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We construct a generalized gradient approximation~GGA! for the densitynxc(r ,r1u) at positionr1u of
the exchange-correlation hole surrounding an electron atr , or more precisely for its system and spherical
averagê nxc(u)&5(4p)21*dV u N

21*d3r n(r )nxc(r ,r1u). Starting from the second-order density gradient
expansion, which involves the local spin densitiesn↑(r ),n↓(r ) and their gradients¹n↑(r ),¹n↓(r ), we cut off
the spurious large-u contributions to restore those exact conditions on the hole that the local spin density~LSD!
approximation respects. Our GGA hole recovers the Perdew-Wang 1991 and Perdew-Burke-Ernzerhof GGA’s
for the exchange-correlation energy, which therefore respect the same powerful hole constraints as LSD. When
applied to real systems, our hole model provides a more detailed test of these energy functionals, and also
predicts the observable electron-electron structure factor.@S0163-1829~96!04847-3#

I. INTRODUCTION AND SUMMARY
OF CONCLUSIONS

Kohn-Sham density functional theory1–4 would yield the
exact ground-state energyE and spin densitiesn↑(r ),n↓(r )
of a many-electron system, if the exact exchange-correlation
energy functionalExc@n↑ ,n↓# were known. Good results for
solids are often found from the local spin density~LSD!
approximation1

E xc
LSD@n↑ ,n↓#5E d3r n~r !e xc„n↑~r !,n↓~r !…, ~1!

whereexc(n↑ ,n↓) is the known
5 exchange-correlation energy

per particle of an electron gas with uniform spin densities
n↑ , n↓ , andn5n↑1n↓ . Equation~1! is clearly valid when
the spin densities vary slowly over space, but this condition
is violatedby real atoms, molecules, and solids. Indeed, the
next systematic correction in the slowly varying limit, the
second-order gradient expansion approximation6–11 ~GEA!,

E xc
GEA@n↑ ,n↓#5E xc

LSD@n↑ ,n↓#1 (
s,s8

E d3r C xc
ss8~n↑ ,n↓!

3¹ns•¹ns8 /ns
2/3ns8

2/3, ~2!

is less accurate than LSD.6,12,13

Gunnarsson and Lundqvist14 explained the success of
LSD as follows: The exchange-correlation energy is the elec-
trostatic interaction of each electron atr with the density
nxc(r ,r1u)5nx1nc at r1u of the exchange-correlation
hole which surrounds it. In atomic units (\5e25m51),

Exc@n↑ ,n↓#5
1

2E d3r n~r !E d3u n xc~r ,r1u!/u. ~3!

See Refs. 14 and 15 for reviews. LSD models the hole den-
sity as

n xc
LSD~r ,r1u!5n xc

unif
„n↑~r !,n↓~r !;u…, ~4!

wherenxc
unif(n↑ ,n↓ ;u) is the hole density in an electron gas

of uniform spin densitiesn↑ ,n↓ , for which an accurate ana-
lytic model now exists.15 Thus LSD respects the sum rules

E d3u nx~r ,r1u!521, ~5!

E d3u nc~r ,r1u!50, ~6!

which constrain the energy integral of Eq.~3!. Moreover, Eq.
~3! involves only the system and spherically averaged hole
density

^nxc~u!&5E dVu

4p

1

NE d3r n~r !nxc~r ,r1u!, ~7!

for which LSD provides a fairly reasonable description.16

The LSD hole has other desirable features, such as the
negativity condition on the exchange hole17

nx~r ,r1u!<0, ~8!

an accurate18 ~but inexact19! on-top valuenxc(r ,r ), and the
correct electron-electron cusp condition atu50.20 GEA im-
proves upon LSD at smallu, but displays spurious large-u
behavior,21,17,12,22which is sampled by the long-range Cou-
lomb interaction 1/u. Langreth and Perdew21 showed that the
GEA hole, which is a truncated expansion and not the exact
hole of any system, violates Eq.~6!.

Nonempirical generalized gradient approximations
~GGA’s!,12,23
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E xc
GGA@n↑ ,n↓#5E d3r f ~n↑ ,n↓ ,¹n↑ ,¹n↓!, ~9!

often start from the GEA for the holenxc
GEA and cut off its

large-u contributions to restore exact conditions such as Eqs.
~5!, ~6!, and~8!. Since only the system average of Eq.~7! is
needed,¹2n contributions to the GEA are first transformed
via integration by parts onr . GGA’s may be applied directly
or hybridized with exact exchange.24,25

In Sec. II, we present our GGA model for the exchange
hole. The first such model was that of Perdew and Wang12 in
1986 ~PW86!, who used sharp cutoffs onnx

GEA to enforce
Eqs.~5! and ~8!, yielding

E x
GGA@n↑ ,n↓#5

1

2
Ex
GGA@2n↑#1

1

2
Ex
GGA@2n↓#, ~10!

E x
GGA@n#5E d3r ne x

unif~n!F x~s!, ~11!

where

e x
unif~n!523kF/4p, ~12!

kF5~3p2n!1/3, ~13!

s5u¹nu/2kFn. ~14!

The real-space cutoff gave a numerical functionFx(s) ~see
Fig. 1 of Ref. 12!, which was fitted to an analytic form,
Fx
PW86(s). In the later work of Perdew and Wang23,26 in 1991

~PW91!, Becke’s27,28 semiempirical refinements plus addi-
tional theoretical constraints were included inFx

PW91(s), al-
thoughFx

PW91(s) was a worse fit to the numerical function
than wasFx

PW86(s). Both the PW86 and PW91 parametriza-
tions were contorted29 at small s to recover the expected
GEA of Eq. ~2!.

Recently, Perdew, Burke, and Ernzerhof~PBE!30 pre-
sented a simplified construction of a simplified GGA for ex-
change and correlation, in which all parameters~other than
those in LSD! are fundamental constants. Although indepen-
dent of PW91 or any model for the hole, the PBE functional
is numerically equivalent to PW91 for most purposes, and

F x
PBE~s!511k2k/~11ms2/k!, ~15!

wherem50.219 51~to preserve the good LSD description of
the exchange-correlation energy in the linear response of the
uniform gas! andk50.804. In Sec. II, we construct a GGA
hole that accurately reproduces Eq.~15!, by applying a
damping factor to the PW86 exchange hole. The damping
factor, used only for exchange, reflects the more pathological
large-u behavior of thenx

GEA, and the ‘‘double’’ nature of its
GGA cutoffs, which enforce both Eqs.~5! and ~8!.

In Sec. III, we present our model for the GGA correlation
hole. The first such model,23 which led to the PW91 corre-
lation energy functional, was based upon sharp cutoffs of
crude approximations for both the LSD and gradient contri-
butions to the hole. We refine these crude approximations,
but find essentially the same correlation energy, which can
be accurately represented by the PBE functional

E c
PBE@n↑ ,n↓#5E d3r n$ec~r s ,z!1HPBE~r s ,z,t !%, ~16!

where

r s5~3/4pn!1/3, ~17!

z5~n↑2n↑!/n, ~18!

t5u¹nu/2ksfn, ~19!

f5 1
2 @~11z!2/31~12z!2/3#, ~20!

ks5~4kF /p!1/2, ~21!

HPBE5gf3lnH 11
b

g
t2F 11At2

11At21A2t4G J , ~22!

A5
b

g
@exp$2ec

unif/gf3%21#21 ~23!

and g50.031 091,b50.066 725. The reduced gradientss
and t measure how fastn(r ) is varying on the scales of the
local Fermi wavelength 2p/kF and the local Thomas-Fermi
screening length 1/ks , respectively.

In Ref. 30, Eq.~22! was derived from three limits:

HPBE→bf3t2 ~ t→0!, ~24!

HPBE→2e C
unif ~ t→`!, ~25!

and

E c
PBE@n↑g ,n↓g#→const ~g →`!, ~26!

where nsg(r )5g3ns(gr ) is a uniformly scaled density.31

These limits also emerge naturally from the real-space cutoff
construction of Sec. III, as shown in Ref. 32. The high-
density limit of Eq. ~26! is violated by both LSD and
PW91.33

Thus the PBE correlation energy functional of Eq.~16!
can be derivedeither from various limits, as in Ref. 30, or
from a real-space construction of the GEA correlation hole,
as in Sec. III. The PBE exchange energy functional of Eq.
~15! is derived from its limits in Ref. 30, and is then used to
improve the real-space cutoff of the GEA exchange hole in
Sec. II.

FIG. 1. Spherically averaged exchange hole densitynX for
s51 in LSD ~circles!, GEA ~crosses!, and GGA~solid line!.
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Sharp cutoffs produce a ‘‘choppy’’nxc
GGA(r ,r1u) ~e.g.,

see the GGA exchange hole in Ref. 34!, but are smoothed in
the system and spherical average of Eq.~7!. In Sec. IV, we
describe the general features of the GGA holes.

We conclude the following:~1! The PW91 and PBE
exchange-correlation energy functionals correspond to a
GGA exchange-correlation hole, with the known correct fea-
tures of the LSD hole, plus additional correct inhomogeneity
effects. These functionals should therefore perform as reli-
ably as LSD, except under special conditions~see below!. ~2!
The GGA system-averaged exchange-correlation hole of Eq.
~7! can be constructed for any system via the formulas given
in this work. The coupling-constant integration

^n xc~u!&5E
0

1

dl^n xc,l~u!& ~27!

can be undone, as in Refs. 35 and 15, to extract the physical
exchange-correlation hole at full coupling strength (l51),
for comparison with the results of accurate wave-function
calculations.~3! The system-averaged hole at full coupling
strength is an observable, since its Fourier transform is es-
sentially the electron-electron structure factorS(k) measured
in quasielastic scattering processes. We expect the GGA to
make a useful prediction for this observable.

Finally, the PW91 and PBE functionals yield great im-
provements over LSD for the total energies of atoms~and
their separate exchange and correlation contributions! or at-
omization energies of molecules,26,36–40 but have a mixed
history of successes and failures for solids.41–51This may be
because the exchange-correlation hole can have a diffuse
large-u tail in a solid, but not in an atom or small molecule,
where the densityn(r ) itself is well localized. As we shall
see in Sec. II, a sharp radial cutoff corresponds to
k50.804 in Eq.~15!, while a more diffuse cutoff leads to a
smaller value ofk. This uncertainty is also reflected in the
PBE derivation of Eq.~15!, in which k is set to the maxi-
mum value allowed by the Lieb-Oxford bound23,52 on Exc .

II. EXCHANGE HOLE

The exact exchange hole arises from the Kohn-Sham non-
interacting wave function~a Slater determinant! and satisfies
the spin-scaling relation

nx@n↑ ,n↓#~r ,r1u!5(
s

ns~r !

n~r !
nx@2ns#~r ,r1u!. ~28!

Thus we need only modelnx@n#(r ,r1u), the exchange hole
as a functional of the density for a spin-unpolarized system.

We write

n x
GEA~r ,r1u!52 1

2n~r !y, ~29!

where

y~z,s,û!5J~z!1D~z!$4L~z!û•s/3216M ~z!~ û•s!2/27

216N~z!s2/3%. ~30!

Here û5u/u, s5“n/2kFn, and

z52kFu ~31!

is the reduced electron-electron separation on the scale of the
Fermi wavelength. The functionsJ(z), L(z), M (z), and
N(z) are known, oscillating functions ofz, given in Eqs.
~8!–~11! of Ref. 12, respectively.D(z) is a damping factor,
which equals 1 at the pure GEA level. To first order inu,
nx
GEA52n(r1u)/2, so that the GEA hole is deeper on the
high-density side of the electron.

In our generalized gradient approximation~GGA!, the
hole is represented as

n x
GGA~r ,r1u!52 1

2n~r !yu~y!u„ux~r !2u…, ~32!

whereu(x)51 for x.0 and 0 forx,0. The first step func-
tion on the right enforces the negativity condition of Eq.~8!,
while the second involves a cutoff separationux chosen to
enforce the normalization condition of Eq.~5!, which be-
comes

2
1

12pE0
zx
dz z2ysph av~z,s!521, ~33!

wherezx52kFux and

ysph av~z,s!5
1

4pE dVuy„z,s,û…u„y~z,s,û!…. ~34!

Equation~33! determineszX as a function ofs, and Eqs.~3!
and ~11! yield

Fx~s!5
1

9E0
zX
dz zysph av~z,s!. ~35!

The angular integration overVu in Eq. ~34! is performed
analytically ~as explained at the end of this section! and the
z integrations of Eqs.~33! and ~35! are performed numeri-
cally.

As discussed in Refs. 17 and 12, the GEA exchange hole
displays an undamped cos(2kFu) oscillation asu→`. We
damp this oscillation by taking

D~z!51/@11~bz!q# ~36!

in Eq. ~30!. To preserve the GEA hole at smallu, q>2.
Since the LSD hole density is essentially confined to the
region 0&z&2p, and the GEA breaks down when the GEA
hole density is much greater than the LSD density, we expect
b;1/2p. The choicesq52.5 andb51/2p provide a good
fit to Fx

PBE(s) of Eq. ~15!.
Figure 1 is a plot of2ysph av(z,s)z

2/12p, appearing in
Eq. ~33!, as a function ofz for s51.0, for the LSD hole and
the damped GEA and GGA holes. For largez, the damped
GEA hole displays unphysical oscillations aboutnx50. The
GGA hole is sharply cut off atzx;10.5, to satisfy Eq.~33!,
and is identically zero for 8&zx&9, due to the negativity
cutoff in Eq. ~34!. Elsewhere, the GGA hole is not equal to
the damped GEA hole because of the step function inside the
spherical average in Eq.~34!, which produces derivative dis-
continuities as a function ofz, e.g., atz;7.

Figure 2 shows numerical results for the reduced cutoff
radiuszx as a function ofs. As s→0, the cutoff radius moves
out to `, and the GGA hole reduces to the damped GEA
hole. Ass→`, the cutoff radius slowly approaches zero, and
the hole becomes highly localized around the electron. For
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intermediates, the steps inzx(s) occur where the normaliza-
tion cutoff passes through a negativity cutoff.

Figure 3 shows various numerical results for the enhance-
ment factorFx(s) over local exchange as a function ofs in
the physical range53 0&s&3, as defined by Eq.~35!, as well
as the PBE enhancement factor of Eq.~15!, with which it
agrees closely. We also present the numerical GGA enhance-
ment factor resulting from~1! a diffuse radial cutoff factor
@11(u/ux)

2#exp@2(u/u x)
2#, with ux fixed by Eq. ~33!,

which leads to a smallerFx(s) for s*1, and~2! with sharp
radial cutoffs but with no damping@i.e.,D51 in Eq. ~36!#,
which leads to a slightly largerFx(s), and alinear depen-
dence ons as s→0. Thus the real-space cutoff procedure
determines the general features ofFx(s), but not its exact
behavior, which must then be fixed by other constraints@as
has been done in the construction of the PW86,12 PW91,23

and PBE~Ref. 30! exchange functionals#.
We close this section with a technical point: the analytic

result for the angular integral in Eq.~34!. Let n be the cosine
of the angle betweenu ands. Then

ysph av5
1

2E21

1

dn~An21Bn1C!u~An21Bn1C!, ~37!

whereA, B, andC are independent ofn, and given by Eq.
~30!. The value ofysph av can be stated for several different
cases: If T,0, where T5B224AC, or un6u.1, where
n652B/2A6AT/2uAu, then

ysph av5@F~1!2F~21!#u~V!, ~38!

with V5A2B1C and F(n)5An3/61Bn2/41Cn/2. If
un1u.1 but un2u,1, then

ysph av5@F~n2!2F~21!#u~V!1@F~1!2F~n2!#u~2V!.
~39!

If un2u.1 but un1u,1, then

ysph av5@F~n1!2F~21!#u~V!1@F~1!2F~n1!#u~2V!.
~40!

Finally, if un6u,1, then

ysph av5@F~n2!2F~21!1F~1!2F~n1!#u~V!

1@F~n1!2F~n2!#u~2V!. ~41!

III. CORRELATION HOLE

The local densityn(r ) sets only one length scale for ex-
change~the Fermi wavelength! but it sets a second for cor-
relation, the Thomas-Fermi screening length. Since the cor-
relation hole isnot required to satisfy a negativity constraint
like Eq. ~8!, we do not need the non-spherical component of
its GEA density. We write the spherically averaged GEA
correlation hole as

n c
GEA~r ,u!5nc

LSD~r s ,z,v !1t2dnc~r s ,z,v !, ~42!

where

v5fksu ~43!

is the reduced electron-electron separation on the scale of the
screening length.

The LSD correlation hole functionnc
LSD(r s ,z,v) is accu-

rately known,15 and has been confirmed by recent quantum
Monte Carlo calculations.54 We write

n c
LSD~r s ,z,v !5f5ks

2A c~r s ,z,v !, ~44!

where~for r s<10)

4pv2Ac~r s ,z,v !5 f 1~v !1 f 2~r s ,z,v !. ~45!

Here f 1(v) is a nonoscillatory long-range contribution,
known from the random phase approximation~RPA!. @Cor-
rection to Eq.~22! of Ref. 15:a350.002 431 7#. The short-
range contribution f 2(v) vanishes rapidly forv@1/Ap,
where

p~r s ,z!5pkFd~z!/4f4 ~46!

andd(z)50.30520.136z2.
Similarly, we write the GEA correlation hole as

dnc~r s ,z,v !5f5ks
2Bc~r s ,z,v !, ~47!

Bc~r s ,z,v !5B c
LM~v !@12exp~2pv2!#

1b~r s ,z!v2exp~2pv2!, ~48!

FIG. 2. Reduced cutoff separation for the GGA exchange hole
as a function of reduced density gradient. Fors*3, we find
ux&r s .

FIG. 3. Enhancement factor over local exchange as a function of
reduced density gradient. The solid line is the damped numerical
GGA of Eq. ~35!, the open circles are the PBE of Eq.~15!, the
pluses are the numerical results with no damping, and the crosses
are the numerical results with a diffuse radial cutoff.
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where

B c
LM~v !5@18p3~11v2/12!2#21 ~49!

is the nonoscillating long-range contribution, the Fourier
transform of the Langreth-Mehl55 ~LM ! exponential model
for the wave-vector decomposition of the gradient contribu-
tion to the correlation hole in the RPA.

Equation~48! contains no constant or linear term inv, so
it does not alter the highly accurate LSD on-top hole or its
cusp. The coefficientb(r s ,z) is determined from the known
GEA correction to the energy, for which we use the
Langreth-Mehl approximation to the high-density (r s→0)
limit, with the spin dependence of Ref. 56:

DEc
GEA5Cc

LME d3r f~z!u¹nu2/n4/3

516~3/p!1/3Cc
LME d3r nf3t2, ~50!

whereCc
LM5(p/3)1/3/(24p2) differs only slightly from the

exact high-density limit of Ma and Brueckner,6

b(p/3)1/3/16. Requiring our GEA correlation hole to recover
this energy fixes

b~r s ,z!5
2p2

3p2 @12E1~12p!#, ~51!

whereE1(x)5x exp(x)*x
`dt exp(2t)/t. Figure 4 shows both

the Langreth-MehlBc and how the short-range contribution
changes it forr s52 andz50,1.

A key fact is that Eq.~47! and its normalization integral
are well defined but positive. While the LSD correlation hole
properly integrates to zero, the GEA correlation hole does
not.21 A simplification is thatAc of Eq. ~45! andBc of Eq.
~48!, which are functions of three variables, correctly reduce
to functions ofv alone in either the high-density (r s→0,
p→`) or the long-range (v→`) limits, where RPA is valid.

With the GEA correlation hole fully defined, we construct
the spherically averaged GGA hole

n c
GGA~r s ,z,t,v !5f5ks

2@Ac~r s ,z,v !1t2Bc~r s ,z,v !#

3u~vc2v !, ~52!

wherevc(r s ,z,t) is the largest root satisfying the normaliza-
tion condition

E
0

vc
dv 4pv2@Ac~r s ,z,v !1t2Bc~r s ,z,v !#50. ~53!

Figure 5 is a plot of the spherically averaged GGA correla-
tion hole for r s52 andz50 for several different values of
t. We see that, for a small value oft (t50.5), the gradient
correction to LSD is small and sovc is large ('10.0), tend-
ing to its GEA value (̀ ) as t→0. On the other hand, for
t51.5, the gradient correction is 9 times larger, causing the
cutoff to occur at a much smaller value ofvc (vc52.3). In
the limit t→`, vc→0 ~Fig. 6!, turning off the correlation
contribution altogether@as in Eq.~25!#. In all cases, the GGA
correlation hole is more localized than either the LSD or
GEA holes.

In Fig. 6, we followvc as a function oft for r s52, for
both the spin-unpolarized (z50) and the fully spin-polarized

FIG. 4. The functionBc(r s ,z,v), which defines the shape of the
gradient correction to the correlation hole via Eq.~48!, for r s52
with z50 and z51. Also shown is the entire Langreth-Mehl
(r s5z50) curve.

FIG. 5. Spherically averaged correlation hole densitync for
r s52 andz50. GEA holes are shown for four values of the re-
duced density gradient,t5u¹nu/(2kzn). The vertical lines indicate
where the numerical GGA cuts off the GEA hole to make
*0
vCdv 4pv2nc(v)50.

FIG. 6. Reduced cutoff separation for the GGA correlation hole,
for r s52 andz50 or z51. For z51, vc50 beyondt'2.5. For
the caser s52 andz50, uc&r s meanst*1.4 ands*1.6.
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(z51) cases. Note that, for smallt, vc is large, and the
curves (z50 or 1) merge because the long-range contribu-
tion to the hole is independent ofz. The same qualitative
behavior occurs for all densities, although for higher densi-
ties (r s→0) the short-range contribution becomes negligible
for all t and the two curves become everywhere identical.

The GGA correlation energy per particle at positionr is
now

e c
GGA~r s ,z;t !5f3E

0

vc
dv

4pv2

2v
@Ac~r s ,z,v !1t2Bc~r s ,z,v !#

5e c
unif~r s ,z!1H~r s ,z,t !. ~54!

In Fig. 7, we plot the difference between the GGA and LSD
correlation energies for different values ofr s , as a function
of t for the spin-unpolarized case (z50). For t2→0, this
figure recovers thet2 behavior of GEA. Since the GGA cor-
relation energy vanishes at large gradients, the limit as
t→` in this figure is precisely2ec

unif . Figure 8 shows the
same forz51. Figures 7 and 8 also show the fair agreement
between the analytic PBE expression of Eq.~22! and the
numerical GGA. The results for PW91 are very similar, ex-
cept that asr s→0, HPW91(t) becomes a simple parabola for
large t, due to theH1 term in that functional.23

Finally, compare Figs. 7 and 8 to deduce an approximate
spin-scaling relationship forr s&6:

e c
GGA~r s ,z;t !'f3~z!e c

GGA
„r s,0;t/f~z!…. ~55!

IV. QUALITATIVE FEATURES OF THE GGA HOLES

At the LSD level, our models are essentially exact. The
only missing ingredient is the large-u oscillation of the cor-
relation hole, which is energetically unimportant15 and is
washed away in the average of Eq.~7!. When the reduced
gradients of Eq. ~14! vanishes at the position of the electron,
our GGA holes reduce to LSD, and so are fixed by the local
value ofr s . In the high-density (r s→0) limit, the exchange
hole exists on a length scale}r s , while the correlation hole

is diffused over a much greater length scale}Ar s, and each
displays a simple scaling behavior. Thus exchange domi-
nates correlation:ex

unif}r s
21 andec

unif} ln(rs). As r s increases,
the exchange hole expands more rapidly than the correlation
hole, and ultimately engulfs it. In the low-density (r s→`)
limit, the exchange and correlation holes each scale withr s
and are of comparable size. The extreme long-range part of
the correlation hole is always given by RPA, as is the
r s→0 limit.

The gradient corrections to the hole are known less reli-
ably than the LSD terms. Second-order gradient corrections
to the LSD on-top hole and cusp are small18 and neglected
here. In fact, self-consistent LSD or GGA calculations pro-
vide accurate predictions57,58 for n(r ) and nxc(r ,r ), even
when symmetry breaking leads to serious errors inz(r ) of
Eq. ~18!. The gradient corrections display the same small-
and large-r s scalings as do the LSD holes.

A nonzero reduced gradients at the position of the elec-
tron affects the holes at smallu, deepening the exchange part
and raising the correlation part. The large-u contributions to
the GGA holes are chopped off. This leads to the scaling
limit of Eq. ~26!, sincer s(r )→g21r s(gr ), s(r )→s(gr ), and
t(r )→g1/2t(gr ) under uniform scaling.

As the reduced gradients increases, the exchange hole
@constrained by Eqs.~5! and ~8!# becomes deeper and more
short ranged inu, so the negative exchange energy turns on
more strongly. But the correlation hole@constrained by Eq.
~6!# is gradually cut down to zero, so the correlation energy
turns off. All these effects may be seen in the GGA exchange
and correlation energies, as depicted in Figs. 3, 7, and 8, and
in Fig. 1 of Ref. 30; see also Refs. 52 and 59.
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FIG. 8. Same as Fig. 7, but for the fully spin-polarized case
(z51).

FIG. 7. The functionH5ec
GGA2e c

LSD for several values ofr s for
the spin-unpolarized case (z50). The solid lines are the numerical
result of the real-space cutoff procedure, while the open circles are
from the PBE parametrization of Eq.~22!.
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ERRATA

Erratum: Generalized gradient approximation for the exchange-correlation hole
of a many-electron system

†Phys. Rev. B 54, 16 533„1996…‡

John P. Perdew, Kieron Burke, and Yue Wang

@S0163-1829~98!01523-9#

There is a misprint in Eq.~51!. The denominator should be 3p3, not 3p2. However, Fig. 4 is correct, and the misprint in
Eq. ~51! does not affect our results.

0163-1829/98/57~23!/14999~1!/$15.00 © 1998 The American Physical Society

Erratum: Temperature-dependent Landau damping of the acoustic plasmon in a bilayer system
†Phys. Rev. B 57, 2065„1998…‡

D. S. Kainth, D. Richards, H. P. Hughes, M. Y. Simmons, and D. A. Ritchie

@S0163-1829~98!01824-4#

The caption for Fig. 3 is incorrect and should read at the end ‘‘ . . . with calculated energies using the RPA~dashed line! and
the RPA with the Hubbard correction~solid line!.’’

All conclusions in the paper remain unchanged.

570163-1829/98/57~23!/14999~1!/$15.00 14 999 © 1998 The American Physical Society
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