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Total energy density as an interpretative tool

Morrel H. Cohen
Department of Physics and Astronomy, Rutgers University, 136 Frelinghausen Road, Piscataway,
New Jersey 08854-8019

Derek Frydel
Department of Chemistry, Rutgers University, 315 Penn Street, Camden, New Jersey 08102

Kieron Burke
Department of Chemistry, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854

Eberhard Engel
Institut fur Theoretische Physik, J. W. Goethe-UniveisEeankfurt, Robert-Mayer-Strasse 8-10,
D-60054, Frankfurt am Main, Germany

(Received 1 December 1999; accepted 18 May 2000

We present a formulation for the total-energy density within density-functional theory which is
physically transparent and computationally feasible. We propose that it be used as a tool for the
interpretation of computed energy and electronic structure changes during structural transformations
and chemical reactions, augmenting the present use of changes in the electron density, in the
Kohn—Sham local density of states, and in the Kohn—Sham energy densit00@ American
Institute of Physics.S0021-960600)30131-3

Changes in the electron density of a system undergoing deeper into the interpretation of the results of the electronic
structural transformation or a chemical reaction have longtructure computations. For extended systems, one can con-
been used to understand the forces driving the transformatiggtruct the Kohn—Sham density of states,
or the reaction. Indeed, the electron density itself has been
regarded as one of the most significant descriptors of a sys- -
tem of electrons and nuclei since the advent of quantum me- g(e)zi; oleei), @
chanics. This view of the importance of the electron density

was greatly strengthened by the emergence of densitywhere ¢ is the ith Kohn—Sham eigenvalue, and use it to
functional theory. The Hohenberg—Kohn theofeshows tease out the energetics associated with the electron-density
that the total energy of a system can be treated as a funehanges. For example, in studies of the interaction of chemi-
tional of the electron density. The Kohn—Sham théory sorbed O and H to form OH and,B on the(111) surfaces
makes possible the construction of the true ground-state eleef Rh and Pf the resonances and bound states associated
tron density of arN-electron system from thi one-electron  with the bonding and antibonding orbitals of the atoms, radi-
orbitals of lowest energy of a particular independent electrorcals, or molecules to the surface are shown to be clearly
system. This rigorous decomposition of the electron densityisible in g(e). Even more revealing is the local density of
into contributions from one-electron orbitals, the Kohn- states,
Sham orbitals, greatly increases its power as an interpretive
tool. )

At present, methods based on density-functional theory g(r,6)=izl [pi(r)|*6(e—€), @)
are dominant in first-principles calculations for condensed

matter and for much of quantum chemistry. The electronyhere ¢;(r) is theith Kohn—Sham orbital, which enables
density and its Kohn—Sham orbital decomposition, fundapne to associate a particular resonance or bound state in the
mental outputs of the computations, are typically used t&Kohn—Sham spectrum, Eql), with a particular atom or
enrich understanding of the resulting energies. For examplenolecule. It allows one to make a resolution with respect to
studies of the isosurfaces of electron-density changes alongtRe Kohn—Sham energy of the changes of electron density
reaction pathway for the dissociation of ldn the Pd(1000  accompanying structural transitions or chemical reactions.
surfacé have revealed the formation of bridge bonds be-  Nevertheless, what drives a transformation or a reaction
tween thes—p tails of the metallic surface electron density is the dependence of the total energy on the nuclear coordi-
and theoy and o} molecular orbitals. These bridge bonds nates. Thus, what one needs as an additional interpretive tool
mediate the hybridization of the molecular orbitals with theis a physically transparent, computationally feasible total-
metallic d-orbitals before they actually overlap. It is the energy densitye(r), such that
bridge bonds which evolve into the bonds between the dis-
sociated hydrogen atoms and the metal. _ 3

The Kohn-ShamKS) theory enables one to go still E_f dre(r), ©)

oo
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whereE is the total energy. Witle(r) one could explore the |ation for e(r) in which eg(r) is present explicitly, which is

relation between local changes in the electron density and théomputationally feasible, and which remains physically

spatial dispersion of the total energy changes through thgansparent. We note parenthetically that the Laplacian form

corresponding changes é&{r). of the Kohn—Sham kinetic-energy density is thus implicitly
To be more specific, in Ref. 3, evidence was found forchosen in Eq(4).

the simultaneous presence of all the specific mechanisms The total energy can be represented as a density func-

commonly cited as playing important roles in the dissociational in the form

tion of H, on a transition metal surface. These included the

formation of an orthogonality hole in the—p tail of the E=T+Veet Vent Vin, ®)

metallic electron density, with concomitant flow of screeningynere T, V,,, andV,, are the functionals for the electron

charge into thed-states, as emphasized by Harris andyinetic energy, the electron—electron interaction, and the

Anderssort, the hybridization of thel-states with the occu-  electron—nuclear interactiol,, is the Coulomb interaction

pied o bonding orbital of the B, as emphasized by Ham- petween the nuclei. In Kohn—Sham density-functional

mer and Schefflet,and the hybridization of the unoccupied theory!®1the expression Eq5) is rewritten as

o} antibonding orbital of the KHwith associated backbond-

ing, as emphasized by Hammer and NerskB\Each of E=Ts+U+Exct+Vent Vin. (6)

these processes introduced distinct, easily recognized Charaﬁ'ereTS is the kinetic energy of the independent Kohn—Sham
teristic changes in the electron density, which occurred irbarticles U is the Hartree electrostatic energy
distinct regions of space. One could therefore utiBge) to ’ ’

order the relative importance of each of these mechanismsas 1 3 5., n(rn(r’)
well as of bridge-bond formation at different locations along U= Ef d rf d°r r=r'] @
the dissociation pathway, garnering thereby a detailed, inti- ) ) ]

mate quantitative understanding of the breaking of the inWheren(r) is the electron density, artelc is the exchange-
tramolecular bond and the formation of metal—atom bonds iffrrelation energy,

the course of the dissociation. . _ Exe=T—Te+Vee—U. (8)
There are several issues to be confronted in constructing _ _ o
a useful and computationally-feasible expression ). To achieve our goal of havine(r) present explicitly in

The first and most important issue is ttedt) is not unique.  €(r), we must first arrange E@5) so that the total Kohn—
Any function of position which integrates to zero can be Sham energy of the system,

added toe(r) in Eg. (3) without changing the total energy. N
Thus, there is a freedom of chofde the form ofe(r) which E= E Ei:Ts+f d3rn(rvg(r), 9)
allows for selection on the basis of computational conve- i=1

nience and physical utility as an interpretative tool. For ex- .- .
L . appears explicitly. In Eq(9), vg(r) is the Kohn—Sham po-
ample, the kinetic-energy density for one electron can b bp xplcitly a9), vs(r) | P

) ) . ?ential,
expressed simply either in terms of the square of the magni-

tude of the gradient of the wave function or of the complex v (r)=ve r)+vy(r)+vxe(r), (10)
conjugate of the wave function times the Laplacian of the

wave function, each of which has its own particular advan—WhereUe“(r) is the Coulomb potential produced by the nu-

tages. With the former choice, the kinetic-energy density isCIe' atr, which enters/,, as well
always positive, as it is classically. With the latter choice,
one understands that the kinetic-energy density is negative in  Ven= f drn(r)vedr), (11

the classically forbidden regions and relates it to the decay of

the wave function in those regions. Both choices are usefidnd vy(r) is the Hartree potential, the mean electrostatic
for interpretation, but if one, e.g., the Laplacian form, werepotential produced by the electrons,

immediately accessible from preexisting computations, one

" 1
would use it. UH(f)=f d*'——n(r’), (12)
In Ref. 4, the Kohn—Sham energy densityr), r=r’l
N . which enters the Hartree energy functional,
e =3, el [Vaeqrr.o, @
! U=J d’ren(r), en(r)=3zn(Nuvy(r). (13

was used as an interpretative tool. This choice was made
primarily because the authors had at the time no means dfinally, vxc(r) is the functional derivative oEy:
computing the fulle(r) itself, but also because the and

¢i(r) are part of the output of a Kohn—Sham computation, o(r)= %
so that construction & (r) does not increase computational on(r)
complexity. In Ref. 4e4(r) was found to be a useful inter- 11, ;5 Eq.(
pretative tool. Moreover, there is also reason to believe that
it is an important part o&(r), as discussed more fully be-
low. Accordingly, in the present paper we present a formu-

(14)
9) can be transformed into

E=T.+2U +ven+f d3rn(rvye(r). (15)
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FIG. 1. Radial contributions to the total electronic energy density for the N

atom (atomic units. G, 2. Radial exchange contributions to the total electronic energy density

for the Na atonm{atomic unit$; the dashed curve is the sum of the other two.

Inserting Eq.(15) into Eq. (6) allows us to eliminateTy, with that of LDA. This nonuniqueness @&k (r), however,

resulting in does not affect xc(r) which is unique, i.e., invariant to such
additions. We therefore choose to defmg(r) in terms of

E=E,—~U+V, + Exc_f d3rn(noxe(r). (16) vxc[n](r) via the procedure of Burke, Cruz, and Lam

(BCL),?° an extension of the original ideas of Engel and

21
Each of the above terms can be written as an integral over a,oSKO:

energy density so that V2eyc(r)=3V(n(r)Voyc(r)), (19
e(r)=ey(r)—eu(r)— $pa(Nvedr) +exc(—n(Nuxc(r). ~ Where

17 - fl dy ( r) 20
With the exception of the exchange-correlation energy den- vxelnl(n= 0 TUXC[ny] ; ' (20

sity exc(r), each term in Eq(17) has already been given a
physically clear interpretation. Turning now to the issue of

?L%m;)nuéa(t:lg:aﬂe;e;?'bggyégnigilc?é dei‘(r:))nistk?elzviztbzti?‘. h of the standard codes. This mapping has additional attractive
y P eatures. It can be constructed for any approximate func-

standard codes which solve the Kohn—Sham equations. qu

electron densityn(r) is a fundamental output of such com- (IESZI) Eéﬁgn].rozzgﬁlrz :Zerc:gﬁi;:i?;‘;@ﬂ??ﬁ{g’;'mtaht('aon
putations. The potentialsy(r) and v (r) must be con- ’ P P c ’

structed during the computations, as mustue(r). The exchange-correlation energy density of a uniform electron

number density of the nuclei weighted by their respectivegas of Qen3|ty1(r). This IS jUS.t the conventional gxchange-
. ) correlation energy density within LDA, and so is already
atomic numbers is

calculated in standard LDA Kohn—Sham calculations, for
which the mapping of Eq$19)—(20) is unnecessary. Within
pa(1)=2 Z,8(1—=Ry), (18 any generalized gradient approximatig®GA) such as
“ PBE or BLYP!?!® the procedure defines a different

whereR,, is the position and , the charge of nucleus. We  exchange-correlation energy density from the conventional
note that the third term in Eq17), though singular at the one. This exchange-correlation energy density includes de-
nuclei, vanishes away from the nuclei. pendence on the Laplacian and other higher derivatives of

There remains the choice of a form fex(r). Each of n(r), and so is far more sensitive to detailsrifr) than the
the working approximations fdEyc (e.g., LDAZ GGA?™1*  conventional GGA forms. The scaling defined in E2Q) is
or hybrid formg*®~*"are (or can bg expressed as an integral easily performed on any approximate density functional. Fi-
over an energy density, which we term the conventional onenally, the BCL procedure can be used to define an exact
Calculations employing these approximations can thus yieléxchange energy density, so that it can be applied even to
results for the conventional(r) directly. However, during hybrids of GGA with exact exchand&.Meaningful com-
the construction of such approximations, procedures may bearison of the results of different approximations is thus gen-
followed which have the effect of introducing an addition to erally achievablé®
the energy density which integrates to zero. Thus the con- To illustrate use of the total energy density, we plot the
ventional results from different approximations cannot bevarious contributions to the total energy density for the Na
meaningfully compared. For example, deep in the derivaatom. Our calculations are all for exact exchange only, using
tions of PW91%%1% an integration by parts occurs which the atomic optimized effective potentidOEP code of
eliminates the possibility of comparing results fexc(r) Engel®* From Figs. 1 and 2, we see that the total energy

andn,(r)=y°n(yr). Thus, Eqs(19) and(20) yield exc(r)
as a computationally feasible mappingufc(r), an output
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by the methods of eliminating the singular parteq{r) and
ver(r) which are standard in the theory of the electron struc-
ture of extended systems. That is;(r) anduv¢(r) should
be interpreted as the nonsingular part of the Hartree and
nuclear potential, respectively, in E(.7) for extended sys-
tems.
In conclusion, we propose that the total energy density
e away from the nuclei be constructed from the output of
W- ------ Kohn—Sham computations augmented by the procedure of
Ref. 20 and used as an interpretive tool in analyzing energy
0 05 1 15 2 25 3 35 4 . ) .
and electronic structure changes during transformations and
r reactions when the focus is on the study of bond formation in
the spaces between atoms. In addition, the full expression for
FIG. 3. Same as Fig. 1, but for the difference between the neutral atom, N&(r), Eg. (17), can be coarse-grained by integration over a
and the ion, Na; the dashed curve ide(r) —Aey(r). small sphere containing a particular nucleus to examine the
role of the corresponding atom in chemical bonding or struc-
tural transformation. Such spheres are already present in,

density is usually dominated by two terms: the Kohn—Shanf-9-  linear-augmented  plane-wave, —muffin-tin, ~and
eigenvalue contribution and the electrostatic energy corred<0rringa—Kohn—Rostocker codes, and can be readily intro-
tion. The two exchange terms of E(L7) are small, and duced into ot_her procedures. When gsed in th|s_ way, the total
largely cancel, as shown in Fig. 2. This cancellation is al-€nergy density, Eq(17), together with the definitions we
ready apparent in LDA exchange, where the sum of thesBave given for Fhe mdmdugl terms W'Ithln it should.proye to
terms is only 1/3 ofel™ . This agrees with argumerts?® be a gomputatlonally f§a5|ble, physmally mformatlve. inter-
that changes in the energy can be largely understood in tem{;get_atlve tc_>o| for use with electronic structure calculations in
of changes in KS eigenvalues and the electrostatic potentiald Wide variety of systems.

and reinforces our decision to makgr) an explicit part of

e(r), having based our formulation fa#(r) on Eq. (16)
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