and possibly exact in certain cases for I .

Thus we have established that, in the large-Z limit, the
periodic table becomes perfectly periodic. Moreover, local
approximations improve, even for energy differences that are
relatively vanishingly small in this limit. These are new, nu-
merically relevant, exact conditions that approximate func-
tionals should satisfy.

All conclusions assume the Madelung rule for shell fill-
ing in groups I–VIII, and are based upon numerical calcu-
lations and extrapolation. Proving them rigorously is a chal-
lenge to mathematical physics.
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