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We review some recent results concerning the probability that two electrons will be found close
together in any interacting electronic system, and why this probability is usually well-approximated
by local (LSD) and semi-local spin density functional theories. The success of these approximations
for the energy in “normal” systems is explained by the usual sum-rule arguments on the system- and
spherically-averaged exchange-correlation hole density (nxc(u)), coupled with the nearly correct, but
not exact, behavior of these approximations as the interelectronic separation v — 0. We argue that

the accuracy of the LSD on-top hole density in “normal”

systems is due to its accuracy in the

non-interacting, weakly-interacting, and strongly-interacting limits.
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The problem of solving for the ground-state energy of
a system of N electrons in a given external potential oc-
curs in many branches of science: atomic physics, quantum
chemistry, solid state physics, and materials science. The
local spin density (LSD) approximation [1] of density func-
tional theory provides a practical, first principles, moderate-
accuracy method for solving this problem in all these fields
[2]. Recent gradient-corrected functionals, such as PW91
[3]. typically significantly improve the accuracy of LSD [4],
but do not yet yield chemical accuracy.

These schemes approximate the exchange-correlation en-
ergy of the system, a contribution to the total ground state
energy which is defined (in atomic units, e?=m=h=1) as

(5]
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where n(r) is the density at point r, and nyc(r,r’) is the
density at r’ of the exchange-correlation hole about an elec-
tron at r, given by

nxc(r,r’) = /0 dAPy(r,x')/n(r) — n(x'). (2)

Here Py(r,r') is the pair density, i.e., P\(r,r’) d®r d3r' is
the probability of finding one electron in d®r surrounding r,
and another in d3r surrounding r’, while A is the strength
of the interelectronic Coulomb repulsion, A/|r—r’|, which is
varied from 0 (non-interacting) to 1 (full interaction), keep-
ing the density fixed [6]. Once an approximation to Exc
in terms of the density is given, the local external potential
of the effective non-interacting equations of density func-
tional theory (the Kohn-Sham equations [1]) may be found,
and the self-consistent solution of these equations yields the
ground state density and energy of the given system (within
that approximation).
LSD may be generated by the ansatz

nxe (n(r), C(r); N, (3)

nxc(r,r’) =

where niiP(n,(;u) is the exchange-correlation hole in a
uniform electron gas of density n and relative spin polariza-
tion ¢ = (ny —n|)/n at separation u from the electron [7].
In fact, the complete hole carries more information than is
needed to perform an LSD calculation, which requires only
the energy density. One way to define the exact energy
density is in terms of the exchange-correlation energy per
electron at the point r,

exc(r) = /d3 '727?@ ;l) 4)
and within LSD, [ d3u n%EP(n(r),((r); u)/2u.

LSD, which is exact for a uniform system, is also a good
approximation for slowly-varying densities, but not necessar-
ily for any other system. However, in practice, it produces
a moderate accuracy energy for many systems with rapidly-
varying densities. In an attempt to understand this mod-
erate accuracy, we might study exc(r), which is plotted in
Fig. 1 for the hydrogen atom, in which nyc(r,r’) = —n(r).
(Compare Fig. 8 of Ref. [8].) We see that LSD yields the
wrong value and slope as r — 0 and an incorrect asymp-
totic form at large r. Despite this, the LSD energy is
correct to within a few percent (Exc = —0.3125 hartree,
EP = —0.290 hartree). Another point-wise property, the
exchange-correlation potential, is similarly poorly approxi-
mated by LSD [9,10].

To understand why LSD works in such a case, we con-
sider instead the real-space decomposition of the hole into
contributions from different interelectronic separations. We
define the system- and spherically-averaged hole by

N/ /d3rn () neo(r,r+u),  (5)

where N = fd?’r n(r) is the total number of electrons, so
that, from Eq. (1), the average exchange-correlation energy
per particle is simply given by

<nxc

Exc/N = /00 du 47u’® w (6)



€..(T)

FIG. 1. Exchange-correlation energy per particle in the hy-
drogen atom, evaluated exactly and in LSD, as a function of
distance from the nucleus (atomic units).

The averaged hole satisfies several important conditions,
which may be proven from its definition, Eq. (2), namely

{nx(w)) <0, (7)

/000 du 4mu® (nx(u)) = —1, (8)

/000 du 4mu® (ne(u)) = 0, (9)

where (ny(u)) is the exchange (i.e., A = 0) hole, which is
practically [11] that hole found in a Hartree-Fock calcula-
tion, while (nc(u)) is the correlation hole. We intuitively
expect LSD to work well for the hole at small separations,
because the density at the hole point r’ has not changed
much from the input density at the electron point r. Then,
since LSD replaces the system-averaged hole by that of an-
other physical system, (nki°(u)) also satisfies the above
conditions, which constrain the hole to be reasonably good
even at large separations, for any system [12]. In Fig. 2, we
plot (nyxc(u)) for hydrogen, and see just how good LSD is.
This accuracy is then reflected in the energy, through the
integral in Eq. (6).

An obvious way to improve accuracy in LSD is to treat
the LSD hole as the zero-order term of an expansion in
gradients of the density at r. In principle, the next or-
der terms, which can be arranged to behave as |Vn|2, are
straightforward to calculate [13,14], producing the gradi-
ent expansion approximation (GEA). However, GEA proves
less accurate than LSD for most systems where the den-
sity is not slowly-varying. We can understand this result in
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FIG. 2. System-  and  spherically-averaged  ex-
change-correlation hole for the hydrogen atom, evaluated ex-
actly and in LSD, as a function of the separation between the
electron and the hole observation point (atomic units).

terms of the real-space decomposition: Since GEA produces
a hole which is not the hole of any real system, this hole
violates the exact conditions, Eqs. (7)- (9). This failure
can be “fixed” by cutting off the GEA hole in real space,
and choosing the cutoff so as to restore those exact condi-
tions. The numerically-defined functional which results from
this procedure has been fit analytically, and is called PW91
[3.15]. The on-top exchange-correlation hole in PW91 was
designed to recover its LSD value as u — 0.

However, this justification for the accuracy of LSD, and
the improved accuracy of PW91, relies on the hole being
well-approximated at small separations. In fact, we only
need LSD to be accurate at u = 0, to make LSD accu-
rate for small u. This is because of the electron-electron
cusp condition [16,17], a universal property of all electronic
systems, arising from the dominance of Coulomb repulsion
between the electrons at small separations. The cusp con-
dition relates the derivative of the pair density with respect
to the interelectronic separation to the on-top pair density
itself, for each value of A, and yields

(15e.2(0)) = Al(nxcA (0)) + (n(0))], (10)
where f'(0) = 9/dulu=0 [ dQ f(u)/(47), and

() =y [

Since (n%. ,(0)) is determined by (nxc(0)) and by (n(0)),
which is a local functional of the density, if the on-top hole
is well-approximated in LSD, so will the derivative be, and

likewise the value of the hole for any small u. Note that

dQ,
47

/d3r n(r) n(r 4+ u). (11)



this cusp in the hole as u — 0 is entirely in the correlation
contribution, as the exchange hole is evaluated on a non-
interacting wavefunction. These results are illustrated by
Fig. 2, where the LSD hole becomes exact at u = 0. This
is so for any fully spin-polarized system, where the proba-
bility of finding two electrons at the same spot is identically
zero by the exclusion principle, and where from Eq. (2), the
remaining contribution to the on-top hole is a local func-
tional of the density. For such a system, the cusp at u = 0
vanishes, both exactly and in LSD.

This leads us directly to the central question of this work:
Just how well is (nxc(0)) approximated in LSD, and why?

First we consider the exchange contribution. If the ex-
change wavefunction is a single Slater determinant, as is
often the case, then

P)\:()(I', I‘) =2 TLT(I‘) Tll(]’.‘), (12)
and the exchange hole is given simply by [18-20]

(1(0)) = —= [ dr[n2@) + 2], (13)

Since this is a local functional of the spin densities, LSD is
exact for this quantity. We now define a “normal” system
as one in which the on-top pair density Py(r,r) for A < Lis
given rather accurately by LSD, applied to the exact physical
spin densities, n1(r) and nj(r). Insuch a system, the A =0
wavefunction is always a single Slater determinant. Exam-
ples of normal systems include hydrogen, helium, Hooke's
atom (see below), and the uniform electron gas. However,
some systems are abnormal. A simple example of such a
system is the Hy molecule, with its bond length stretched
to a large distance. The ground-state wavefunction for all
A is a spin singlet of Heitler-London type, a linear combina-
tion of two Slater determinants. If the exact ground state
spin densities are fed into the LSD expression for the on-
top exchange hole, i.e., Eq. (13), a very incorrect value is
found. Other examples of such abnormal systems include
the molecule Crq, at its equilibrium bond length, and anti-
ferromagnetic solids. With Andreas Savin [21], we have
shown that nevertheless the energies and on-top pair densi-
ties of these abnormal systems can be well-approximated in
self-consistent LSD, but that the self-consistent nq(r) and
ny(r) must be re-interpreted as intermediate quantities, and
not as physical spin densities. In the rest of this article, we
restrict our attention to normal systems, as we have done
before [22].

For any normal system, the exchange contribution dom-
inates at high density, so (n}:>(0)) becomes exact in this
limit. In the opposite limit of low density, P(r,r) =0, and
again the on-top hole is exact in LSD. Also, two arguments
had been given in the literature in support of the idea that
(ni3P(0)) is exact for all densities. Both of these arguments
were based on approximate calculations made in wave vector
space, which simply means analyzing the Fourier transform
of (nxc(u)). In the first [6,23], a perturbation calculation in

the Coulomb repulsion was performed for a spin-unpolarized
surface. Since such an analysis is only valid for high den-
sities, this result is just a special case of Eq. (13) above.
In the second [24,25], it was shown that, within the ran-
dom phase approximation (RPA) to the density fluctuations
in nxc(r,1’), the leading gradient correction to (nkP'(0))
vanishes. However, as is well-known, RPA is a very poor ap-
proximation at short distances. In fact, we recently showed

that [22,26]

(n%E5(0) = Mn(0)). (14)

Thus, the RPA on-top hole derivative is a local functional of
the density (for all densities), so that al/ gradient corrections
to this quantity are zero. However, even in the high den-
sity limit, comparison with Egs. (10) and (13) shows that
RPA yields the wrong local functional. Simple attempts to
improve on RPA by using a local field correction, while re-
taining the local nature of the on-top hole derivative, proved
unpromising [22].

Thus, early arguments for the exactness of (ni:>(0)) turn
out to be special cases, and leave open the question of ex-
actness in general [27]. We therefore tested this hypothesis
on an interacting electronic system which allows exact so-
lutions. This was provided by Hooke's atom, in which two
electrons are bound to a center via an external oscillator
potential, k(r? + r%)/2, while repelling each other via the
Coulomb repulsion [28]. Analytic solutions for the ground
state are known for certain discrete values of the force con-
stant k& [29] but, due to imprecision in our knowledge of the
uniform gas on-top hole, such solutions do not provide a
definitive counter-example.

However, as ¥ — oo and the Coulomb repulsion be-
comes negligible, since Hooke's atom is a normal system,
the exchange-correlation hole reduces to the exchange hole,
and is given by Eq. (13). The leading correction in powers
of A, where A is the strength of the Coulomb repulsion, is
therefore the leading contribution to the correlation hole in
this high density limit, and may be written in the suggestive
form

(ncA(0)) = —%)\ / d®r n?(r) rs(r) + O(A?),  (15)
where n = 3/4wr3. Treating the Coulomb repulsion as a
perturbation, this constant a was already known analytically
for the uniform gas (= 0.7317) [30,31] and we calculated
it analytically for Hooke's atom (= 0.7713) [22,32]. Thus
(niEP(0)) is not exact in general.

Hooke's atom, which has no continuous energy spectrum,
might be regarded as an unnatural example. But, with An-
dreas Savin [33], we have found very similar behavior from a
more physical example of a normal system, the two-electron
ion of nuclear charge Z. Starting from accurate correlated
wavefunctions [34], we evaluated (ny(0)) = —(n(0))/2,
(nxc.a=1(0)), and (n32°_,(0)), for Z = 1,2,3,4,10,20,

and oo, and fitted the results to a Z~! expansion of the



form aZ3+b2Z2% + ..., from which we found that o = 0.799,
proving that LSD is not exact for this case either.

Nevertheless, for all normal cases studied so far, (nxc(0))
is very well-approximated by LSD. We can understand why
this is so by undoing the coupling-constant integral in nxc,
and taking advantage of the limits in which LSD /s exact.
We first define the pair distribution function

lnr) = Sy (16)

and its system- and spherical-average

_ [dQu [dP Py(r,r+u)

(ga(u) 47N (n(u)) ’

(17)

chosen so that (nxc (u)) = (n(u)) [(gA(u)) — 1]. We also

define a system-averaged Wigner-Seitz radius,

(ry)x = fd?’r Py—o(xr,r) rs(r)
sx [d3r Pa—o(r,r)

(18)

Note that both (rs}x and (9x(0)}(= (ga=0(0))) are local
functionals of the spin densities for normal systems. In fact,

from Eq. (12),

{9x(0)) = (1 = (C*))/2, (19)
where

oy _ J&r (x) n®(r)
() = [d3r n?(r)

(20)

The limits { = 0 (unpolarized) and ( = 1 (fully polarized)
are commonly encountered. Finally we define the (slightly)
non-local functional

[ d3r % Azo(r,r)
T T @ Pao(r,r) ra(r)’ (21)

which determines how the non-interacting limit is ap-
proached. For the uniform electron gas, « is expected to be
approximately independent of polarization [7].

We may use these quantities, and the regimes where the
LSD on-top hole is known to be exact, to describe how
the on-top exchange-correlation hole varies as a function of
coupling-constant. In the strongly-interacting (i.e., A — c0)
limit, Py(x,r) — 0, and (nxc »(0))/(n(0)) — —1. In the
non-interacting (i.e., A = 0) limit, exchange dominates,
and (nx(0))/(n(0)) = (9x(0)) — 1. Finally, in the weakly-

interacting limit (i.e., as A — 0),

{nc,A(0)) 2

2 = —a(rs 0 O(X%). 22
(Eq. (15) is a specific example of Eq. (22)). Any approxima-
tion which reproduces these limits, as LSD does (although
not exactly for a), should be very accurate for all values of

A. To illustrate this point, we construct a simple interpo-
lation formula for the coupling-constant dependence of the
on-top hole,

<nXC,A(O)> _ 1 e—0.7317)\(rs)x _
)y (92(0)) — 1= (gx(0)) 1

bl

(23)

which reproduces these limits correctly. Moreover, as a
function of A(rs)x, Eq. (23) displays the correct Levy scaling
[35]. Under a uniform wavefunction scaling ¥(ry, ...,ry) —
A3NI2 W(yry ..., yry), which implies a density scaling
n(x) — 7on(yr) and hence (r)x — 7~ (re)e, (92(0))
is invariant. Since this scaling is achieved by simultane-
ously scaling the external potential, v(r) — v2v(yr), and
the electron-electron interaction, A — 4A, we find that
Ars)x — A(rs)x, and thus Eq. (23) satisfies this condi-
tion.

The result of the interpolation Eq. (23), applied to the
first analytic solution of Hooke's atom, at £ = 1/4, is plot-
ted in Fig. 3. Clearly our interpolated result is very accurate.
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FIG. 3. On-top exchange-correlation hole of the k = 1/4
Hooke’s atom, scaled by (n(0)), as a function of coup-
ing-constant A. The ( = 0 curve is the value interpolated
from the high density limit, using Eq. (23). The upper dot
marks the LSD value at full coupling constant, while the lower
dot marks the exact value at A = 1. The ( = 1 curve is also
gotten from the interpolation formula, but is exact in this
case. Note that A — 0 corresponds to the weakly-interacting
or high-density limit, and A — oo to the strongly-interacting
or low-density limit.

The fractional errors may be even smaller in the coupling-
constant averaged quantities, which go directly into the
exchange-correlation energy integral, Eq. (6). (Eq. (23)
makes the evaluation of the coupling-constant integral triv-
ial, but exact values for comparison are not available.) The



TABLE 1. Values for (nxc,x=1(0))/(n(0)) calculated sev-
eral different ways, using numerically exact densities. Inter-
polated values are based on Eq. (23). Systems denoted by a
force constant k are Hooke’s atoms. (Atomic units.)

system (rs)x interpolated LSD* exact
k= 1/100 4.441 -0.981 -0.953 -0.971
k= 1/4 1.796 -0.866 -0.828 -0.860
H-P 1.668 -0.852 -0.809 -0.898
HeP 0.726 -0.706 -0.682 -0.724

*Using the electron gas on-top hole of Ref. [36].
P Using the wavefunction of Ref. [34].

horizontal line in Fig. 3 shows the result for the fully spin-
polarized system, where our interpolation becomes exact,
as (9x(0)) = 0.

Numerical results for several small systems are listed in
Table 1. Note that the interpolation result is always more
negative than the LSD result, in part because the expo-
nential decay with rs of the interpolation formula is faster
than the actual decay in the uniform gas [36]. This flaw is,
however, relatively unimportant for the exchange-correlation
energy, as the fractional error in (nyc ,(0)) becomes very
small in the large-A or large-r; regime.

To summarize, the LSD on-top system-averaged
exchange-correlation hole is exact under uniform scaling in
the limits of high density ({(r;)x — 0) (if a single Slater
determinant suffices), low density ((r;)x — o0), and full
spin-polarization ({ = 1). Earlier arguments claiming exact-
ness in general have been shown to be special cases of these
limits, or artifacts of other approximations. LSD is also typ-
ically a very good approximation to the leading correction
in the high density limit (as given by first-order perturba-
tion theory around a single-determinant wavefunction), i.e.,
a ” 0.7317. We are currently trying to understand precisely
why this is so. (Relevant to this question is the fact that
for the uniform electron gas (nc ,(u)) is of order A! for any
finite u, even though it is of order A% as u — oo, leading
to the familiar A2In A behavior of its correlation energy in
the A — 0 limit.) But, given these constraints, we have
argued here that LSD should therefore be a good approxi-
mation for the on-top hole for all normal systems. Together
with the exact conditions Egs. (7)- (9), this explains why
LSD achieves moderate accuracy for Eyc, even in systems
of rapidly-varying density.
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