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Figure 1. The extent of our H2O dataset. The figure shows
the atom coordinates in angstrom. Blue are atoms from 15
training points, red from 200 test points.
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H2O DATASET

The extent of the dataset is visualized in Fig. 1.

SAMPLING

For H2, since there is only one atomic distance to ad-
just, we take the M equi-distant points in the parameter
range and for each of these points select the training point
that is closest. For H2O, where we have three parame-
ters, we use K-means[1] to find M cluster centers and for
each center select the training point that is closest. We
repeat K-means 50 times and select the solution with the
lowest K-means criterion.

GRADIENT DESCENT ISSUES

There are two ways to remedy problems of the gradi-
ent descent procedure: First, the gradient descent step
can be “de-noised” by projecting the gradient onto the
data manifold and thus removing the noisy directions.
Secondly, the directions outside of the data manifold can
be removed in a preprocessing step to get rid of the influ-

ence of the noisy directions on the gradient completely.
Both methods yield similar results.

Several approaches exist for describing and projecting
onto the data manifold. Common to each approach is
the idea to find principle components and to project on
those in which direction the densities have largest vari-
ance. Best results are reported [2] by using Kernel Prin-
ciple Component Analysis[3] (KPCA), a non-linear gen-
eralization of PCA.

There are three issues with the assumed gradient-based
approaches: First, the correct choice of the number of
(K)PCA components K has to be made. It is generally
possible to view it as a hyper-parameter and find the op-
timal K via cross-validation. However, we can not choose
fractional Ks. One K might be not enough and K + 1
too much information. Second, the data points only lie
in a bounded region of a manifold that can be described
via PCA components. It is still possible for the gradi-
ent descent to walk outside this bounded region toward
a point where the model has no information and thus the
gradients become inaccurate. A (K)PCA method that
only accesses the scalar products between points in the
data set can not solve this[4]. Third, it might not be
possible to find a suitable pre-image for a ground-state
density given by (K)PCA coefficients[5].

DFT convergence

For our 3-D DFT calculations in Quantum Espresso[6],
we center the molecule in a cubic cell and converge three
variables: the kinetic energy cutoff for wavefunctions
ecutwfc in steps of 10 Ry, the kinetic energy cutoff for
charge density and potential ecutrho in steps of 40 Ry,
and the cell dimension celldm in steps of 1 bohr. We
increase parameters until increasing any parameter does
not change the equilibrium position total energy by more
than 0.01 kcal/mol for either H2 or H2O. We end up with
ecutwfc of 90 Ry, ecutrho of 360 Ry, and celldm of 20
bohr.
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Kernel Ridge Regression

Kernel Ridge Regression[7, 8] (KRR) is a machine
learning method for regression. Using KRR, the non-
interacting kinetic energy functional Ts is of the form

TML
s [n] =

M∑
j=1

αik(n,nj), (1)

where n = n(x1), . . . n(xG) is a ground-state density dis-
cretized in a grid form, ni are the training densities, and
k is the Gaussian kernel function,

k(n,n′) = exp

(
−||n− n′||2

2σ2

)
, (2)

with the kernel width σ as hyper-parameter. The α pa-
rameters are learnt by minimizing the cost function, con-
sisting of squared error and a regularizer that enforces
smoothness on the model function,

C(α) =

m∑
i=1

|Ts[ni]− TML
s [ni]|2 + λ‖α‖2, (3)

where λ is another hyper-parameter and Ts[n] is the ki-
netic energy that corresponds to the ground-state density
n. The solution is given by

α = (K− λI)−1T, (4)

where Kij = k(ni,nj) and T = (Ts[n1], . . . Ts[nm])ᵀ are
the kinetic energies of the training densities.

Note that all model parameters and hyper-parameters
are estimated on the training set; the hyper-parameter
choice makes use of standard cross-validation procedures
(see Hansen et al. [9]). Once the model is fixed after
training, it is applied unchanged out-of-sample.

ML Hohenberg-Kohn map

The basis representation for the densities is given by

n(x) =

L∑
l=1

u(l)φl(x), (5)

where φl are the L basis functions. We introduce some
notation and write the density in grid representation as
n, and its basis coefficients as u. We can then write the
HK map model as

nML[v](x) =

L∑
l=1

u(l)[v]φl(x), (6)

where the L basis function coefficients are regular KRR
models,

u(l)[v] =

M∑
i=1

β
(l)
i k(v, vi), (7)

of external potentials v with a Gaussian kernel function.
The cost function can be formulated as

C(β) =

M∑
i=1

‖ni − nML[vi]‖L2
(8)

=

M∑
i=1

∥∥∥∥∥∥ni −
L∑
l=1

M∑
j=1

β
(l)
j k(vi, vj)φl

∥∥∥∥∥∥
L2

, (9)

with the L2 norm. We write this cost function in terms
of basis function coefficients. This can be viewed as pro-
jecting the inside of the norm on each basis function.
Assuming orthogonality of the basis functions yields

C(β) =

M∑
i=1

L∑
l=1

∣∣∣∣∣∣u(l)i −
M∑
j=1

β
(l)
j k(vi, vj)

∣∣∣∣∣∣
2

. (10)

where u
(l)
i = 〈ni, φl〉 is the l-th basis function coefficient

of the i-th training density, as defined in Eq. 5 if orthog-
onality is satisfied. After reordering the sums over i and
l, we solve for each l independently in an analytical form
analogously to regular KRR

β(l) = (Kσ(l) + λ(l)I)−1u(l), l = 1, . . . , L (11)

where, for each basis function l, λ(l) is a regularization
parameter, Kσ(l) is a Gaussian kernel with kernel width
σ(l). The λ(l) and σ(l) can be chosen individually for
each basis function via independent cross-validation (see
[9, 10]).

Basis functions

Fourier basis. We define the basis as

φl(x) =

{
cos {2πx(l − 1)/2} , l odd

sin {2πxl/2} . l even
l = 1, . . . , L

(12)

We transform the density efficiently via the discrete
Fourier transform

u
(l)
i =

G∑
m=1

ni(xm)φl(xm). (13)
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The back-projection is written as

nML[v](x) =

L∑
l=1

u(l)[v]φl(x). (14)

KPCA basis. We define the basis as:

φKPCA
l =

M∑
j=1

p
(l)
j Φ(nj). (15)

The parameters p
(l)
j are found by eigen-decomposition of

the Kernel matrix. The KCPA basis coefficients are given
by

u
(l)
i = 〈Φ(ni), φ

KPCA
l 〉 =

M∑
j=1

p
(l)
j k(nj , ni) (16)

with kernel map Φ. The back-projection for KPCA is
not trivial but several solutions exist. We follow Bakir
et al. [11] and learn the back-projection map.

Logic of Density Functional Theory (DFT)

Within the Born-Oppenheimer approximation in non-
relativistic quantum mechanics, and using atomic units,
the Hohenberg-Kohn paper[12] laid the theoretical frame-
work of all modern DFT. The first statement is that the
mapping

v(r)←→ n(r) (17)

is one-to-one, i.e., at most one potential can give rise to
a given ground-state density, even in a quantum many-
body problem, for given interaction among particles and
statistics (i.e., fermions or bosons). A follow-up claim is
that the ground-state energy of an electronic system can
be found from

E[v] = min
n

{
F [n] +

∫
d3rn(r)v(r)

}
(18)

where F [n] is a density functional containing all many-
body effects. The minimizing density is the solution to
the Euler equation:

δF

δn(r)
+ v(r) = const (19)

It is the direct map between densities and potentials that
we machine-learn in this paper. We call it the HK density
map, n[v](r).

The KS scheme avoids direct approximation of F by
imagining a fictitious system of non-interacting electrons
with the same density as the real one[13]. The KS equa-
tions are:

{
−1

2
∇2 + vs(r)

}
φi(r) = εiφi(r) (20)

where εi are the KS eigenvalues and φi the KS orbitals.

vs(r) = v(r) + vH(r) + vXC(r) (21)

where vH(r) is the Hartree potential and vXC(r) is the
exchange-correlation potential. The true energy of the
system is then reconstructed from the self-consistent den-
sity n(r) =

∑
i |φi(r)|2 via

E[n] = Ts[n] + U [n] +

∫
d3rn(r)v(r) + EXC[n] (22)

where Ts[n] is the kinetic energy of the non-interacting
electrons and U [n] is the Hartree energy. EXC[n] is the
exchange-correlation (XC) energy and implicitly defined
by Eq. 22. Most calculations[14] use simple approxima-
tions that depend only on the density and its gradient
to determine EXC, called generalized gradient approxi-
mations, or replace a fixed fraction of the approximate
exchange with the exact exchange from a Hartree-Fock
calculation (called a hybrid). Requiring the XC potential
to be the functional derivative of EXC ensures that the
self-consistent solution of Eq. 20 minimizes the energy of
Eq. 22 for the given v(r) and EXC[n].
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