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Time-dependent density functional theory �TDDFT� is presently enjoying enormous popularity in
quantum chemistry, as a useful tool for extracting electronic excited state energies. This article
discusses how TDDFT is much broader in scope, and yields predictions for many more properties.
We discuss some of the challenges involved in making accurate predictions for these properties.
© 2005 American Institute of Physics. �DOI: 10.1063/1.1904586�

Kohn–Sham density functional theory1–3 is the method
of choice to calculate ground-state properties of large mol-
ecules, because it replaces the interacting many-electron
problem with an effective single-particle problem that can be
solved much faster. Time-dependent density functional
theory �TDDFT� applies the same philosophy to time-
dependent problems. We replace the complicated many-body
time-dependent Schrödinger equation by a set of time-
dependent single-particle equations whose orbitals yield the
same time-dependent density n�rt�. We can do this because
the Runge–Gross theorem4 proves that, for a given initial
wave function, particle statistics, and interaction, a given
time-dependent density n�rt� can arise from at most one
time-dependent external potential vext�rt�. We define time-
dependent Kohn–Sham �TDKS� equations that describe N
noninteracting electrons that evolve in vs�rt�, but produce the
same n�rt� as that of the interacting system of interest. De-
velopment and applications of TDDFT have enjoyed expo-
nential growth in the last few years,5–8 and we hope this
merry trend will continue.

The scheme yields predictions for a huge variety of phe-
nomena that can largely be classified into three groups: �i�
the nonperturbative regime, with systems in laser fields so
intense that perturbation theory fails, �ii� the linear �and
higher-order� regime, which yields the usual optical response
and electronic transitions, and �iii� back to the ground-state,
where the fluctuation-dissipation theorem produces ground-
state approximations from TDDFT treatments of excitations.

In the first, nonperturbative regime, we have systems in
intense laser fields with electric field strengths that are com-
parable to or even exceed the attractive Coulomb field of the
nuclei.5 The time-dependent field cannot be treated perturba-
tively, and even solving the time-dependent Schrödinger
equation for the evolution of two interacting electrons is
barely feasible with present-day computer technology.9 For
more electrons in a time-dependent field, wave function
methods are prohibitive, and in the regime of �not too high�
laser intensities, where the electron-electron interaction is
still of importance, TDDFT is essentially the only practical
scheme available. With the recent advent of attosecond laser
pulses, the electronic time scale has become accessible. The-

oretical tools to analyze the dynamics of excitation processes
on the attosecond time scale will become more and more
important. An example of such a tool is the time-dependent
electron localization function �TDELF� �Refs. 10 and 11�.
This quantity allows the time-resolved observation of the for-
mation, modulation, and breaking of chemical bonds, thus
providing a visual understanding of the dynamics of excited
electrons �for an example see Fig. 1 and Ref. 12�. The natural
way of calculating the TDELF is from the TDKS orbitals.
Recent applications in the beyond-perturbative regime range
from above-threshold ionization of metal clusters13 to coher-
ent control of quantum wells14 to multiharmonic generation
in benzene.15

A much larger group of applications in chemistry is the
linear response to a spatially uniform electric field, i.e., the
optical response in the dipole approximation.16,17 Formal
analysis of this situation shows that TDDFT yields predic-
tions for electronic excitations, both their position �transition
frequency� and intensity �oscillator strength�. These are cor-
rections to transitions between occupied and unoccupied lev-
els of the ground-state KS potential, thus providing a simple
interpretation of those levels.18 In the area of calculating
electronic excitations, TDDFT is rapidly becoming a stan-
dard tool, complimentary to existing wave function
techniques.19 Just as in the ground-state case, it has the ad-
vantage in computational speed, allowing study of larger sys-
tems than with traditional methods, and the usual disadvan-
tage �or excitement� of being unsystematic and artful. A final
application is to write the ground-state exchange-correlation
(XC) energy in terms of the frequency-dependent response
function, and so linear response TDDFT yields approximate
treatments of the ground-state problem.20–23

A random walk through some of 2004’s papers using
TDDFT gives some feeling for the breadth of applications.
Most are in the linear response regime. In inorganic chemis-
try, the optical response of many transition metal
complexes24–29 has been calculated, and even some x-ray
absorption.30 In organic chemistry, the response of
thiouracil31 and s-tetrazine,32 and annulated porphyrins33

were investigated. In photobiology, potential energy curves
for the trans-cis photoisomerization of protonated Schiff base

THE JOURNAL OF CHEMICAL PHYSICS 123, 062206 �2005�

0021-9606/2005/123�6�/062206/9/$22.50 © 2005 American Institute of Physics123, 062206-1

Downloaded 22 Aug 2005 to 128.6.71.58. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1904586


of retinal34 have been calculated. For these and other sys-
tems, there is great interest in charge-transfer
excitations,35–40 but �as we later discuss� intermolecular
charge transfer is a demanding problem for TDDFT. Another
major area of application is clusters, large and small, cova-
lent and metallic, and everything in between,41–47 including
Met-Cars.48 Several studies include solvation, for example,
the behavior of metal ions in explicit water.49 TDDFT in
linear response can also be used to calculate both electronic
and magnetic circular dichroism,50,51 and has been applied to
helical aromatics,52 and to artemisinin complexes in
solution.53 There have also been applications in materials54,55

and quantum dots56 but, as discussed below, the optical re-
sponse of solids requires some nonlocal approximations.57

Beyond the linear regime, there is also growing interest in
second- and third-order response58–61 in all these fields.

A wonderful aspect of TDDFT is that a single approxi-
mation to the time-dependent XC potential implies predic-
tions for all these quantities. This is analogous to the ground-
state case, where a single approximation to EXC can be
applied to all ground-state properties of all electronic sys-
tems, such as dissociation energies, bond lengths and angles,
vibrational frequencies, etc., of atoms, molecules, clusters,
and solids. The starting point of most TDDFT approxima-
tions is the adiabatic local density approximation �ALDA�,
which approximates the XC potential at point r and time t by
that of a ground-state uniform electron gas of density n�rt�.
This is clearly accurate when the density varies sufficiently
slowly in time and space, but works surprisingly well beyond
that limit for many systems and properties, just as LDA does
for most ground-state problems.

We make an important distinction here between the ma-
ture subject of ground-state DFT, and the developing one of
TDDFT. In the former, there is general consensus on which
properties are captured by which functionals, and the aim is

toward higher accuracy.62 One expects chemical bonds to
form in modern KS DFT calculations, and one hopes to use
better functionals to produce better accuracy and reliability.63

But time-dependent quantum mechanics probes a far more
diverse range of electronic phenomena, and in TDDFT, we
are still exploring even which properties are captured at all
by the presently available approximate functionals. Quanti-
tative accuracy is less of an issue as yet. Most data on the
performance of TDDFT are for systems driven by some ex-
ternal field. Practically nothing is known about how TDDFT
performs in the description of relaxation processes, i.e., on
the time evolution of large systems starting from a nonequi-
librium initial condition.64 A closely related question is the
description of density fluctuations within TDDFT.65

At this point, we introduce a few equations, to make the
discussion more precise. We use atomic units throughout,
and suppress spin indices. For brevity, we drop commas be-
tween arguments wherever the meaning is clear. We write the
TDKS equations as

i
d� j�rt�

dt
= �−

�2

2
+ vs�n��rt��� j�rt� , �1�

whose density n�rt�=� j=1
N �� j�rt��2 is precisely that of the real

system. We define the exchange-correlation potential via

vs�rt� = vext�rt� +	 d3r�
n�r�t�
�r − r��

+ vXC�rt� . �2�

The exchange-correlation potential, vXC�rt� is in general a
functional of the entire history of the density n�rt�, the initial
interacting wave function ��0�, and the initial Kohn–Sham
wave function ��0�. This functional is a very complex one,
much more so than the ground-state case. Knowledge of it
implies solution of all time-dependent Coulomb interacting
problems. If we always begin in a nondegenerate ground

FIG. 1. �Color online� Snapshots of the time-dependent ELF for the excitation of acetylene by a 17.5 eV laser pulse �Ref. 12�. The pulse had a total length
of 7 fs, an intensity of 1.2�1014 W cm−2, and was polarized along the molecular axis. Ionization and the transition from the bonding � state to the
antibonding �* state are clearly visible.
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state,66 the initial-state dependence can be subsumed by the
Hohenberg–Kohn theorem,1 and the only unknown part of
vs�rt�, the exchange-correlation �XC� potential, is a func-
tional of n�rt� alone.

In the special case of the response of the ground-state to
a weak external field, the system’s response is characterized
by the nonlocal susceptibility

�n�rt� =	 dt�	 d3r���n0��rr�;t − t���vext�r�t�� . �3�

� is a functional of the ground-state density n0�r�. The cen-
tral equation of TDDFT linear response16 is a Dyson-like
equation for the true � of the system,

��rr��� = �s�rr��� +	 d3r1	 d3r2�s�rr1��

� � 1

�r1 − r2�
+ fXC�r1r2�����r2r��� . �4�

Here �s is the Kohn–Sham response function, constructed
from KS energies and orbitals,

�s�rr��� = 2�
q

�q�r��q
*�r��

� − �q + i0+
+ c.c.�� → − �� , �5�

where q is a double index, representing a transition
from occupied KS orbital i to unoccupied KS orbital a, �q

=	a−	i, and �q�r�=�i
*�r��a�r�. Thus �s is purely a product

of the ground-state KS calculation. On the other hand, the
XC kernel is defined as

fXC�n0��rr�;t − t�� = ��vXC�rt�/�n�r�t���n0
. �6�

This is a much simpler quantity than vXC�n��rt�, since the
functional is only evaluated at the ground-state density. It is
nonlocal in both space and time. The nonlocality in time
manifests itself as a frequency dependence in the Fourier
transform, fXC�rr���.

Next, we introduce Casida’s equations,17 in which the
poles of � are found as the solution to an eigenvalue prob-
lem,

�
q�


̃qq����aq� = �2aq, �7�

where


̃qq���� = �q
2�qq� + 2
�q�q��q�fHXC����q�� �8�

and �q�fHXC����q�� is the matrix element of the �Hartree�-XC
kernel in the set of functions �q�r�. Eigenvalues yield the
square of transition frequencies, while eigenvectors yield os-
cillator strengths. Ignoring off-diagonal matrix elements can
yield much insight into the nature of the TDDFT corrections
to the KS transitions.18

Lastly, we mention how TDDFT produces sophisticated
approximations to the ground-state exchange-correlation
energy. The adiabatic connection fluctuation-dissipation
formula is

EXC�n0� = −
1

2
	

0

1

d�	 d3r	 d3r�
1

�r − r��

� 	
0

� d�

�
���n0��rr��� + n0�r���3��r − r��� ,

�9�

where the coupling-constant � is defined to multiply the
electron-electron repulsion in the Hamiltonian, but the exter-
nal potential is adjusted to keep the density fixed.67,68 So any
model for fXC, even setting it to zero �called the Random
Phase Approximation�, yields a sophisticated approximation
to EXC, by solving Eq. �4� for � �at each �� and inserting in
Eq. �9�.

All the above equations are formally exact. In any prac-
tical DFT calculation, approximations must be made. The
most common approximation in TDDFT is the adiabatic ap-
proximation, in which

vXC
adia�n��rt� = �vXC

gs �n0��r��n0�r�=n�rt�, �10�

i.e., the XC potential at any time depends only on the density
at that time, not on its entire history. This becomes exact for
slow variations in time. Most applications, however, are not
in this slowly varying regime. Nevertheless, results obtained
within the adiabatic approximation are, in most cases, rather
accurate. Any ground-state approximation �LDA, GGA, hy-
brid� automatically provides an adiabatic approximation
�e.g., ALDA� in TDDFT. Moreover, the XC kernel is
frequency-independent in the adiabatic approximation, tak-
ing its �→0 value.

As mentioned above, TDDFT is proving very useful in
predicting optical response properties of molecules. The
Casida equations have been encoded in most standard quan-
tum chemical packages, and efficient algorithms developed
to extract the lowest-lying excitations. A small survey is
given by Furche and Ahlrichs.19 Typical chemical calcula-
tions are done with the B3LYP69 functional, and typical re-
sults are transition frequencies within 0.4 eV of experiment,
and structural properties of excited states are almost as good
as those of ground-state calculations �bond lengths to within
1%, dipole moments to within 5%, vibrational frequencies to
within 5%�. Most importantly, this level of accuracy appears
sufficient in most cases to qualitatively identify the nature of
the most intense transitions, often debunking cruder models
that have been used for interpretation for decades. This is
proving especially useful for the photochemistry of biologi-
cal molecules.70 An alternative implementation, often fa-
vored by physicists, is to propagate the TDKS equations in
real time, having given the system an initial weak perturba-
tion. Such calculations either use a real-space-grid71,72 or
plane waves.73

This article is not about the �admittedly� gratifying suc-
cesses of TDDFT calculations, which are discussed in recent
reviews5,6 and the recent literature. We begin from there, and
explore a much wider arena. To do this, in Fig. 2 we have
drawn a cartoon �literally, a stick figure� to represent the
information in a typical calculation. Each line represents a
transition, with its position denoting the transition frequency
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and its height proportional to the oscillator strength. For the
He atom, the 2s→2p singlet transition is at 21.2 eV, while
for the N2 molecule, the 3� transition is at 7.4 eV. Many
applications of TDDFT report only the positions of the few
lowest optically allowed transitions, while some report also
their oscillator strengths.

To help our analysis, we list qualitatively different
sources of error in the predictions from any TDDFT calcula-
tion. We refer to them as the four deadly sins.

• The sin of the ground-state: Errors in the underlying
ground-state DFT calculation. If the KS orbital energies
are wrong to begin with, TDDFT corrections cannot
produce accurate results.

• The sin of locality: Errors due to local �or gradient-
corrected� approximations to an adiabatic fXC�rr��, i.e.,
properties that require nonlocality in �r−r��.

• The sin of forgetfulness: Phenomena missing when the
adiabatic approximation is made, i.e., properties that re-
quire nonlocality in time, i.e., memory.

• The sin of the wave function: Even if the exact vXC�rt�
is used, solution of the TDKS equations only yields the
TDKS noninteracting wave function. The true wave
function may differ so dramatically from the KS wave
function that observables evaluated on the latter may be
inaccurate.

The remainder of this essay is a discussion of the various
areas of TDDFT applications and development, and the chal-
lenges presently facing us. We begin in the middle, with the
linear response regime, where most of the applications pres-
ently are, then go to nonperturbative phenomena, and end
with ground-state applications.

We start with applications to the excitations of atoms and
molecules. An important point we wish to emphasize here is
the wealth of prediction made by any TDDFT approxima-
tion. The simplest real system of interacting electrons is the
He atom, and even it has a rich and complex optical absorp-
tion spectrum. Returning to Fig. 2, we note that a calculation
of the optical spectrum of the bare ground-state KS system,
often18 looks quite similar to the exact one, with TDDFT
corrections merely shifting and resizing peaks. In Fig. 3, we
zoom out a little, and see the ionization threshold at �= I and
the infinite Rydberg series of excitations just to its left. If one

calculates the optical response of N noninteracting electrons
in the exact KS ground-state potential, i.e., what we call the
KS response, its ionization threshold is in exactly the right
place, by virtue of the DFT version of Koopman’s theorem.74

From the very earliest calculations of transition
frequencies,16,17 it was recognized that the inaccuracy of
standard density functional approximations �LDA, GGA, hy-
brids� for the ground-state XC potential leads to inaccurate
KS eigenvalues. Because the approximate KS potentials
have incorrect asymptotic behavior �they decay exponen-
tially, instead of as −1/r�, the KS orbital eigenvalues are
insufficiently negative, the ionization threshold is far too low,
and Rydberg states are often unbound. This is therefore a
ground-state sin.

Given this disastrous behavior, many methods have been
developed to asymptotically correct potentials.75,76 Any cor-
rections to the ground-state potential are dissatisfying, how-
ever, as the resulting potential is not a functional derivative
of an energy functional. Even mixing one approximation for
vXC�r� and another for fXC has become popular. A more sat-
isfying route is to use the optimized effective potential
�OEP� method77,78 and include exact exchange or other self-
interaction-free functionals. This produces a far more accu-
rate KS potential, with the correct asymptotic behavior. The
chief error is simply the correlation contribution to the posi-
tion of the HOMO, i.e., a small shift. All the main features
below and just above I are retained.

Why has the poor quality of ground-state potentials not
impeded the rapid growth of TDDFT calculations for excita-
tions in quantum chemistry? For many molecules, the lowest
excitations are not Rydberg in character, and the orbitals do
not depend on the large-r behavior of the potential. But there
are important cases where the problem does show up. The
“fruitfly” of TDDFT benchmarks is the �→�* transition in
benzene. This occurs at about 5 eV in a ground-state LDA
calculation, and ALDA shifts it correctly to about 7 eV.79

Unfortunately, this is in the LDA continuum, which starts at
about 6.5 eV! So how is it possible to get this right in
ALDA?

The answer is that ALDA usually yields good oscillator
strengths, even for states pushed into the continuum.80 The
reason is simple, and was suggested long ago in early pho-
toabsorption calculations by Zangwill and Soven.81 The KS
LDA potential looks very much like the exact one �especially
in the interior, as the occupied orbitals yield a good approxi-

FIG. 2. Cartoon of the exact optical absorption spectrum of an atom or
molecule, with discrete transitions represented by straight lines �see text�.

FIG. 3. Same as Fig. 2, but showing higher frequencies, including the infi-
nite Rydberg series of states as the ionization threshold is approached.
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mation to the true density�, shifted up by a constant, due to
the lack of derivative discontinuity.74 The shift pushes the
Rydberg states into the continuum, but retains their contribu-
tion to the optical spectrum. Likewise for the benzene tran-
sition. Hence ALDA can still be used and trusted for that
transition. Moral: Just because it is in the continuum, does
not mean it is not right.

The cartoon of Fig. 2 changes when bonds are stretched.
Of particular interest in biochemistry are charge-transfer ex-
citations, especially between weakly bonded molecules.
Capturing these seems unnatural within TDDFT, for the
simple reason that the numerator in �S in Eq. �5� vanishes as
the molecular separation goes to infinity. Thus, in the
density-density response, the oscillator strength for these
transitions is exponentially small. Recently,82 it has been
shown how to build an empirical approximation to an adia-
batic fXC that can capture these effects, but it is one that
grows exponentially with �r−r��. Thus this is a sin of local-
ity, in which local approximations to fXC miss a qualitative
feature.

A presently open question is the extraction of double
excitations.83,84 In the adiabatic approximation, these are lost
from the linear response equations. When a double excitation
lies close to a single excitation, elementary quantum me-
chanics shows that fXC must have a strong frequency
dependence.85 Thus this problem is due to the adiabatic ap-
proximation: a sin of forgetfulness. Recently, a postadiabatic
TDDFT methodology has been developed85,86 for including a
double excitation when it is close to an optically active
single excitation, and works well for small dienes.87 It had
been hoped that, by going beyond linear response, nontrivial
double excitations would be naturally included in, e.g.,
TDLDA, but it has recently been proven that, in the higher-
order response in TDLDA, the double excitations occur sim-
ply at the sum of single excitations. Thus we do not currently
know how best to approximate these excitations. This prob-
lem is particularly severe for quantum dots, where the exter-
nal potential is parabolic, leading to multiple near degenera-
cies between levels of excitation.

Concerns about both ionization potentials and double ex-
citations are combined when we consider more of the optical
response of the He atom. Zooming out just a little more in
Fig. 4, we see that there is of course a second ionization
potential, when a second electron is stripped off the atom or
molecule. For reference, in a He atom, I=24.2 eV, and I2

=54 eV. But the bare KS response contains only the first
threshold. It has no structure at all in the region of the second
ionization. Our simple density functional approximations to
fXC tend to shift and resize peak positions. It is very difficult
to imagine density or orbital functional approximations to
fXC that can build in the �-dependence needed to create a
second threshold.

Lastly in this section, we mention recent progress in de-
veloping a theory for electron scattering from molecules.
This was one of the original motivations for developing TD-
DFT. One approach would be to evolve a wave packet using
the TDKS equations, but a more direct approach has been
developed,88 in terms of the response function � of the N
+1 electron system �assuming it is bound�. This uses similar
technology to the discrete transition case. Initial results for
the simplest case, electron scattering from He+, suggest a
level of accuracy comparable to bound-bound transitions, at
least for low energies �the most difficult case for traditional
methods, due to bound-free correlation89�.

A key question that often arises is the need for time-
dependent current DFT (TD-CDFT), or not. The Runge–
Gross theorem proceeds by first proving a one-to-one corre-
spondence between currents and scalar potentials. Obviously,
the current is needed in the presence of time-dependent mag-
netic fields, but in their absence, is it necessary? By continu-
ity, dn /dt=−� · j�rt�, so that the density is uniquely deter-
mined by the current �up to its initial value�, but not vice
versa. It would seem preferable to stay within the simpler
density functional theory where possible. A careful examina-
tion of the conditions of applicability of the Runge–Gross
theorem to finite systems90 shows that all atoms and mol-
ecules satisfy the necessary conditions of potentials vanish-
ing sufficiently rapidly as r→�. However, early work
showed that the gradient expansion �the origin of GGA’s for
the ground state� fails within TDDFT, but behaves reason-
ably within the current theory, yielding the Vignale–Kohn
�VK� approximation91,92 for the response kernel, which has
frequency dependence.

These questions become relevant to the optical response
of bulk insulators. The Dyson-like Eq. �4� becomes a matrix
equation with indices of the reciprocal lattice vectors G for
each perturbation of wave vector q. As q→0, to find the
optical response, any local approximation to fXC produces a
negligible correction to the RPA response �fXC=0�, as the
Hartree contribution �correctly� blows up as 1/q2. Thus, to
have a noticeable effect, the XC kernel must have a 1/q2

component as q→0. While this effect is sometimes referred
to as “ultra”-nonlocal, we prefer to call it simply nonlocal, as
the range of nonlocality is precisely that of the Hartree con-
tribution. The optical response of the solid can be found
within TDDFT by perturbing the system with a long-
wavelength perturbation of wave vector q, and by carefully
taking q→0. This requires extending the RG theorem to pe-
riodic Hamiltonians.93 On the other hand, a q=0 calculation,
with just the period of the lattice, is possible within TD-
CDFT, and the nonlocal contribution in TDDFT appears as a
local contribution within TDCDFT, with no unusual nonlo-
cality needed in the current density. For example, the VK
approximation produces a finite correction, whereas LDA

FIG. 4. Same as Fig. 3, but now including the second ionization threshold.
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and GGA do not. Thus, in this and other cases, TDCDFT is
not strictly necessary, but provides a more direct description
and a route to extract quantities that are nonlocal in TDDFT.
Similar observations apply to the polarizabilities of long or-
ganic polymers. ALDA and GGA greatly overestimate these
quantities, but VK often does much better.

In this context, an important challenge is the proper de-
scription of excitonic peaks in the optical spectra of insula-
tors. It was recently demonstrated94–96 that with complicated
orbital-dependent approximations for fXC, which were de-
rived from the Bethe–Salpeter equation, excitonic effects can
be described perfectly. However, the presently available
schemes require a GW calculation �where G is the Green’s
function and W the screened Coulomb interaction97� in the
first place. There remains the challenge to find sufficiently
simple �possibly current-dependent� approximations that are
able to describe excitonic effects.

Another interesting question in the optical response of
insulators is the one of the gap. It is well-known from
ground-state DFT that the gap in the spectrum of KS eigen-
values �the KS gap� differs from the true gap by a quantity
called the derivative discontinuity.3 Ignoring excitons within
the gap, should not TDDFT correct the KS gap to yield the
true gap? The answer is, yes, but again the XC kernel that
does this must be very sophisticated, just as in our double
ionization example. Since �s develops an imaginary part for
frequencies above the KS gap, the kernel must have a branch
cut that exactly suppresses this in order to widen the gap.
There is a close analogy to the problem of charge-transfer
excitations: Remove an electron from the donor to infinity.
This costs the ionization energy IDON. Then move the elec-
tron from infinity to the acceptor. In this way one gains the
energy −AACC. So the excitation energy is �E= IDON−AACC

=	ACC
LUMO−	DON

HOMO+�XC
�ACC�, where �XC

�ACC� is the discontinuity
in the ground-state vXC�r� of the acceptor. This formula is
reminiscent of the band gap in insulators.3 Furthermore, the
next-order correction is the Coulomb-interaction between the
electron on the acceptor and the hole on the donor which, in
solids, corresponds to the exciton binding energy.

On the boundary between extended systems and mol-
ecules is transport through single molecules connected to
bulk metal leads.98 There is enormous interest in this as a key
component in future nanotechnology. Present formulations
use ground-state density functionals to describe the station-
ary nonequilibrium current-carrying state.99 But several re-
cent suggestions consider this as a time-dependent
problem,64,100–103 and use TD�C�DFT for a full description of
the situation. Only time will tell if TDDFT is really needed
for an accurate description of these devices. In the special
case of weak bias, XC corrections to the Landauer formula
are missed by local approximations, the sin of locality.104

Next we turn our attention to beyond-perturbative re-
gimes. Due to advances in laser technology over the past
decade, many experiments are now possible in regimes
where the laser field is stronger than the nuclear attraction.
There are a whole host of phenomena that TDDFT might be
able to predict: high harmonic generation, multiphoton ion-
ization, above-threshold ionization, above-threshold disso-
ciation, etc. For high harmonic generation, TDDFT calcula-

tions have been rather successful for atoms105,106 and
molecules.15,107 In the near future, this might become very
important for the generation of attosecond laser pulses.108–110

For multiphoton ionization, the relative proportion of double
to single ionization for He, while given much better in ap-
proximate TDDFT calculations than in previous calculations
assuming a sequential mechanism, still does not show the
same pronounced features �the “knee”� seen in
experiments.111,112 The electron spectra from above-threshold
ionization have recently been calculated within TDDFT.13,113

Since the ionization yields and above-threshold ionization
spectra depend on probabilities extracted directly from the
wave function, these errors are suspected to be sins of the
wave function, mentioned above. An important task for the
future will be the design of more realistic expressions for
ionization probabilities or, more generally, transition prob-
abilities as functionals of the time-dependent density or the
time-dependent KS orbitals. First steps in this direction can
be found in Ref. 111.

While the need for more accurate KS potentials was first
noticeable in calculating excitations, it is even more acute in
strong laser fields. To ensure an atom or molecule ionizes
accurately in an approximate TDKS calculation, Koopmans’
theorem �I=−	HOMO� should be well-satisfied, and this again
requires using OEP exact exchange77,78 or other self-
interaction-free functionals.

The field of quantum control has, so far, mainly concen-
trated on manipulating the motion of the nuclear wave packet
on a given set of precalculated potential energy surfaces, the
ultimate goal being the femtosecond control of chemical
reactions.114 With attosecond pulses available, the control of
electronic dynamics has come within reach. A marriage of
optimal-control theory with TDDFT appears to be the ideal
theoretical tool to tackle this situation. However, it will bring
with it its own difficulties and challenges for approximate
functionals. Using the functional algorithms developed by
Rabitz and co-workers,115,116 we can find the optimal pulse
that drives a He atom from its ground state to its first excited
state, 1s2p. �In practice, we do not reach exactly 100% oc-
cupation, due to a finite penalty factor.�

Now repeat this experiment on noninteracting electrons
sitting in the same potential. Such a pulse cannot be found,
i.e., the noninteracting system is not controllable, whereas
the interacting system is. The two noninteracting electrons
must follow the same time evolution as they start from the
same initial 1s orbital and are exposed to the same laser field.
Hence the time-dependent wave function of the two nonin-
teracting electrons must have the form

��r1�1r2�2t� = ��r1t���r2t��S��1�2� , �11�

where �s��1�2� represents the �antisymmetric� spin-singlet
part of the wave function. But we want to maximize the
occupation

����T���1s,2p��2 �12�

of the time-propagated wave function ��T� at the end, T, of
the laser pulse in the lowest excited state
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�1s,2p =
1

2

„�1s�r1��2p�r2� + �2p�r1��1s�r2�…�S��1�2� .

�13�

Expanding the final wave function ��T� in the complete set
of single-particle orbitals representing the eigenfunctions of
the unperturbed system, one sees that the best possible occu-
pation is 50%.

If TDDFT is used to describe the multielectron dynam-
ics, how would one properly define the control target, i.e.,
the functional to be maximized? Choosing, as control target,
the overlap with an excited-state Kohn–Sham determinant
does not seem to be a good idea in view of the above di-
lemma. If, on the other hand, the time-dependent density of a
fully controlled �1s�2 to �1s ,2p� transition of the interacting
system is given, would an exact TDKS calculation reproduce
such an optimal evolution? The answer is yes, but vXC�rt�
must be very special to do so. To see this, take the density
evolution from the exact Schrödinger equation, and invert
the TDKS equation for the single �doubly occupied� time-
dependent orbital. The final state KS potential is very odd,
producing the density of two orbitals of different symmetry
from a single doubly occupied orbital.117

For a subset of cases in which molecules are exposed to
strong fields, the nuclear motion can be treated classically.
The electrons then feel the Coulomb field of classically mov-
ing nuclei as well as the laser field. In this case the electronic
motion is well described by ordinary TDDFT. However,
when nuclear trajectories split, e.g., when a molecule has a
50% chance of dissociation in a given laser pulse, the clas-
sical treatment fails. A multicomponent TDDFT118–120 has
been developed for electrons and nuclei which, in principle,
handles such a situation. In practice, one needs to develop
appropriate approximations that can build in the appropriate
physics of, e.g., dissociating nuclei. Again, in this case,
orbital-dependent functionals appear crucial.118,120

Finally, and fondly, we return to the ground-state. The
last general application mentioned was the odd-sounding
process of using TDDFT to generate ground-state approxi-
mations, via Eq. �9�. By inserting an approximation for fXC,
we get an approximation to EXC. Most importantly for bio-
logical systems, Eq. �9� provides a route to van der Waals
forces for separated pieces of matter, and so is being much
studied by developers. In particular, the coefficient in the
decay of the energy between two such pieces �C6 in E→
−C6 /R6, where R is their separation� can be accurately
�within about 20%� evaluated using a local approximation to
the frequency-dependent polarizability.21,121–123 Recent work
shows that the response functions of TDDFT can yield ex-
tremely accurate dispersion energies of monomers.124 More
recently, the frequency integral in Eq. �9� has been done
approximately, yielding an explicit nonlocal density
functional23 applicable at all separations.

One can go the other way, and try using Eq. �9� for all
bond lengths.125,126 Such calculations are costly, as the func-
tional is very high up on Jacob’s ladder of sophistication,
including both occupied and unoccupied KS orbitals.63 How-
ever, they have the merit of being entirely nonempirical and,
where successful, can be used as a starting point for new

approximations. In fact, Eq. �9� provides a KS density func-
tional that allows bond-breaking without artificial symmetry
breaking.22 In the paradigm case of the H2 molecule, the
binding energy curve has no Coulson–Fischer point, and the
dissociation occurs correctly to two isolated H atoms. Unfor-
tunately, simple approximations, while yielding correct re-
sults near equilibrium and at infinity, produce an unphysical
repulsion at large but finite separations. This can be traced
back22 to the lack of double excitations in any adiabatic fXC.

We end with a summary. Most importantly, TDDFT has
become extremely popular as a method for calculating elec-
tronic excited-state energies in chemistry. In this arena, it has
become as robust �or as flaky, depending on your perspec-
tive� as ground-state DFT, and is being used to really under-
stand the photochemistry of many interesting problems. Fur-
thermore, our favorite crude density functional
approximations from the ground-state serve well here. We
are very thankful for this, and it has led to tremendous inter-
est in further methodological development.

In principle, however, TDDFT yields predictions for an
enormous variety of phenomena, and electronic excitations
are only the tip of an iceberg. We have mentioned a few.
Even limiting ourselves to linear response, there are double
excitations, second ionization thresholds, optical response of
solids, gaps in solids, transport through single molecules.
Combining with the fluctuation-dissipation theorem, TDDFT
yields a route to van der Waals forces and bond breaking
with symmetry problems. In strong fields, there are high har-
monic generation, multiphoton ionization, above-threshold
ionization, quantum control, and quantum nuclear motion.

For some of these areas, simple application of density
functionals within the adiabatic approximation, works well,
but for many, such methods miss some qualitative features
�e.g., double excitations, or nonlocality in the response of
solids�. A now standard step upward in sophistication is to
use orbital-dependent functionals �at least, among develop-
ers�, and these cure some of the difficulties �e.g., the first
ionization threshold or the polarizability of long-chain poly-
mers�. But such functionals are unlikely to cure all the prob-
lems �e.g., inclusion of double excitations or defining the
target in quantum control� for properties that are of interest
experimentally and technologically. We happily look forward
to many interesting years of development to come.
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