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Total energy density as an interpretative tool
Morrel H. Cohen
Department of Physics and Astronomy, Rutgers University, 136 Frelinghausen Road, Piscataway,
New Jersey 08854-8019

Derek Frydel
Department of Chemistry, Rutgers University, 315 Penn Street, Camden, New Jersey 08102

Kieron Burke
Department of Chemistry, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854

Eberhard Engel
Institut für Theoretische Physik, J. W. Goethe-Universita¨t Frankfurt, Robert-Mayer-Strasse 8-10,
D-60054, Frankfurt am Main, Germany

~Received 1 December 1999; accepted 18 May 2000!

We present a formulation for the total-energy density within density-functional theory which is
physically transparent and computationally feasible. We propose that it be used as a tool for the
interpretation of computed energy and electronic structure changes during structural transformations
and chemical reactions, augmenting the present use of changes in the electron density, in the
Kohn–Sham local density of states, and in the Kohn–Sham energy density. ©2000 American
Institute of Physics.@S0021-9606~00!30131-3#
g
n
ti
ee
sy
m
it

sit

un
ry
le

ro
si
–
ti

o
e

ro
da

t
p
n

e
ty
s

he
e
di

ll

nic
con-

to
nsity
mi-

ated
di-
arly
of

s
the

to
sity

s.
tion
rdi-
tool
al-
Changes in the electron density of a system undergoin
structural transformation or a chemical reaction have lo
been used to understand the forces driving the transforma
or the reaction. Indeed, the electron density itself has b
regarded as one of the most significant descriptors of a
tem of electrons and nuclei since the advent of quantum
chanics. This view of the importance of the electron dens
was greatly strengthened by the emergence of den
functional theory. The Hohenberg–Kohn theorem1 shows
that the total energy of a system can be treated as a f
tional of the electron density. The Kohn–Sham theo2

makes possible the construction of the true ground-state e
tron density of anN-electron system from theN one-electron
orbitals of lowest energy of a particular independent elect
system. This rigorous decomposition of the electron den
into contributions from one-electron orbitals, the Kohn
Sham orbitals, greatly increases its power as an interpre
tool.

At present, methods based on density-functional the
are dominant in first-principles calculations for condens
matter and for much of quantum chemistry. The elect
density and its Kohn–Sham orbital decomposition, fun
mental outputs of the computations, are typically used
enrich understanding of the resulting energies. For exam
studies of the isosurfaces of electron-density changes alo
reaction pathway for the dissociation of H2 on the Pd~100!
surface3 have revealed the formation of bridge bonds b
tween thes–p tails of the metallic surface electron densi
and thesg and su* molecular orbitals. These bridge bond
mediate the hybridization of the molecular orbitals with t
metallic d-orbitals before they actually overlap. It is th
bridge bonds which evolve into the bonds between the
sociated hydrogen atoms and the metal.

The Kohn–Sham~KS! theory enables one to go sti
2990021-9606/2000/113(8)/2990/5/$17.00
a
g
on
n
s-
e-
y
y-

c-

c-

n
ty

ve

ry
d
n
-
o
le,
g a

-

s-

deeper into the interpretation of the results of the electro
structure computations. For extended systems, one can
struct the Kohn–Sham density of states,

g~e!5(
i 51

`

d~e2e i !, ~1!

where e i is the ith Kohn–Sham eigenvalue, and use it
tease out the energetics associated with the electron-de
changes. For example, in studies of the interaction of che
sorbed O and H to form OH and H2O on the~111! surfaces
of Rh and Pt,4 the resonances and bound states associ
with the bonding and antibonding orbitals of the atoms, ra
cals, or molecules to the surface are shown to be cle
visible in g(e). Even more revealing is the local density
states,

g~r ,e!5(
i 51

`

uf i~r !u2d~e2e i !, ~2!

where f i(r ) is the ith Kohn–Sham orbital, which enable
one to associate a particular resonance or bound state in
Kohn–Sham spectrum, Eq.~1!, with a particular atom or
molecule. It allows one to make a resolution with respect
the Kohn–Sham energy of the changes of electron den
accompanying structural transitions or chemical reaction

Nevertheless, what drives a transformation or a reac
is the dependence of the total energy on the nuclear coo
nates. Thus, what one needs as an additional interpretive
is a physically transparent, computationally feasible tot
energy densitye(r ), such that

E5E d3r e~r !, ~3!
0 © 2000 American Institute of Physics
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whereE is the total energy. Withe(r ) one could explore the
relation between local changes in the electron density and
spatial dispersion of the total energy changes through
corresponding changes ine(r ).

To be more specific, in Ref. 3, evidence was found
the simultaneous presence of all the specific mechani
commonly cited as playing important roles in the dissoc
tion of H2 on a transition metal surface. These included
formation of an orthogonality hole in thes–p tail of the
metallic electron density, with concomitant flow of screeni
charge into thed-states, as emphasized by Harris a
Andersson;5 the hybridization of thed-states with the occu
pied sg bonding orbital of the H2 , as emphasized by Ham
mer and Scheffler,6 and the hybridization of the unoccupie
su* antibonding orbital of the H2 with associated backbond
ing, as emphasized by Hammer and Nørskov.7,8 Each of
these processes introduced distinct, easily recognized ch
teristic changes in the electron density, which occurred
distinct regions of space. One could therefore utilizee(r ) to
order the relative importance of each of these mechanism
well as of bridge-bond formation at different locations alo
the dissociation pathway, garnering thereby a detailed,
mate quantitative understanding of the breaking of the
tramolecular bond and the formation of metal–atom bond
the course of the dissociation.

There are several issues to be confronted in construc
a useful and computationally-feasible expression fore(r ).
The first and most important issue is thate(r ) is not unique.
Any function of position which integrates to zero can
added toe(r ) in Eq. ~3! without changing the total energy
Thus, there is a freedom of choice9 in the form ofe(r ) which
allows for selection on the basis of computational con
nience and physical utility as an interpretative tool. For e
ample, the kinetic-energy density for one electron can
expressed simply either in terms of the square of the ma
tude of the gradient of the wave function or of the comp
conjugate of the wave function times the Laplacian of
wave function, each of which has its own particular adva
tages. With the former choice, the kinetic-energy density
always positive, as it is classically. With the latter choic
one understands that the kinetic-energy density is negativ
the classically forbidden regions and relates it to the deca
the wave function in those regions. Both choices are us
for interpretation, but if one, e.g., the Laplacian form, we
immediately accessible from preexisting computations,
would use it.

In Ref. 4, the Kohn–Sham energy densityes(r ),

es~r !5(
i 51

N

e i uf i~r !u25E eN
1

de g~r ,e!, ~4!

was used as an interpretative tool. This choice was m
primarily because the authors had at the time no mean
computing the fulle(r ) itself, but also because thee i and
f i(r ) are part of the output of a Kohn–Sham computatio
so that construction ofes(r ) does not increase computation
complexity. In Ref. 4,es(r ) was found to be a useful inter
pretative tool. Moreover, there is also reason to believe
it is an important part ofe(r ), as discussed more fully be
low. Accordingly, in the present paper we present a form
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lation for e(r ) in which es(r ) is present explicitly, which is
computationally feasible, and which remains physica
transparent. We note parenthetically that the Laplacian fo
of the Kohn–Sham kinetic-energy density is thus implici
chosen in Eq.~4!.

The total energy can be represented as a density fu
tional in the form

E5T1Vee1Ven1Vnn, ~5!

where T, Vee, and Ven are the functionals for the electro
kinetic energy, the electron–electron interaction, and
electron–nuclear interaction.Vnn is the Coulomb interaction
between the nuclei. In Kohn–Sham density-function
theory,10,11 the expression Eq.~5! is rewritten as

E5Ts1U1EXC1Ven1Vnn. ~6!

HereTs is the kinetic energy of the independent Kohn–Sh
particles,U is the Hartree electrostatic energy,

U5
1

2 E d3r E d3r 8
n~r !n~r 8!

ur2r 8u
, ~7!

wheren(r ) is the electron density, andEXC is the exchange-
correlation energy,

EXC5T2Ts1Vee2U. ~8!

To achieve our goal of havinges(r ) present explicitly in
e(r ), we must first arrange Eq.~5! so that the total Kohn–
Sham energy of the system,

Es5(
i 51

N

e i5Ts1E d3r n~r !vs~r !, ~9!

appears explicitly. In Eq.~9!, vs(r ) is the Kohn–Sham po-
tential,

vs~r !5ven~r !1vH~r !1vXC~r !, ~10!

whereven(r ) is the Coulomb potential produced by the n
clei at r , which entersVen as well:

Ven5E d3r n~r !ven~r !, ~11!

and vH(r ) is the Hartree potential, the mean electrosta
potential produced by the electrons,

vH~r !5E d3r 8
1

ur2r 8u
n~r 8!, ~12!

which enters the Hartree energy functional,

U5E d3r eH~r !, eH~r !5 1
2 n~r !vH~r !. ~13!

Finally, vXC(r ) is the functional derivative ofEXC :

vXC~r !5
dEXC

dn~r !
. ~14!

Thus Eq.~9! can be transformed into

Es5Ts12U1Ven1E d3r n~r !vXC~r !. ~15!
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Inserting Eq.~15! into Eq. ~6! allows us to eliminateTs ,
resulting in

E5Es2U1Vnn1EXC2E d3r n~r !vXC~r !. ~16!

Each of the above terms can be written as an integral ove
energy density so that

e~r !5es~r !2eH~r !2 1
2 rn~r !ven~r !1eXC~r !2n~r !vXC~r !.

~17!

With the exception of the exchange-correlation energy d
sity eXC(r ), each term in Eq.~17! has already been given
physically clear interpretation. Turning now to the issue
computational feasibility in Eq.~17!, es(r ) is given by Eq.
~4! and can readily be constructed from the output of
standard codes which solve the Kohn–Sham equations.
electron densityn(r ) is a fundamental output of such com
putations. The potentialsvH(r ) and ven(r ) must be con-
structed during the computations, as must bevXC(r ). The
number density of the nuclei weighted by their respect
atomic numbers is

rn~r !5(
a

Zad~r2Ra!, ~18!

whereRa is the position andZa the charge of nucleusa. We
note that the third term in Eq.~17!, though singular at the
nuclei, vanishes away from the nuclei.

There remains the choice of a form foreXC(r ). Each of
the working approximations forEXC ~e.g., LDA,2 GGA,12–14

or hybrid forms!15–17are~or can be! expressed as an integr
over an energy density, which we term the conventional o
Calculations employing these approximations can thus y
results for the conventionaleXC(r ) directly. However, during
the construction of such approximations, procedures ma
followed which have the effect of introducing an addition
the energy density which integrates to zero. Thus the c
ventional results from different approximations cannot
meaningfully compared. For example, deep in the deri
tions of PW91,18,19 an integration by parts occurs whic
eliminates the possibility of comparing results foreXC(r )

FIG. 1. Radial contributions to the total electronic energy density for the
atom ~atomic units!.
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with that of LDA. This nonuniqueness ofeXC(r ), however,
does not affectvXC(r ) which is unique, i.e., invariant to suc
additions. We therefore choose to defineeXC(r ) in terms of
vXC@n#(r ) via the procedure of Burke, Cruz, and La
~BCL!,20 an extension of the original ideas of Engel a
Vosko,21

¹2eXC~r !53¹~n~r !¹ ṽXC~r !!, ~19!

where

ṽXC@n#~r !5E
0

1 dg

g
vXC@ng#S r

g D , ~20!

andng(r )5g3n(gr ). Thus, Eqs.~19! and~20! yield eXC(r )
as a computationally feasible mapping ofvXC(r ), an output
of the standard codes. This mapping has additional attrac
features. It can be constructed for any approximate fu
tional EXC@n#. Within the local density approximation
~LDA !, this procedure reproduces simplyeXC

unif(n(r )), the
exchange-correlation energy density of a uniform elect
gas of densityn(r ). This is just the conventional exchang
correlation energy density within LDA, and so is alrea
calculated in standard LDA Kohn–Sham calculations,
which the mapping of Eqs.~19!–~20! is unnecessary. Within
any generalized gradient approximation~GGA! such as
PBE,14 or BLYP,12,13 the procedure defines a differen
exchange-correlation energy density from the conventio
one. This exchange-correlation energy density includes
pendence on the Laplacian and other higher derivatives
n(r ), and so is far more sensitive to details inn(r ) than the
conventional GGA forms. The scaling defined in Eq.~20! is
easily performed on any approximate density functional.
nally, the BCL procedure can be used to define an ex
exchange energy density, so that it can be applied eve
hybrids of GGA with exact exchange.20 Meaningful com-
parison of the results of different approximations is thus g
erally achievable.20

To illustrate use of the total energy density, we plot t
various contributions to the total energy density for the
atom. Our calculations are all for exact exchange only, us
the atomic optimized effective potential~OEP! code of
Engel.22 From Figs. 1 and 2, we see that the total ene

a
FIG. 2. Radial exchange contributions to the total electronic energy den
for the Na atom~atomic units!; the dashed curve is the sum of the other tw
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density is usually dominated by two terms: the Kohn–Sh
eigenvalue contribution and the electrostatic energy cor
tion. The two exchange terms of Eq.~17! are small, and
largely cancel, as shown in Fig. 2. This cancellation is
ready apparent in LDA exchange, where the sum of th
terms is only 1/3 ofeX

unif . This agrees with arguments23–25

that changes in the energy can be largely understood in te
of changes in KS eigenvalues and the electrostatic potent
and reinforces our decision to makees(r ) an explicit part of
e(r ), having based our formulation fore(r ) on Eq. ~16!
instead of Eq.~6!. The present analysis also allows compa
son between results from approximate functionals and th
retically exact26 or accurate wave function computations.20

To illustrate the importance of the electrostatic ene
correction, consider Fig. 3, which shows energy-density
ferences between neutral Na and its ion. The Kohn–Sh
contribution is dominated by the core~r<0.2, roughly!. This
is because the 3s electron in Na induces an almost consta
shift in the core Hartree potential, so that all eigenvalues
about 0.29 higher in the neutral relative to the ion. When
Hartree correction is made, and the total energy density
ference plotted, we find that there are two almost equal
opposite contributions to the energy difference. To see
these are entirely electrostatic effects, we further subt
eH(r ) from the total~dashed line!, showing that, in the ab
sence of Hartree contributions, the total energy density
almost entirely in the valence region. This simple analy
demonstrates both the importance of electrostatic contr
tions to the energy density, and how the various terms
needed in Eq.~17! to produce the final physical picture.@For
example, overall shifts in KS eigenvalues do not contrib
to e(r ), but do show up ines(r ).# The electrostatic energ
correction is omitted in the generalized perturbati
method27 widely used in the theory of alloys.28 The present
analysis allows us to explore the role of exchange-correla
energy differences in chemical systems.

Note thatvH(r ) and ven(r ) each diverge separately i
the thermodynamic limit for extended systems. The div
gences cancel each other invs(r ), Eq. ~10!, because only
their sum enters. The divergences similarly cancel inE, Eqs.
~5!, ~6!, and~16! and inEs , Eq. ~9!. They do not cancel in
e(r ) as written in Eq.~17!. This difficulty should be obviated

FIG. 3. Same as Fig. 1, but for the difference between the neutral atom
and the ion, Na1; the dashed curve isDe(r )2DeH(r ).
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by the methods of eliminating the singular parts ofvH(r ) and
ven(r ) which are standard in the theory of the electron str
ture of extended systems. That is,vH(r ) and ven(r ) should
be interpreted as the nonsingular part of the Hartree
nuclear potential, respectively, in Eq.~17! for extended sys-
tems.

In conclusion, we propose that the total energy dens
away from the nuclei be constructed from the output
Kohn–Sham computations augmented by the procedur
Ref. 20 and used as an interpretive tool in analyzing ene
and electronic structure changes during transformations
reactions when the focus is on the study of bond formation
the spaces between atoms. In addition, the full expression
e(r ), Eq. ~17!, can be coarse-grained by integration ove
small sphere containing a particular nucleus to examine
role of the corresponding atom in chemical bonding or str
tural transformation. Such spheres are already presen
e.g., linear-augmented plane-wave, muffin-tin, a
Korringa–Kohn–Rostocker codes, and can be readily in
duced into other procedures. When used in this way, the t
energy density, Eq.~17!, together with the definitions we
have given for the individual terms within it, should prove
be a computationally feasible, physically informative inte
pretative tool for use with electronic structure calculations
a wide variety of systems.
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