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DFT calculations yield useful ground-state energies and densities, while Green’s function techniques
(such as GW) are mostly used to produce spectral functions. From the Galitskii-Migdal formula, we
extract the exchange-correlation of DFT directly from a Green’s function. This spectral representation
provides an alternative to the fluctuation-dissipation theorem of DFT, identifying distinct single-particle
and many-particle contributions. Results are illustrated on the uniform electron gas and the two-site
Hubbard model.

Ground-state density functional theory [1, 2] (DFT) is
used to great effect in modern molecular and materials
calculations, limited only by the approximation for the
exchange-correlation (XC) energy [3]. But there is also
interest in the response properties of a system, such
as its spectral function and associated gap [4]. While
range-separated hybrids can yield moderately accurate gaps
within the generalized KS scheme [5–7], the standard
method for gaps remains GW calculations [8, 9]. For
strongly-correlated materials, dynamical mean field theory
has become a very useful tool [10, 11].

Such Green’s function (GF) methods come from
traditional many-body theory. KS-DFT does not, and it
is difficult to relate the two. This leads to issues whenever,
as is common practice, a DFT calculation is used to find
some set of KS orbitals, which form the starting point
of GF calculations [12]. The choice of initial orbitals
can be important [13–15], while a self-consistent GF can
eliminate this dependence [16–19]. The XC energy of
DFT is traditionally analyzed in terms of static quantities
extractable from the ground-state wave-function, such as
the XC hole, the dearth of conditional electronic density
around an electron [20–22]. If a frequency decomposition
is performed, it is in terms of the density-density response
function [23].

We provide a bridge between these two distinct
approaches by extracting the contribution to the XC energy
directly from an interacting GF. Our GXC formula can
be used to (a) extract approximate XC energies from
approximate GF, (b) provide a novel decomposition of XC
energies into single-particle and many-particle contributions,
(c) provide models for existing DFT approximations in terms
of GF, (d) relate the quality of spectral functions to their
performance for XC energies. We illustrate our results on
the uniform electron gas and the two-site Hubbard model.
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Consider Hamiltonians of the form (in Hartree atomic
units)

Ĥ =

N∑
j

ĥ(ri) +

N∑
i>j

V̂ee(|ri − rj |), (1)

where ĥ(r) = t̂(r)+ v(r̂) is the single-particle Hamiltonian,
with kinetic energy operator t̂ = −∇2/2, multiplicative

spin-independent external potential v(r̂), and V̂ee(u) = 1/u
is the Coulomb repulsion between pairs of electrons. We
work within the Born-Oppenheimer approximation in the
non-relativistic limit, with no external magnetic fields. We
use x = (r, σ) as a space-spin coordinate, and n(x) is the
ground-state spin density.
Within spin-DFT, the corresponding KS system consists

of fictitious non-interacting electrons with the same ground-
state density as the interacting system. The exact ground-
state energy is then

E = TS + V + EHXC, (2)

where TS is the kinetic energy of non-interacting electrons,
V is the external potential energy, and EHXC is the sum
of the Hartree (electrostatic) and XC energies. The KS
potential is

vS(x) = v(r) + vHXC(x), (3)

where vHXC(x) = δEHXC[n]/δn(x). The KS equations
are solved self-consistently, yielding the exact density and
energy given the exact XC [24].
The time-ordered Green’s function is

G(xt,x′t′) = −
〈
T
[
ψ̂(xt)ψ̂†(x′t′)

]〉
, (4)

where T is the time-ordering operator and ⟨·⟩ denotes
the expectation value over the N -electron ground-state
|Ψ0⟩. The fermionic operators, ψ̂†(x) and ψ̂(x), create and
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destroy a particle of spin σ at r and are time-evolved in the
Heisenberg picture according to Ĥ. For time-independent
Ĥ, we denote the Fourier transform G(x,x′, ω). We define

Tr{F} = −i
∫
dω

2π
tr{F}, (5)

where a convergence factor exp(iωδ) with δ → 0+ is
implied, to respect time-ordering (t′ → t+). Here tr denotes

tr{F} =

∫
d3r

∑
σ=σ′

lim
r′→r

F (x,x′, ω). (6)

The Galitskii-Migdal (GM) formula [25] yields the total
interacting ground-state energy from the GF

E =
1

2
Tr{(ω + ĥ(r))G}. (7)

To isolate XC, apply GM to the KS system,

ES =
1

2
Tr{(ω + ĥS(x))GS}. (8)

Subtraction yields GXC, the GF XC contribution

GXC = EXC − ⟨vXC⟩
2

=
1

2
Tr

{(
ω + t̂(r)

)
∆G

}
, (9)

where ∆G = G−GS. More explicitly

GXC = − i

2

∫
d3r lim

u→0

∫
dω

2π

(
ω − ∇2

u

2

)
∆G(r, r+ u, ω),

(10)
where ∆G(r, r+u, ω) is an analog of the XC hole. Like the
XC hole, obeying sum rules. Without the ω term, Eq. (10)
yields TC. Moreover

−i
∫
dω

2π
∆G(r, r, ω) = 0, (11)

because both Green’s functions have the same density.
An early version appeared [26] even before the adiabatic
connection formula of DFT was precisely defined [23, 27].

First, Eq. (9) provides a method for extracting an XC
contribution directly from any GF. At the end of any
GF calculation, the density of G can be extracted, a
KS inversion [28–32] performed and the corresponding GS

constructed. But GXC is not EXC. Given an explicit
approximation for EXC, it is easy to construct GXC, but not
vice versa. Thus, for a non-self-consistent GW calculation
(the vast majority), a measure of inconsistency would
be GXC of the original DFT calculation versus that of
Eq. (9). A self-consistent calculation would presumably
satisfy Eq. (9) on its final iteration. An important feature
of GXC is that it can be used to construct the total energy
from the sum of KS orbital energies ES:

E = ES +

(
GXC − ⟨vHXC⟩

2

)
. (12)

Thus GXC is related to a double-counting correction.

Now we use Eq. (9) to create a novel decomposition of
XC energies in DFT. Define the energy difference

ωJ = E0(N)− EJ(N − 1), (13)

where EJ(M) is the energy of the Jth interacting eigenstate
of the M -electron system; J = 0 denotes the ground-state.
Then the Lehmann representation is

G(x,x′, ω) =
∑
J

ρJ(x,x
′)

ω − ωJ − iδ
+

∑
J′

ρ̄J′(x,x′)

ω − ω̄J′ + iδ
, (14)

where the spectral weights are

ρJ(x,x
′) = ⟨Ψ0|ψ̂†(x′)|J⟩⟨J |ψ̂(x)|Ψ0⟩. (15)

Here {|J⟩} are the interacting eigenstates of the N -1-
electron system, while ρ̄J′(x,x′) is defined analogously,
with fermionic operators in Eq. (15) swapped, and {|J ′⟩}
enumerating eigenstates of the N +1-electron system. The
sum over J of ρJ(x,x

′) is simply the first-order density
matrix. Likewise, we write

GS(x,x
′, ω) =

∑
j

ρs,j(x,x
′)

ω − ϵj − iδ
+

∑
j′

ρ̄s,j′(x,x
′)

ω − ϵ̄j′ + iδ
, (16)

where j runs over KS orbitals and we consider only the
occupied orbitals. Inserting into Eq. (9) yields

GXC =
1

2

∑
J

(TJ + ωJfJ)−
∑
j

(Ts,j + ϵjfs,j), (17)

where TJ is the kinetic contribution from state J and fJ =
tr{ρJ} are the ’occupations’ of each state, with analogous
contributions from the KS system. They satisfy the sum rule
that each, when summed over all occupied states, yields N .
To make further progress, we relate the two sums in

Eq. (17) via the adiabatic connection of DFT. Multiply Vee
in Eq. (1) by λ while choosing a λ-dependent one-body
potential to keep the density fixed [33]. As λ → 0, a
subset of J approaches the KS orbitals and eigenvalues.
We call these single-particle contributions (SP), the rest
many-particle (MP). We denote sums over such excitations
by K. This is analogous to how we define single-particle
excitations in TDDFT [34]. Thus

GXC = GSP
XC +GMP

XC , (18)

where the SP contribution is

GSP
XC =

1

2

∑
j

(TC,j + ωjfj − ϵjfs,j), (19)

and TC,j = Tj−Ts,j = tr{t(r)(ρj−ρs,j)} is the contribution
to the correlation kinetic energy from each SP state. The
many-particle contributions are purely correlation

GMP
C =

1

2

∑
K

(TK + ωKfK). (20)

2

http://dft.uci.edu
http://dft.uci.edu/publications.php


Exchange-correlation energy from Green’s functions

In the SP contribution, the highest occupied KS level
is special, as KS-DFT guarantees that the HOMO KS
eigenvalue is exactly minus the ionization potential, i.e.,
ω0 = −I = ϵ0. Labelling it as zero, we write

GSP
XC,0 =

1

2
(TC,0 − I(f0 − fs,0)). (21)

The correlation kinetic energy, TC, is just the sum of
its SP and MP contributions. We can analogously isolate
contributions to the potential correlation energy. Their sum
yields the correlation energy, so

EXC = ESP
XC + EMP

C , (22)

i.e. individual peaks in the spectral function yield individual
contributions to the EXC energy. The exchange contribution
is found by using the exchange self-energy (see SM), yielding

GX =
∑
j

tr{(ΣX[GS]− vX)ρs,j} = GSP
X . (23)

For a two-electron singlet GX vanishes.
Likewise, the ground-state density matrix is

ρ(x,x′) =

∫ 0

−∞
dω A(x,x′, ω), (24)

where the spectral function is

A(x,x′, ω) = − 1

π
Im{G(x,x′, ω)} sgn(ω). (25)

Thus ρ (and its diagonal, the ground-state density) also can
be uniquely decomposed.

An alternative decomposition uses ωj = −I−∆Ej , where
∆Ej = Ej(N − 1) − E0(N − 1) ≥ 0 are the transition
frequencies. Then

GXC = GSPI
XC +GMPI

C , (26)

with different SP and MP contributions

GSPI
XC =

1

2

∑
j

[Tc,j − (∆Ejfj −∆Es,jfs,j)] , (27)

GMPI
C =

1

2

∑
K

[TK −∆EKfK ] . (28)

In particular, GSPI
xc,0 = Tc,0/2. Each decomposition is useful

in different circumstances.
The asymmetric two-site Hubbard model [35, 36] is

particularly well-suited as an illustration, because of its
extremely truncated Hilbert space. We have two femions
in the Hamiltonian,

−t
∑
σ

(
ĉ†1σ ĉ2σ + h.c.

)
+ U

2∑
j=1

n̂j↑n̂j↓ +

2∑
j=1

vj n̂j , (29)

where t is the hopping term, U the on-site interaction
strength, n̂j the site-occupation operator, and ĉ†jσ, ĉjσ are
the fermionic operators associated to each site. Only the
potential difference ∆v = v2 − v1 matters. The ground-
state is a singlet, and its density is characterized by one
number, ∆n = n2 − n1. KS-DFT applies [35] and the KS
system is simply the tight-binding dimer.

3 2 1 0 1 2 30.0

0.2

0.4

0.6

0.8

1.0

1.2

U = 2
v = 1

n1 = 1.147

exact
KS

FIG. 1: Hubbard dimer local spectral functions A11(ω)
(black) and As,11(ω) (red). Here µ = U/2 and t = 1/2.
The spectral weight below 0 sums to n1 = 1.147, and
above to n2.

Figure 1 shows a typical spectral function [35] with bars
whose height is the pole weight. G has 4 poles, two for
removal and two for gain, but GS has only one of each. The
difference between the two central peaks is the gap, with the
KS gap famously being smaller than the true gap [37, 38].
Only the removal peaks contribute to XC. The larger exact
peak is the only single-particle contribution, and the smaller
is a many-particle. By Eq. (24), they sum to n1, and the
KS peak must be higher. The many-particle contributes
negatively to GXC while SP contributes positively, a delicate
balance.

U EXC EC GXC GSP
XC GMP

XC GSPI
XC GMPI

XC

0.5 -0.339 -0.01062 -0.013 0.011 -0.024 0.00338 -0.0164

1 -0.643 -0.0676 -0.0524 0.0516 -0.104 0.0189 -0.0713

2 -1.39 -0.3666 -0.139 0.224 -0.363 0.0847 -0.224

4 -3.23 -1.224 -0.194 0.689 -0.883 0.188 -0.381

10 -9.1 -4.098 -0.206 2.16 -2.36 0.27 -0.476

20 -19. -9.05 -0.207 4.64 -4.85 0.297 -0.504

TABLE I: XC of dimer with t = 1/2 and ∆v = 1.

The first use of our formula is to identify how much each
peak contributes to XC. Table I shows values of various
quantities for a range of U . GXC is comparable to EC for
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weak correlation (as GX = 0 for N = 2), but significantly
smaller for strong correlation, with cancellation between SP
and MP contributions. The alternative decomposition yields
terms of much smaller magnitude, requiring a less delicate
balance, especially for large U .

Z EXC ⟨vXC⟩/2 EC TC GXC

1 -0.4229 -0.3562 -0.04199 0.02788 -0.06667

2 -1.067 -1.01 -0.04211 0.03664 -0.05691

3 -1.695 -1.638 -0.04352 0.03983 -0.05627

4 -2.321 -2.265 -0.04427 0.04148 -0.05604

6 -3.572 -3.516 -0.04506 0.04318 -0.05584

10 -6.073 -6.017 -0.04569 0.04456 -0.0557

20 -12.32 -12.27 -0.04618 0.0456 -0.0556

TABLE II: XC for the two-electron ions [39].

For realistic DFT calculations, as the local density
approximation yields ELDA

X [n] = −AX

∫
n4/3(r), typically

GXC ≈ EXC/3, especially for large N . For N = 2, we
cannot assume Hubbard results are typical, but (essentially)
exact DFT calculations have been performed for two-
electron ions (Table II) and Hooke’s atom (quadratic
confining potential in the SM), where GC is comparable
to EC in magnitude.
The LDA can be understood as a local approximation

to the XC hole [40, 41], as the system- and spherically
averaged LDA XC hole reflects the accuracy of LDA [42].
The real-space construction of the GGA from the gradient
expansion for the hole underlies both the PW91 and PBE XC
approximations [21, 43]. XC holes are also behind some of
the most popular functionals in chemistry [20, 22, 43]. Now
we derive GLDA

XC from an ansatz for the Green’s function.
Define ∆GUEG(n, u, ω) as the difference between exact
and KS Green’s functions of a uniform gas of density n,
separation u = |r − r′|, and frequency ω. Approximating
∆G with ∆GUEG(n(r), |r−r′|, ω) in Eq. (9) directly yields

GLDA
XC =

∫
d3r gUEG

XC (n(r)), (30)

where gUEG
XC (n) = (2 − d/dn)eUEG

XC (n)/2 is the GXC

energy density, Tr{(ω + t̂(u))∆GUEG}/V , and V is
the volume. System-averaged and frequency-integrated
quantities should agree to the extent that LDA yields
reasonably accurate energies, but are there major
cancellations of errors inside the frequency integral? And
do approximate GF calculations improve this frequency
dependence? These are the sorts of questions that can be
explored with our formula.

Our final point concerns the approximate GF calculations
that our formula is designed to analyze, illustrated for
GW calculations on the Hubbard dimer. We use the
Hartree-Fock GF to generate the initial GW self-energy
and iterate until the energy convergences. Each iteration
generates extra poles, but we retain only a few (see SM).
If the self-energy has (correctly) only two poles, the next

GGW generally has six, instead of the correct four. But
if we reduce the 6 poles of G to the correct 4, the self-
energy has 4. We chose the former scheme for calculations
here. To aid convergence, for cases with moderate to
strong correlation we generated the nth GF according to:
G(n) = γG(n−1) + (1 − γ)G(n−2), with γ = 0.67. Our
one-shot results are identical to Ref [44] when ∆v = 0.
Both the six-pole and four-pole GGW yield the same

density and vXC, but they differ considerably. Both satisfy
the Sham-Schlüter equation at each iteration [38],

−i
∫
dω

2π

[
GSΣG

]
ii
= −i

∫
dω

2π

[
GSvHXCG

]
ii
, (31)

but have different kinetic and XC energies. For the dimer

GXC =

∫ 0

−∞
dω [ω(∆A11(ω) + ∆A22(ω))− 2t∆A12(ω)] ,

(32)
where we have summed over spins and ∆Aij is the
difference in retarded spectral functions. Due to Eq. (11),
the frequency integral of ∆A11(ω) + ∆A22(ω) up to the
chemical potentials yields 0. Fig. 2 shows ∆A11, which
comprises a majority of GXC, as ∆A22 gives a negligible
contribution.

0.4

0.2

0.0

0.2

0.4 U = 2
v = 1nMP

1

nMP
1

2E0(1)

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

0.4

0.2

0.0

0.2

0.4 U = 1
v = 1nMP

1

nMP
1

2E0(1)

FIG. 2: Spectral function differences ∆A11(ω) with
µ = U/2 and t = 1/2. Exact (black), one-shot (orange),
and self-consistent GW (green). The separation of the
SP and MP poles is twice the energy of the one-particle
groundstate, but GW introduces an erroneous
interaction dependence.

From Fig. 2, the SP pole positions and heights for
one-shot GW are more accurate than the self-consistent
GW . Table III also shows a poorer approximation to EC,
worsening with increasing U . However, full self-consistency
produces better total energies for weak correlation, while in
the strongly-correlated case, neither flavor of GW produces
accurate energies (see SM).
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Exact one-shot self-consistent

U GXC GSPI
XC GMPI

XC GXC GSPI
XC GMPI

XC GXC GSPI
XC GMPI

XC

0.25 -3.05 0.67 -3.72 -4.88 1.12 -6. -4.95 1.15 -6.1

0.5 -13. 3.38 -16.4 -15.9 4.4 -20.3 -16.9 4.69 -21.6

1 -52.4 18.9 -71.3 -41.9 14.4 -56.3 -54.8 16.2 -71.

2 -139. 84.7 -224. -98.1 33.8 -132. -186. 42. -228.

4 -194. 188. -381. -232. 57.5 -289. -583. 88. -671.

Exact one-shot self-consistent

U EC ESPI
C EMPI

C EC ESPI
C EMPI

C EC ESPI
C EMPI

C

0.25 -1.95 1.76 -3.71 -3.09 2.88 -5.97 -3.83 2.25 -6.08

0.5 -10.6 5.62 -16.2 -13.8 6.29 -20.1 -19.3 2.18 -21.5

1 -67.6 1.43 -69. -68.1 -13.3 -54.9 -87.9 -16.5 -71.4

2 -367. -142. -225. -288. -153. -135. -292. -56.3 -236.

4 -1220. -627. -597. -798. -463. -335. -761. -60. -701.

TABLE III: Decompositions for the asymmetric dimer
with t = 1/2 and ∆v = 1, in milliHartrees.

Practical GF calculations are performed on solids and
molecules, with a variety of approximations, such as GW
and dynamical mean field theory [45–49]. Once a KS
inversion can be performed [30–32] on the density of the

approximate GF, a value for GXC can be extracted which
can be compared with a DFT counterpart, especially when
standard XC functionals are known to fail. However,
molecules have both bound and continuum states, while
all states are in continuua in solids, complicating the
identification of SP and MP contributions. For GW ,
there are many different recipes yielding distinct spectral
features [14, 16, 50, 51], but one must always use the
KS GF of the density of the approximate GF, as the
XC contributions depend on delicate cancellations, as
illustrated here. Recently Ref. [52] shows that exact XC
energies can be produced via approximate self-energies.
Our work is complementary, with our focus primarily being
representations of XC energies via approximate GF. Our
systematic determination of sources of XC errors should
aid in designing future alternative approximate density
functionals or GF methods.
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