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Below we detail various results for the two-site Hubbard
model (Hubbard dimer). Our results for the dimer
include: the exact tight-binding and interacting dimer
Green’s functions, one-shot GW self-energy and Green’s
function beginning from Hartree-Fock. We report exact
and approximate GXC (with SP and MP decompositions) for
several dimer parameters. Additionally, we detail our self-
consistent GW method, and show how it compares with
results reported in the literature. Lastly, we report GXC for
the Coulombically interacting Hooke’s atom system.

1. TWO-SITE TIGHT-BINDING GF

For any two-site tight-binding model,

ĤS = −t
∑
σ

(
ĉ†1σ ĉ2σ + h.c.

)
+

2∑
j=1

vs,j n̂j , (1)

with hopping t and on-site potential vs,j , the ground-state
time-ordered GF has an expression in terms of its site-
occupations

GS(ω) =
ρS(n1, n2)

ω − ϵ+ − iδ
+

ρ̄S(n1, n2)

ω − ϵ− + iδ
. (2)

Here the HOMO/LUMO eigenvalues ϵ± are exactly

ϵ± = (v̄S − µS)∓ tS, (3)

where µS is the KS chemical potential. We define the
average on-sight potential v̄S = (vs,2+vs,1)/2, the rescaled

hopping parameter tS =
√
t2 + (∆vS/2)2, and the on-site

potential difference ∆vS = vs,2 − vs,1. The amplitude
matrices are function(al)s of the density, the first being the
KS one-body reduced density (RDM)

ρS(n1, n2) =
1

2

(
n1

√
n1n2√

n1n2 n2

)
, (4)
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and ρ̄S(n1, n2) = σyρS(n1, n2)σy, using the Pauli σy
matrix.
The KS kinetic energy is

TS(n1, n2) = −2t
√
n1n2, (5)

and for N = 2 groundstate,

−2
dTS(n1, n2)

d(∆n)
= ∆vS =

−2t∆n√
4−∆n2

. (6)

The ionization potential theorem (IPT) requires ϵ+ = −I,
minus the ionization potential, so

v̄S = v̄ − I + tS, (7)

where we have absorbed the exact and KS chemical
potentials into v̄ and v̄S, respectively. For both exact and
approximate KS potentials, we fix the constant such that
the IPT is satisfied.

2. EXACT GF OF HUBBARD DIMER

The groundstate for the dimer can be found by directly
diagonalizing the Hamiltonian in the two-particle singlet
subspace. Defining v̄ = (v1 + v2)/2:

H =

 U + 2v̄ −∆v −t −t 0
−t 2v̄ 0 −t
−t 0 2v̄ −t
0 −t −t U + 2v̄ +∆v

 , (8)

where the two-electron groundstate is non-magnetic and has
the generic form [1]

|Ψ0⟩ = α(t, U,∆v) |1 ↑ 1 ↓⟩+ ᾱ(t, U,∆v) |2 ↑ 2 ↓⟩
+ β(t, U,∆v)(|1 ↑ 2 ↓⟩+ |2 ↑ 1 ↓⟩), (9)

where the amplitudes depend on the system parameters and
ᾱ(t, U,∆v) = α(t, U,−∆v) [1].
In the Lehmann representation,

ρ
SP/MP
ij = ⟨Ψ0|ĉ†j |ψ

(1)
0,1⟩⟨ψ

(1)
0,1|ĉi|Ψ0⟩, (10)
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where
∣∣∣ψ(1)

0,1

〉
are the ground-state and only excited state of

the one-electron space. The spectral weights are thus,

ρSP/MP =M0 ∓ (M1 −M2), (11)

with matrics defined via the wave-function coefficients:

M0 =
1

2

(
α2 + β2 β(α+ ᾱ)
β(α+ ᾱ) ᾱ2 + β2

)
, (12)

M1 =
t

2t̄

(
(β2 − α2)∆v

2t β(ᾱ− α)∆v
2t

β(ᾱ− α)∆v
2t (ᾱ2 − β2)∆v

2t

)
, (13)

M2 =
t

2t̄

(
2αβ (β2 + αᾱ)

(β2 + αᾱ) 2ᾱβ

)
, (14)

where the rescaled hopping is t̄ =
√
t2 + (∆v/2)2.

The spectral weights sum to the interacting density
matrix,

ρ = ρSP + ρMP, (15)

and we define the separate contributions to the density,

n
SP/MP
i = ρ

SP/MP
ii , (16)

where the subscripts 0, 1 in Eq. (10) denote SP or MP and
i denotes the site. Using the non-interacting functional
ρS(n1, n2) we express the ρSP/MP matrices as functionals
of the single-particle and many-particle occupations,

ρSP = ρS(n
SP
1 , nSP2 ), ρMP = ρ̄S(n

MP
2 , nMP

1 ), (17)

and by extension:

G(ω) =
ρSP

ω − ωSP − iδ
+

ρMP

ω − ωMP − iδ

+
ρ̄SP

ω + ωSP + iδ
+

ρ̄MP

ω + ωMP + iδ
, (18)

with SP and MP pole locations

ωSP/MP = E
(2)
0 ± t̄− U

2
, (19)

where E
(2)
0 is the energy of the two-electron groundstate.

In this model, the only SP peak is identical to minus the

ionization potential ωSP = −I = E
(2)
0 − E

(1)
0 , where E

(1)
0

is the one-electron ground-state energy. We omit all spin
coordinates, as the exact GF is diagonal in spin for a non-
magnetic groundstate. Summing over spins introduces a
factor of 2, our results this far are not spin-summed.

Finally, we write SP contribution to the total two-electron
ground-state energy,

ESP
0 =

1

2

(
ωSPfSP + T SP +

∆v∆nSP

2

)
, (20)

where fSP = tr{ρSP} and ∆nSP = nSP2 − nSP1 . The MP
contribution is defined analogously; together they sum to
the total energy,

E
(2)
0 =

1

2

(
ωSPfSP + ωMPfMP + T +

∆v∆n

2

)
, (21)

where the full interacting kinetic energy is the sum

T = T SP + TMP. (22)

3. ONE-SHOT GW DIMER SELF-ENERGY

To produce the GW expressions we define the RPA
polarization, of any G:

PRPA
ijσ (ω) = −i

∫
dω′

2π
Gij (ω

′)Gij (ω + ω′), (23)

which has a form analogous to the symmetric case.
Considering a generic two-site tight-binding GF, as in
App. 1,

PRPA
s,ijσ (ω) =

n1n2
4

{ (−1)i+j

ω − 2tS + iδ
− (−1)i+j

ω + 2tS − iδ

}
, (24)

with screened interaction,

Ws,ij (ω) = Uδij +
(−1)i+j2UtSn1n2

(ω − 2teff + iδ)(ω + 2teff − iδ)
, (25)

where teff = 2
√
t2S + UtSn1n2. Conveniently, the

asymmetric screened interaction can be found from a
simple rescaling of the inverse dielectric functionWij(ω)/U
computed by Romaniello and co-authors [2, 3] for the
symmetric case : t→ tS and U → Un1n2.
Finally we compute the one-shot GW self-energy

according to,

ΣGW
ij (ω) = vH,ij + i

∫
dω′

2π
Gs,ij(ω)Ws,ij(ω + ω′), (26)

which yields,

ΣGW
ij (ω) =

Uniδij
2

+ (−1)i+j U
2tSn1n2
teff

×
{ ρS(n1, n2)ij
ω − (v̄S − t1)− iδ

+
ρ̄S(n1, n2)ij

ω − (v̄S + t1) + iδ

}
, (27)

where t1 = tS + teff and all quantities depend on n1,2
explicitly or through ∆vS. If the exact site-occupations
and KS potential is used, then the self-energy is the one-
shot Kohn-Sham self-energy. It can be understood as the
one-shot self-energy from the best possible DFT calculation
for the dimer. For the case of a one-shot Hartree-Fock
calculation we take v̄S → U/2, ∆n → ∆nHF, ∆vS →
∆vHF = ∆v+U∆nHF/2, the corresponding HF parameters
[1].
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4. ONE-SHOT GW DIMER GF

The amplitudes of the one-shot GW Green’s function can
be found directly from the Dyson equation,

GGW =
[
G−1

0 − ΣGW
]−1

, (28)

where G0 is asymmetric tight-binding Green’s function,
which can be found by evaluating GS at the non-interacting
site-occupations, i.e. G0 = GS(∆n = ∆v/t̄(∆v)) and
ΣGW is given by Eq. (27). We choose v̄ = 0 for
convenience.

Formally we express the Green’s function as a sum of
matrices,

GGW (ω) =
XSP

ω − ωSP − iδ
+

XMP

ω − ωMP − iδ

+
X̄SP

ω + ωSP + iδ
+

X̄MP

ω + ωMP + iδ
, (29)

where X̄SP/MP = σyX
SP/MPσy, and XSP/MP has a

cumbersome expression that can be computed in closed
form. Here we only report GGW

11 and GGW
12 because entries

of XSP/MP can be constructed explicitly from only these
elements. For the moment we ignore the time-ordering in
the pole structure,

GGW
11 (ω) =

(ω − ∆vHF

6 )3 − a(ω − ∆vHF

6 ) + b

(ω2 − (ωSP)2)(ω2 − (ωMP)2)
, (30)

with

∆vHF = ∆v +
U∆nHF

2
, (31)

where the HF density is the solution of ∆vS(∆n) = ∆v +
U∆n/2, the HF problem. The associated coefficients

a = A+ t21 +
1

12
(∆vHF)2, (32)

b =
At1∆n

HF

2
+
(
t21 −

A

2

)∆vHF

3
− 1

4

(∆vHF

3

)3
, (33)

are all functions of the HF density; either explicitly or
implicitly through ∆vHF. Here t1 = tHF + teff , with t

HF =

t
√
1 + (∆vHF/2t)2, teff = 2

√
(tHF)2 + UtHFnHF

1 nHF
2 ,

and A = U2nHF
1 nHF

2 tHF/teff .
The exact pole locations can be expressed in terms of

these parameters,

(ωSP/MP)2 = A+
1

2

[
t2 + t21 +

(∆vHF

2

)2]2
∓

[(
t2 − t21

2
+

1

2

(∆vHF

2

)2)2

+A

(
(t2 + t21) +

(∆vHF

2

)2
− t1

2

(
2t
√
4− (∆nHF)2 +∆vHF∆n

))]1/2
, (34)

and thus, the poles are functions of the HF density. Since
the poles are clearly identifiable, the associated SP and
MP spectral weights can determined via evaluation of the
residues. For the SP matrix,

XSP
11 =

(ωSP − ∆vHF

6 )3 − a(ωSP − ∆vHF

6 ) + b

2ωSP((ωSP)2 − (ωMP)2)
, (35)

and the 22 element is found from simple substitution:

XSP
22 =

(ωSP + ∆vHF

6 )3 − a(ωSP + ∆vHF

6 )− b

2ωSP((ωSP)2 − (ωMP)2)
, (36)

which is equivalent to ∆vHF → −∆vHF. Conveniently, the
many-particle counterparts are analogous:

XMP
11 =

(ωMP + ∆vHF

6 )3 − a(ωMP + ∆vHF

6 )− b

2ωMP((ωMP)2 − (ωSP)2)
, (37)

XMP
22 =

(ωMP − ∆vHF

6 )3 − a(ωMP − ∆vHF

6 ) + b

2ωMP((ωMP)2 − (ωSP)2)
. (38)

To produce the off-diagonal elements of XSP
12 we use

GGW
12 (ω) =

−(tω2 − c2)

(ω2 − (ωSP)2)(ω2 − (ωMP)2)
, (39)

where

c =

√
t1
2

(
2t1t+A

√
4− (∆nHF)2

)
, (40)

and after computing the residue,

XSP
12 = XSP

21 =
−(t(ωSP)2 − c2)

2ωSP((ωSP)2 − (ωMP)2)
, (41)

where the MP contribution is exactly ωSP → ωMP.
From XSP/MP we define the approximate SP and MP

occupations ñ
SP/MP
i = X

SP/MP
ii . The KS expressions

can be produced similarly, but they are slightly more
complicated. Here we only report the one-shot GF
beginning from a HF calculation. In the KS case, the
constant v̄S is designed to guarantee that the IP theorem is
satisfied; this constant alters the locations of the poles and
the spectral weights in a more complicated way.

5. HUBBARD DIMER ONE-SHOT AND
SELF-CONSISTENT GW TABLES

We report additional Hubbard dimer GXC and associated
spectral decompositions of the correlation energy. For the
symmetric dimer (∆v = 0) each variant of GW recovers the
correct site occupations (∆n = 0). For two electrons with
spin-singlet ground-state, this results in exactly reproducing
the Hartree and exchange energies. This is because U =
−EX/2 for this case. As a result, the errors between the
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Exact one-shot self-consistent

U GXC GSPI
XC GMPI

XC GXC GSPI
XC GMPI

XC GXC GSPI
XC GMPI

XC

0.25 0 1.93 -1.93 -1.14 2.54 -3.68 -15.4 2.58 -18.

0.5 0 7.46 -7.46 -6.01 7.25 -13.3 -27.4 7.65 -35.

1 0 26.4 -26.4 -25.4 17.3 -42.7 -46.9 19.8 -66.7

2 0 73.2 -73.2 -84.5 34.2 -119. -106. 44.5 -151.

4 0 138. -138. -225. 56.4 -282. -310. 89.2 -400.

Exact one-shot self-consistent

U EC ESPI
C EMPI

C EC ESPI
C EMPI

C EC ESPI
C EMPI

C

0.25 -7.78 -5.82 -1.96 -12.6 -8.81 -3.74 -26.2 -8.17 -18.

0.5 -30.8 -22.9 -7.92 -42.1 -28.3 -13.8 -58.7 -23.1 -35.5

1 -118. -85.4 -32.6 -127. -81. -46.3 -121. -51.8 -69.7

2 -414. -280. -134. -341. -204. -136. -248. -84.7 -163.

4 -1236. -756. -480 -807. -460. -347. -512. -76.6 -436.

TABLE I: Decompositions for GXC (top) and EC

(bottom) for the exact and approximate symmetric
dimer with t = 1/2 and ∆v = 0. For the self-consistent
result we report the sum of the MP contributions. All
energies in milliHartrees (mH).

exact and approximate GXC (and EXC) are entirely due to
correlation effects. In the asymmetric case, reported in the
main text, the site-occupations are not correctly reproduced
by the approximate methods, and thus they introduce errors
to the Hartree and exchange energies.

In Table I we report GXC and its decompositions with the
IP contribution removed. We choose this partition because
the magnitudes of the SP and MP contributions are reduced
by a factor of 2.

The symmetric dimer has EXC = ⟨vXC⟩/2 and so GXC =
0, this implies,

TC = (ωSP − ωMP)fMP, (42)

where ωSP − ωMP = −2E0(1) and fMP is the MP
occupations. One-shot and self-consistent GW will never
be able to produce this result, as they both predict an
interaction dependent energy for the one-electron space
(ωSP−ωMP changes with U), i.e., they have self-interaction
error.

6. IMPLEMENTATION OF SELF-CONSISTENT
GW

Self-consistent GW results for the symmetric Hubbard
dimer have been reported in Refs [4] and [5]. Fully self-
consistent results on a frequency and time grid, without a
pole purging scheme, are computationally non-trivial. Even
for a two-site model, to capture the emerging ”satellite
series” requires many points to accurately resolve the details
of the spectrum [5].

We instead report a finite pole version of self-consistent
GW . At each iteration we retain an explicit two-pole form

of the self-energy. This ensures a six-pole form of the GW
Green’s function. Purging the poles allows us to exploit
the meromorphic representations of all quantities, avoiding
the need for frequency grids. For increasing U values we
find systematic deviations from the results of Mejuto-Zaera
and Vlček, but we limit our analysis to small U values,
where GW can be accurate and we find good agreement.
In Fig. 1 we report the deviation of the single-particle
and the first prominent many-particle pole position, we also
include the relevant values from Ref[5], and the one-shot
results for the symmetric dimer. The deviation between our
results with Mejuto-Zaera and Vlček are much smaller in
magnitude than the errors between the one-shot result and
our respective flavors of GW . Thus, for small and moderate
U , our dimer results should be consistent with GW results
of Ref. [5]. For large values of U , GW is not expected to
perform well, but we report the values from our finite pole
scheme.
We have tested several pole truncation schemes and

find that keeping a two-pole structure for W and ΣGW

produces converged total energies quickly for the full range
of U values computed. To aid convergence, for cases with
moderate to strong correlation we generated the nth GF
according to: G(n) = γG(n−1) + (1 − γ)G(n−2), with
γ = 0.67. Our one-shot results are identical to Ref [2]
in the symmetric limit ∆v → 0.

0.2 0.4 0.6 0.8 1.0

U

2.5

2.0

1.5

1.0

0.5

0.0

exact
1sGW
scGW
MZ-V

FIG. 1: Exact and approximate SP and MP energies as
a function of interaction U . The upper lines are the SP
energies while the lower are MP energies. We label the
pole locations of [5] as ”MZ-V” in blue.

7. GXC FOR COULOMBICALLY INTERACTING
SYSTEMS

Huang and Umrigar report exact and KS energies for two-
electron ions with nuclear charge Z and the Hooke’s atom
system, which consists of two Coulombically interacting
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electrons confined in a harmonic oscillator with strength
ω [6]. Using these energies, we produce GXC for a range
of moderately and weakly correlated system parameters for
Coulombically interacting electrons.

For the case of a two-electron spin-singlet groundstate,
the exchange energy of the KS system is exactly minus half
the Hartree energy. The multiplicative exchange potential
vX is a functional derivative of the exchange energy, and
thus vX = −vH/2. While the full exchange self-energy
evaluated with KS GF,

ΣX[GS](x,x
′) = −ρS(x,x

′)

|r− r′|
, (43)

yields the KS exact exchange energy when it is traced with
GS,

EX =
1

2
Tr{ΣX[GS]GS} = −U/2, (44)

and thus

GX = Tr{(ΣX[GS]− vX[n])GS} = 0. (45)

Consequently, our tables contain only the correlation
contribution GC. Table II of the main text and Table II
both show that GXC, GC for this case, is generally smaller
in magnitude than EXC, its most analogous counter-part.
We report the two-electron ion results in the main text.

ω EXC ⟨vXC⟩/2 EC TC GXC

0.1 -0.2402 -0.2311 -0.02924 0.01643 -0.009139

1 -0.7881 -0.7757 -0.04139 0.03393 -0.0124

4 -1.587 -1.574 -0.04529 0.04097 -0.01326

10 -2.515 -2.502 -0.04685 0.04397 -0.01357

100 -7.972 -7.958 -0.04878 0.04781 -0.01393

400 -15.95 -15.94 -0.04924 0.04875 -0.01402

1000 -25.22 -25.21 -0.04941 0.0491 -0.01404

TABLE II: Various X and C energies for the Hooke’s
atom system reported in Ref[6]. The weakly correlated
limit is approached as well strength ω → ∞.

Table II shows the results for the Hooke’s atom system.
We find similar trends to the two-electron ion case, in the
approach to the weakly-correlated limit (ω → ∞) GXC

converges to a finite value that is smaller in magnitude than
EC ≈ −TC in this limit.
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