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Anomalous charge oscillations in the dynamical response of metals
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In recent calculations of optical response at a metal surface, an unusual set of oscillations have
been found in the induced charge density. These oscillations only appear when a crystal potential is
included in the calculation. They propagate deep into the bulk, but are incommensurate with the
lattice. We illustrate the occurrence of such oscillations in simple systems, and discuss their origin.
For more general cases, we find that the amplitude of the oscillations is sensitive to the amount of
spatial variation in directions parallel to the surface of either the crystal potential or the probing
field. We also discuss the challenge of detecting this phenomenon experimentally.

I. INTRODUCTION

Considerable progress has been made toward under-
standing the long-wavelength response of the surfaces of
nearly-free-electron metals (Na, K,Cs,A1).~'2 This success
has been possible because such metals are apparently well
approxixnated by a semi-infinite slab of jelliuxn. Early
attexnpts in this 6eld, using an in6nite barrier at the
surface, failed to explain several features, even qualita-
tively, e.g. , the dispersion of the surface plasmon. A ma-
jor breakthrough occurred when Feibelman included a
self-consistent surface barrier, and solved the resulting
integral equations. Since then, many re6nements and
more sophisticated calculations have yielded good agree-
ment with experiment for these metals. 4 These advances
include the identi6cation of the so-called multipole mode,
which was subsequently observed in electron energy loss
experiments.

The theory of surface response for metals with signi6-
cant band structure is far less developed. This is regret-
table, as there is no experimental difficulty in investigat-
ing such surfaces, and several cases have already been
studied. In particular the effects observed in the sur-
face plasmon dispersion on Ag surfaces have stimulated
various extensions of jellium treatments, but these lack
the rigor of the earlier jellium calculations for the f'ree-

electron like metals.
Another approach currently being pursued is to in-

clude the band structure in an ab initio fashion.
The drawback to this approach is the considerable nu-
merical difficulty in solving the resulting integral equa-
tions. Once these difficulties have been overcome, such
calculations should reveal new physics, and comparable
agreement with experiment can be hoped for. An exam-
ple of this appeared in recent calculations by Burke and
Schaich and by Samuelson and Schattke, in which
oscillations were found in the dynamic charge density in-
duced by a long-wavelength perturbation. Within an un-
damped random-phase-approximation (RPA) treatment
of the response, these oscillations continue into the bulk
of the solid indefinitely, despite being incommensurate
with the bulk lattice. We shall refer to them as SCO for

"surface-correction oscillations. "
The purpose of this paper is to illustrate how SCO can

arise even in sixnple models of electronic structure. In
Sec. II we examine the dynamical response of a semi-
in6nite gas of noninteracting electrons, treating the crys-
talline potential in separate model calculations as either
weak or strong. In each case we find oscillations in the lin-
early induced density which extend into the bulk but are
incommensurate with both the perturbing potential and
the lattice. We discuss why such a response is allowed,
in spite of the translational invariance of the bulk. For
the strong-scattering case, which we treat with a tight-
binding model, we show how the amplitude of the oscilla-
tions is enhanced if there are optical transitions between
parallel bands. Finally in Sec. III we discuss the gen-
eral occurrence and experimental implications of these
oscillations.

II. DY'NAMICAL RESPONSE OF
NONINTERACTING ELECTRONS

In this section, we calculate the response of sixnple sys-
tems to an external perturbation. For the first, all the
relevant response information can be found analytically.
The purpose of these models is to demonstrate unam-
biguously that a system with a surface can produce a
long-range incommensurate response to an external po-
tential. We emphasize that these models are not an ap-
propriate theory for the surface response in general, but
are simply pedagogical tools to clarify the origin of the
new oscillations.

A. Free electrons

Consider a finite density of noninteracting electrons
in three-dimensional space, confined to x ) 0 by an
infinite barrier, but with no other potential. We use
the notation that lower-case boldface indicates a three-
dixnensional vector, and upper-case boldface indicates
a two-dixnensional wave vector, parallel to the surface.
Thus we write the position vector x = (x, X). Through-
out this paper, h = 1 and only the nonretarded limit is
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where bn(x) is the induced density, V,„t(x') is the exter-
nal potential, and yo(x, x') is the independent-particle
susceptibility. This may be written quite generally as

(
)-f(' ) f(' ')

en + Od
—en'nn'

x 0 „'(x)@„(x)@„*,(x') 4„(x'), (2)

where n labels the single-particle states of energy e„and
wave function @„(x). The function f(e) is the Fermi
occupation factor, which at zero temperature is just
8(e~ —e), where e(u) = 1 for u ) 0, and zero oth-
erwise, is the Heaviside step function. The factor of 2
comes from the sum over spin states.

Rather than analyze Eqs. (1) and (2) in real space, i4

we choose to work in Fourier space writing the trans-
formed induced density in terms of the transformed ex-
ternal potential as

considered. Note that all quantities in the dynamical re-
sponse will have an exp( —i(dt) time dependence, and de-
pend on the particular &equency u, but we do not write
this dependence explicitly. As the particles are aoninter-
acting, their linear response to an external potential is
simply given by

bn(x) = d z'yo (x, x') V,„,(x'),
~')0

where p~(z) = e '~* and the matrix elements are calcu-
lated with bulk states; e.g. ,

and represent them with the scattering diagrams in
Figs. 1(a) and 1(b), respectively, each to be summed over
w = +1. These pictures represent expressions based on
bulk quantities, ranges, and rules. The plain solid lines
represent the bulk propagator

G(E) = Q Ik)(kl

k
E —6k + Zbk

where Ik) = Ik, K) is a plane wave, and bk = 0+ for) ty', and bk = 0 for ek ( e~. The solid line with
an X in the middle represents propagation in which a
reflection o6' the barrier occurs

G (E) = —)- Ik, K)(—k, K
E —ek + zSk

(10)

(k(~qe(~k') = j dec "+' '' = 2zd(k+q —k'). (2)

It is useful to view the susceptibility in (6) as the sum
of two pieces, based on the sign of 0. We call these the
direct and reflected contributions, writing

Xo(q, q', 9) = Xo"(q, q', 9) + Xo "(q q' 9)

~n(q, Q) = dq' Xo(q, q', 9) V-t(q' 9)
0

where

kz(q, k)) = decce(qz) f d'X e '~' kz(z), (4)
0

with a similar equation for V,„k(q, Q), and

OQ OO

yo(q, q', Q) = — dz cos (qz) dz' cos (q'z')
7l 0 0

x d'I e-'& -"'
y0 x, x'.

The extra minus signs are necessary to produce the 0 =
—1 term of (6). They arise because the true eigenstates
of the surface problem are sine waves, not plane waves.

The direct contribution has terms proportional to
b(7 q' —q) and, since q, q' are positive, only the r = 1
piece is nonzero. In fact

Xo"(q, q', 9) = Xo (q)~(q —q'),

where q = (q, Q) and yg (q) is the susceptibility of the
bulk system, Fourier transformed in all three directions.

k+q

Note that we use regular Fourier transforms in the direc-
tions parallel to the surface but cosine Fourier transforms
along the surface normal.

Equation (3) applies quite generally to systems which
are uniform in directions parallel to the surface. For
our simple model, the wave functions in the x direc-
tion are just 212„(z) = qd(2sin(kz), and the usual plane
waves in the parallel directions. Their energies are given
by ek = k2/2m. We substitute these ingredients into
the de6nition of the transformed susceptibility and, after
writing sines and cosines as sums of plane waves, reduce
the result to

q -~q' -q+~q'

q'

(a)

Xo(q, q' 9) = 2

(27r) s K, K+cl 22r 22r

k+(d Ck'
cr,v=6 1

x(kIp~Ik')(o. k'Ip q Ik), (6)

FIG. 1. Scattering diagrams representing the two contri-
butions to the susceptibility of free electrons near a surface.
The dashed lines represent the external momenta, while the
solid lines are particle (or hole) propagators. The X on the
particle propagator in (b) indicates that it includes a surface
re8ection.
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For the free electrons discussed here, yp (xI) is given by
the Lindhard function.

The reBected contribution is due to the presence of
the surface. In physical terms, if we imagine the per-
turbation virtually exciting a particle-hole pair, then it
is possible for one member of the pair to be reBected
off the surface before the two recombine. This reBec-
tion is described by the moxnentum-reversal propagator
for the particle line in Fig. 1(b). The reHection reverses
the particle's moxnentum normal to the surface, thereby
destroying the translational invariance of the scattering
process. Hence such contributions are not proportional
to 6(q —7 q'), and in fact are relatively smooth functions of
q and q'. However their integrated weights in (3) are typ-
ically comparable to that of yp". Note that, in terms of
the diagrams of Fig. 1, momentum conservation at each
vertex and the sum on ~ = +1 guarantee that we have
found all the independent contributions. If for instance
one were to reverse all the normal momenta at the right
vertex in Fig. 1(b) and simultaneously change 7 to 7, —
it would not affect the numerical value of the diagram,
but the anomalous propagator would then appear (only)
for the hole line.

It is straightforward to evaluate the reBected contri-
bution for Q = 0. In that case, the integrand becomes
independent of K, except in the Fermi factor cutoff, and

d Kf (ex,) = 2am@(ep —ex, ), (12)

where 4(u) = uO(u). Furthermore, because of the break-
ing of translational symmetry, the 6 functions due to the
two vertices serve to remove the two integrals over normal
momentum. The result is simply

res
4vr' td2 —(qq'/2m) 2

X ) &e' eF —&+
) (13)

Now we are ready to demonstrate how the presence of
the reBected contribution in yp can produce an unusual
oscillation in the density response. Imagine perturbing
these particles with an external potential of the form

V.„g(z, t) = cos(gpz)e ' '. (14)

+ dqcos(qz)X'o "(q go).
0

For simplicity, we look at just the imaginary part of this
response. Then the integral over q in the reBected term
becomes trivial, as the energy denoxninator in (13) just
yields a b function, i.e.,

Im [yp "(q, q', u))j = —A(q', (u)6(q —2m~/q'),

where Im means "imaginary part of" and

(In Sec. III we describe how such a perturbation can
arise in the full crystal problem. ) The cosine transform of
the perturbation produces a b function in q space, which
leads to a density response in real space of

6n(z) = y, (gp) cos(gpz)

A(q', (u) =, ) 7-4

We find

[2m(u/q' + rq']' )
8m

(»)

Im[6n(z)] = A(gp, ur) [cos(gpz) —cos(qxz)],

2 sin kz sin k'z = cos (k —k') z —cos (k + k') z

= cos (gpz) —cos (qxz). (20)

The spatial dependence of (20) reproduces that of (18).
Each pair of states that contributes to 6n(z) through an
energy- and (bulk) momentum conserving process pro-
duces the saxne x dependence. Different such pairs only

where qx ——2m'/gp. The coefficient A(q, u) is also equal
to the imaginary part of the Lindhard function in (11),xs

evaluated at q and cu. This surprisingly simple result is
dictated by the requirement that 6n(z) must vanish at
z = 0, due to the infinite barrier. Much more remarkable
is the fact that a second oscillation has developed, which
in general is incommensurate with the first, and which
continues indefinitely into the interior.

How can this system support an oscillation at a dif-
ferent wavelength &om that of the driving potential far
&om the surface? Should it not be forbidden by trans-
lational invariance? The answers to these objections can
be found in two general features of the calculation. The
first is the fact that, even far &om the surface, the single-
particle eigenstates are generally coherent sums of Bloch
states. For our &ee-electron model with an infinite bar-
rier, this merely means that 4„(z) = csin�(kz) rather
than e'" . For equilibrium properties, this coherence is
unimportant far from the surface. For exaxnple, consider
the calculation of the equilibrium density,

np(z) =
2

d K — dk fx, sin (kz)
2 2 2 "

2

27r 2
0

kp
dk e (e~ —ex, ) [1 —cos (2kz)].

7l p

The constant term in the integrand leads to the bulk

value n~ =
3 ~, , while the oscillating corrections die away

within a few kF due to phase cancellations in the inte-
gral. Thus np(z) quickly returns to its bulk value. If,
however, one looks at a single k value, the oscillating
terms survive for all z.

This brings us to the second general feature. In the
dynamic response there are energy-conserving transitions
for which (bulk) xnomentum conservation restricts the
sum over contributing states so that "surface corrections"
can remain in phase for large distances. In terms of our
free-electron model we need to satisfy ei, + u = ex, with
k' = k + gp. Hami»ting k' yields k =

go
Hence k' + k = 2k+ gp ——

q~ and k' —k = gp so the
induced density, which in linear response is determined
by the cross product of initial and final states, becomes
proportional to
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differ in parallel momenta and one simply integrates over
K to find their overall contribution. Hence the x depen-
dence of the SCO is not washed out [as it is in np(x)j by
the integral over contributing states.

Why have these long-ranged SCO not appeared in ear-
lier calculations of bulk response'? The simple answer
is that the phase coherence of the eigenstates necessary
for the existence of the SCO is ignored in typical "bulk"
calculations. For instance, consider the response of our
model system if we impose periodic boundary conditions
at the edges in x, instead of requiring the wave function
to vanish at these points. Then the eigenstates are plane
waves, the susceptibility is determined by yp (q) alone,
and the response hn(x) contains only the commensurate
oscillation. Given that the SCO of (18) continue indef-
initely into the interior of the system, it would appear
that the response in the bulk depends on the boundary
conditions at (distant) surfaces. A resolution of this am-

biguity can be found in the fact that the single-particle
states in physical systems must have a finite lifetime (or
equivalently, a finite range of coherence), as discussed in
Sec. III. The effect of such a lifetime can be simulated
by giving ~ in (13) a small but finite imaginary piece, so
that the pole in the energy denominator is moved slightly
off the real axis, producing a slow but finite decay to the
incommensurate contribution in (18). Thus, far from the
surface the SCO become negligible and one is left with
the conventional bulk response, which can be correctly
calculated using plane waves.

Here the lattice sites are labeled by the vector index l
and the sum in (22) runs over nearest neighbors of any
site, while in (21) K, is the (macroscopic) number of sites
within a plane parallel to the surface. The orbitals are
real-valued functions and we denote by yo the 8-wave

orbital and by yq the p-wave orbital with the symmetry
of x. Our neglect of overlaps between neighbors lets us
write

(23)

The orbital eigenvalue of p is e and the 6 are
the overlap integrals with the Hamiltonian between like
orbitals on adjacent sites. The bA, ~ are dimensionless
weights, which &om orthonormality of the eigenstates
obey

bki~~i bkln —hk', k~

l

(24)

poi(l) = d rer hnpi(r).
r near site l

(25)

for any combination of o, and n'.
To avoid needing to specify the detailed form of the

p we focus on calculating the induced dipole moment
at each site due to interband transitions driven by a spa-
tially uniform field along x. The relevant moments are
defined by

B. Tightly bound electrons

+k-(r) = (21)

with eigenenergy

ik r
cka =Ca+ g +me& ~ (22)

Next we turn to a tight-binding model of electronic
structure, which is at the opposite extreme &om &ee
electrons. We still assume independent particles so the
analysis is again based on Eqs. (1) and (2), but the eigen-
states and energies will have a different form. We use as
a basis set for the electrons well localized orbitals cen-
tered on the Bravais lattice points of the (100) face of a
semi-infinite simple cubic lattice and ignore all overlaps
between neighbors, except for nearest-neighbor hopping
integrals between like orbitals. The parameters are cho-
sen so the partially occupied lowest band is built &om
s-wave orbitals, while the three (degenerate) unoccupied
bands use p-wave orbitals. For an applied field normal
to the surface, only transitions to one of these bands are
allowed, so we have in effect a two-band model of optical
excitations. Although we place the Fermi level within the
lowest band (and completely below the upper bands), we

shall ignore all intraband excitations. With these simpli-
fications we can produce a fairly explicit solution. The
eigenstates are written as

The hnoi required in (25) is defined by retaining in (].,2)
only the contributions due to 0—1 interband transitions.
For a uniform driving field E along x we find

2(&) o —&ki)
poi(l) = ) f(~ko) 2 2 biio by~i DE,

Ekp —Ckl

(26)

where D is defined by dipole matrix element at a single
site:

D = e'(V il*l~o)'.

Since the on-site energies and hopping integrals do not
depend on l, the spatial dependence of the 6's in either
band is proportional to sin(kla) where a is the lattice
constant. In the continuum limit

b&&obf, ~i ——2 sin (kla) = 1 —cos (2kla), (28)

which when summed over k in (26) will produce both
the expected uniform response plus an oscillatory piece
whose period and range depend on the variation with k
of the other factors in (26). Unlike in the free-electron
model, we cannot do the integrals analytically but they
are readily evaluated numerically and we have the &ee-
dom of adjusting the relative shape of the contributing
bands. If we choose parameters so the two bands are
parallel as a function of K, then ego —egg is independent
of K and the integrand in (26) will have an (isolated)
pole contribution from the plane inside the Fermi surface
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where 6g Kp + (d = 6g Ky. This will produce a piece of

poq(l) oscillating at k deep into the bulk, which is the
tight-binding version of the SCO.

We can also examine how robust the anomaly is as
the bands are allowed to become nonparallel. We do
this &om the cosine Fourier transform of ppq, which away
fi.om q = 0 is given by

15

io

Q2

P01(q) = — d K f (Eq/2, KO)

(eq/2~Ko
—eq/2~K1)

X
2 ' 2)

(eq/2, KQ eq/2, K1) —(~ + z7)
(29)

where to ease the numerical evaluation we have added
a broadening by replacing u -+ u + ip. Our specific
parameter choices yield

0
0.0 0.5

2k,/g,

I I I I I I I I

1.0

eo/v = 6 —2[cosk a+ cosk„a+ cosk, a],

eq/v = 15+ 4(A —1) + 6cos k a

—2A[cos k„a+ cos k,a],

(3O)

10—
where v sets the energy scale and A controls how similar
the upper band is in its K variation to the lower band.
For A = 1, the two bands are parallel as a function of
K. Note that A also appears in the ofFset of the upper
band to insure that the separation between the bands is
independent of A for K = 0 as shown in Fig. 2(a). The A

dependence of the upper band is only evident for K g 0,
and is illustrated in Fig. 2(b). In Fig. 2(c) we show how
the sharp peak in poI (q) for parallel bands (when A = 1)
spreads (and shifts) for A g 1, describing the nonpar-
allel bands of Fig. 2(b). For the range of A used, the
broadening of the peak in the transform (and hence the
decay in real space of the SCO) is not extreme. Further-
more, the integrated weights of the structures in Fig. 2(c)
vary slowly with A. Hence the anomalous oscillations do
not quickly disappear for slight deviations from parallel
bands. However they do decrease in strength and range
and eventually become negligible. In Ref. 17 their pres-
ence was formally suppressed, in part because the upper
band was much Batter and the analog of the A parameter
used here was 1/4 so the transform of poq is spread over
about half a zone.

Having just shown how the SCO can be reduced by
allowing for variations in the crystal potential in direc-
tions parallel to the surface (which is the basic cause
of nonparallel bands), it is appropriate to return to the
free-electron calculation and examine how the SCO be-
have there when one allows the probe field to vary with
X. Specifically we replace (14) with

V,„,(x, t) = e'~ cos(gox) e ' '

and consider how hn(x, Q) changes as Q = ]Q~ is in-
creased. In physical terms, such X variations of the
probe field are easily produced in electron scattering ex-
periments and the mapping of an excitation's dispersion
with Q and tu is a standard procedure. At finite Q the
susceptibility can still be found analytically and for the
reBected piece we obtain

0
0.0

I I I I I I

0.5
Bk /g,

1.0

I I I I I I I I I I I I I I I I I I

- (c)

U'
1

C4

0
0.62 0.64 0.66 0.68 0.70

q/g.

FIG. 2. In (a) and (b) the band structure of the two-band,
tight-binding model is shown in different directions. In (a)
K = 0 while in (b) k = k and k = 0. The horizontal
dashed line is the Fermi level and the vertical dashed line in
(a) locates the direct transition for u/v = 5, K = 0. The
family of upper-band curves in (b) is produced by different
values of A running from 0.6 to 1.4 in steps of 0.2 as the
curves move from lower to higher energies. The same set of
A determines the plots of the imaginary part of the cosine
Fourier transform of poz shown in (c) for ar/v = 5. As A

grows the center of the transform moves to larger q.
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Im y() "(q, gp, Q) = ) o4
4vr2Q

(q + ego ) (rqgo + 2mo'm —Q2 l
(33)

where kF is the Fermi wave vector. The variation with

q of (33) describes how the SCO become spread out
over a range of wave vectors because at finite Q the
difference in "parallel" energies of an electron-hole pair,
(2K Q + Q2)/2m, depends on K. Typical results are
shown in Fig. 3, using parameters appropriate to a free-
electron model of Li with r, = 3.26. The driving &e-
quency is 1.3 times the Fermi energy, go

——2'/a with
a = 2.48 A the spacing between planes in the (110) direc-
tion, and we plot for Q/go ——0.05, 0.15, 0.25, 0.35, 0.45
to produce curves of increasing diffuseness and/or de-
creasing strength. For Q/go ) 0.467 it is no longer
possible to satisfy energy and momentum conservation
in transitions from initial states below the Fermi level
and the SCO completely disappear. Hence, as with non-
parallel bands, variations in X of the probe Geld act to
suppress the SCO.

III. GENERALIZATIONS AND EXPERIMENTAL
CONSEQUENCES

By studying simple models in the previous section we
were able to make considerable analytic progress. How-
ever the results obtained are at best only qualitative.
For a quantitatively reliable theory much more must be
included. We now discuss these required improvements
under the two general headings of (i) a self-consistent
treatment of many-body interactions and (ii) a better
treatment of one-body effects.

At a mean-Geld level, which is the usual approxima-
tion, the necessary changes in Eqs. (1) and (2) are for-

I I ! I I I I I I I

CY
0

tg 2—
Q)

I

mally slight. The external potential is augmented by an
induced potential to create an effective potential to which
the individual particles respond:

bn(x) = d x'yp(x, x') V,s(x'),
x'&0

where Vea ——Vext + Vind with

V~g(x') = f d'T" v(x' —x") bn(x") +" (35)

V(x) = 2Vp cos (gpx). (36)

and v(x) = e /~x~. In (35) we have only explicitly shown
the Hartree contribution due to the Coulomb potential of
the total density fluctuation, bn, This .is all that is kept
in the random-phase approximation of the response. One
often goes further to include in (35) a local density func-
tional expression for the induced changes in the exchange
and correlation potentials. We only stress here that (34,
35) must be solved self-consistently for bn

The perturbation (14) that we used to perturb free
electrons in Sec. II can be viewed as really arising from
V; s due to the periodic variation of bn in the bulk of the
crystal. Thus a bulk umklapp process can create &om a
long-wavelength perturbation a periodic contribution to
hn with wave vector go along x, whose induced poten-
tial creates via equations like (18) contributions at both
go and qq to bn, and so on. Such effects are visible in
Ref. 12, where they are discussed in detail. One ends up
with a whole collection of special wave vectors related by
sequences of energy-conserving scattering events of bulk
umklapp processes and surface reffections.

The self-consistent calculation of the amplitudes of
these oscillations is a difficult numerical task even for
simple models of the one-body potential. However, the
screening processes represented by such solutions cannot
eliminate the SCO. To exhibit some typical results we
show in Fig. 4 the imaginary part of the induced den-
sity proGle &om a dynamical response calculation. The
computation was done as described elsewhere, with pa-
rameters chosen to model the Li(110) optical response. It
was performed within the RPA, using an inGnite barrier
at the surface, an effective mass, and a one-dimensional
lattice with a single Fourier component of potential en-

ergy:

0 I

0.1 0.2
q/g.

0.3

FIG. 3. Imaginary part of the re6ected contribution to
the free-particle susceptibility for Q/gp =0.05, 0.15, 0.25,
0.35, 0.45, for the highest to the lowest peak, respec-
tively. This function becomes proportional to a 8 function
at q~ ——0.25go as Q ~ 0.

4~bn (x) = —) e (g, 0)gsin(gx) E, (37)

The frequency of the perturbation is 1.3m+, where E'~

is the Bee-electron Fermi energy. This &equency is be-
low the bulk plasmon band which starts at 1.6m+ but
above both the interband threshold at 0.6m+ and the
zone-boundary collective states which end at 1.1t'+. We
have plotted in addition to Im[hnj the separate bulk and
surface-correction pieces. The former is determined by
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I I I I I I I I I I I I I I I I

5 10
x a

15 80

FIG. 4. Induced density response in a more sophisticated
calculation (see text). The lowest curve is the total induced
density vrhile the upper taro separate it into a bulk, periodic
piece and the surface-correction oscillations. The curves have
been ofFset for clarity.

where E is the (constant) value of the electric field along
2: outside the metal, the e ~(g, 0) are elements of the
inverse dielectric matrix of the bulk, and the sam on g
runs over integral multiples of go. Subtracting bn+ in the
middle plot &om bn in the bottom plot gives the SCO
shown in the top plot. The cosine Fourier transform of
the SCO has sharp peaks at two wave vectors: 0.24go
and 0.76go which, in the notation of the free electron
model, w should identify as qI and go —qI. The free-
electron formula for qI is, which predicts qI/go ——

0.25, remarkably close given that it ignores the distortion
of the bands away &om kee-electron dispersion.

The incommensurate oscillations in Fig. 4 decay as one
moves away &om the surface. This has been forced to
happen since we replaced u -+ u + ip with p/s~& ——0.025
in the calculation. Larger values of p make the SCO de-

cay more quickly and the present code becomes too slow

for smaller p. From the simple models of the previous sec-
tion we believe that the SCO would continue indefinitely
if p were zero. However, unavoidable incoherent scat-
tering in real samples implies that p should be nonzero.
In addition higher-order many-body effects which act to
blur the quasiparticle concept by mixing various single-
particle states together will also cause the eventual decay
of the SCO. Still, the important point is that the SCO
extend significantly farther than a few lattice constants.

Now consider a better treatment of one-body effects.
The recent numerical work~2'~4 has used models in which
crystallinity effects are allowed only as a function of x, the
systems being uniform in X. The bands are more compli-
cated than in our Bee-electron or tight-binding models,
but have the important simplification that they are all
parallel in their dependence on K. It is then straight-
forward to rationalize the appearance of SCO in these
calculations. The key is the continued presence of the
two basic features responsible for SCO. The first is that
integrating Schrodinger's equation through the surface
can lead to an eigenstate becoming a linear combination

of traveling Bloch waves in bulk. Although this is not
always true for states above the vacuum level, it must
occur for the occupied eigenstates. The second feature
is that the constraint that optical transitions conserve
energy and (some) bulk momentum leads to a restricted
set of particle-hole pairs whose contributions to the den-
sity fluctuations do not cancel out as one moves into the
bulk. What we mean by the adjective "some" here is
the following. The eigenstates by the first feature do not
in general have a unique crystal momentum in bulk, but
instead are a linear combination of states that do. If the
crystal momentum of a Bloch wave in the initial state
matches the crystal momentum of a Bloch wave in the
final state, we say that "some" bulk momentum has been
conserved in the transition between the two states. For
models of one-dimensional crystallinity the energy and
bulk momentum constraints require in an extended zone
scheme the simultaneous solution of eg + ~ = eg~ with
k = k', modulo go. At a fixed ur, these can be solved
by only a few (k, k') pairs, usually one or zero. The sur-
face corrections to the induced density due to all such
pairs have the same form for all K, and should produce
long-ranged SCO.

When we try to move beyond one-dimensional models
of crystallinity, the above argument breaks down because
the "allowed" values of (k, k') will depend on K (and K')
if the bands are not parallel. However, as we saw with the
tight-binding model calculations, the existence question
for SCO then becomes a difficult quantitative problem of
amplitudes and ranges. It is probably best not to predict,
but only to wait until such calculations are done.

Alternatively one could look to experiment for evidence
of SCO. This too appears to be difficult. The problem
is that the SCO are surface corrections. The separations
of, say, yo in Eq. (8) or bn in Fig. 4 are merely heuris-
tic, since an experiment would probe the full yo and hn.
The SCO do not exist independently of interband transi-
tions, unlike the various plasmons that can be excited at
a surface. Thus even if one were to measure the reflection
amplitude of either photons or electrons over an extended
range of frequency, the SCO can only modify the spectral
structure due to interband transition; i.e., once the inter-
band transition threshold is crossed, the SCO also exist
and how much they distort the spectrum is a question
of matrix elements rather than density of states. For in-
stance the frequency variation of d~ calculated in Ref. 12
shows several sharp features attributed to SCO effects,
but in fact the SCO are present throughout the interband
range with roughly constant amplitude [with respect to
the bulk oscillations of (37)j and range. There is no sim-

ple test to distinguish structure in the energy absorption
by interband transitions as due to bulk matrix elements,
SCO, or surface-localized. modifications.

A more direct probe of the SCO is needed. One possi-
bility that znay be helpful is the study of nonlinear optics,
where products of first-order local fields act as driving
terms of higher-order processes. We have in mind work
along the lines of that by Song et al. in which the de-
pendence of second harmonic generation from Rb layers
of varying thicknesses on Ag substrates was examined.
Extracting clear evidence of the SCO will not be easy
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because of a variety of competing eKects, but one should
at least do the analysis with their possible existence and
long range in mind.

We conclude by mentioning that, although we have di-
rected this discussion toward crystalline metal surfaces,
SCO are generic features of the dynamical response of
any system with a surface and a potential periodic in
the direction perpendicular to that surface. Thus they
should also occur in superlattices and in periodically
modulated quantum wells. In fact, in such systems, the
length scales associated with the lattice can be very dif-
ferent from those associated with the electron gas (in
some cases, even adjustable), making them perhaps bet-
ter candidates for detecting SCO than metals. Further-

more, these systems are constructed to make the gas as
uniform as possible in the parallel direction. Therefore
the bands should be very nearly parallel, producing a
strong oscillation.
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