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Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional
theory to solve electronic structure problems in a wide variety of scientific fields, ranging from
materials science to biochemistry to astrophysics. Machine learning holds the promise of learning
the kinetic energy functional via examples, by-passing the need to solve these equations. This
should yield substantial savings in computer time, allowing either larger systems or longer time-
scales to be tackled. Attempts to machine-learn this functional have been limited by the need to
find its derivative. The present work overcomes this difficulty, by learning the density-potential
map directly. Both the improved accuracy and lower computational cost is demonstrated on DFT
calculations of small molecules.

INTRODUCTION

Kohn-Sham density functional theory[1] is now enor-
mously popular as an electronic structure method in a
wide variety of fields[2]. Useful accuracy is achieved with
standard exchange-correlation approximations, such as
generalized gradient approximations[3] and hybrids[4].
Such calculations are playing a key role in the materi-
als genome initiative[5], at least for weakly correlated
materials[6].

There has also been a recent spike of interest in ap-
plying machine learning (ML) methods in the physical
sciences[7–11]. The majority of these applications involve
predicting properties of molecules or materials from large
databases of KS-DFT calculations[12–14]. A few appli-
cations involve finding potential energy surfaces within
MD simulations[15]. Fewer still have focussed on find-
ing the functionals of DFT as a method of performing
KS electronic structure calculations without solving the
KS equations[16–18]. If such attempts could be made
practical, the possible speed-up in repeated DFT calcu-
lations of similar species, such as occur in ab initio MD
simulations in water, is enormous.

A key difficulty has been the need to extract the
functional derivative of the non-interacting kinetic en-
ergy. The non-interacting kinetic energy functional Ts[n]
of the density n is used in two distinct ways in a KS
calculation[1], as illustrated in Fig. 1: (i) its functional
derivative is used in the Euler equation which is solved
in the self-consistent cycle and (ii) when self-consistency
is reached, the ground-state energy of the system is cal-
culated by E[n], an Orbital-Free (OF) mapping. The
solution of the KS equations performs both tasks ex-
actly. Early results on simple model systems showed
that machine learning could provide highly accurate val-
ues for Ts[n] with only modest amounts of training[16],

but that the corresponding functional derivatives are too
noisy to yield sufficiently accurate results to (i). Subse-
quent schemes overcome this difficulty in various ways,
but typically lose a factor of 10 or more in accuracy[17],
and their computational cost can increase dramatically
with system complexity.

Here we present an alternative ML approach, in which
we replaced the Euler equation by directly learning the
Hohenberg-Kohn (HK) map v(r) → n(r) (red dashed
in Fig. 1) from the one-body potential of the system of
interest to the interacting ground-state density, i.e. we
establish an ML-HK map. We show that this map can be
learned at a much more modest cost than either previous
ML approaches to find the functional and its derivative
(ML-OF) or direct attempts to model the energy as a
functional of v(r) (ML-KS). Furthermore we show that it
can immediately be applied to molecular calculations, by
calculating the properties of both H2 and H2O. Moreover,
since we have already implemented this with a standard
quantum chemical code (Quantum Espresso[19]) using a
standard DFT approximation (PBE), this can now be
tried on much larger scales.

RESULTS

We will first outline theoretical results, most promi-
nently the ML-HK map, and then do simulations of 1-D
systems and 3-D molecules.

ML-Hohenberg-Kohn map

Previous results show that for an ML-OF approach, the
accuracy of ML kinetic energy models TML

s [n] improve
rapidly with the amount of data. But minimizing the
total energy via gradient descent requires the calculation
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Figure 1. a. Mappings used in this paper. The bottom arrow represents E[v], a conventional electronic structure calculation,
i.e., KS-DFT. The ground state energy is found by solving KS equations given the external potential, v. E[n] is the total
energy density functional. The red arrow is the HK map n[v] from external potential to its ground state density. b top. How
∆ED depends on M for ML-OF and ML-HK with different basis sets for the 1-D problem. b bottom. Errors of the ML-KS
map and the ML-HK map for different numbers of training data points M (in kcal/mol) for H2. c. How our Machine Learning
Hohenberg-Kohn (ML-HK) map makes predictions. The molecular geometry is represented by Gaussians; many independent
Kernel Ridge Regression models predict each basis coefficient of the density. We analyze the performance of data-driven (ML)
and common physical basis representations for the electron density.

of the gradient of the kinetic energy model TML
s (see Fig.

1). Calculating this gradient is challenging. Due to the
data driven nature of, e.g., kernel models, the machine-
learned kinetic energy functional has no information in
directions that point outside the data manifold[20]. This
heavily influences the gradient to an extent that it be-
comes unusable without further processing[16]. There
have been several suggestions to remedy this problem but
all of them share a significant loss in accuracy compared
to Ts[n][17, 18, 21].

However, we propose an interesting alternative to gra-
dients and the ML-OF approach. Recently, it has been
shown that the Hohenberg-Kohn map for the density
as a functional of the potential can be approximated
extremely accurately using semiclassical expressions[22].

Such expressions do not require the solution of any differ-
ential equation, and become more accurate as the number
of particles increases. Errors can be negligible even for
just 2 distinct occupied orbitals.

Inspired by this success, we suggest to circumvent the
kinetic energy gradient and directly train a multivari-
ate machine learning model. We name this the ML-
Hohenberg-Kohn (ML-HK) map:

nML[v](x) =

M∑
i=1

βi(x)k(v, vi). (1)

Here, each density grid point is associated with a group
of model weights β. Training requires solving an opti-
mization problem for each density grid point. While this
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is possible in 1-D, it rapidly becomes intractable in 3-D,
since the number of grid points grows cubically.

The use of a basis representation for the densities, as
in

nML[v](x) =

L∑
l=1

u(l)[v]φl(x), (2)

renders the problem tractable even for 3-D. A machine
learning model that predicts the basis function coeffi-
cients u(l)[v] instead of the grid points is then formulated.

Predicting the basis function coefficients not only
makes the machine learning model efficient and allows
the extension of the approach to 3-D but also permits
regularization, e.g. to smoothen the predicted densities
by removing the high frequency basis functions for exam-
ple, or to further regularize the machine learning model
complexity for specific basis functions.

For orthogonal basis functions, the machine learning
model reduces to several independent regression models
and admits an analytical solution analogous to Kernel
Ridge Regression (see supplement Eq. 4):

β(l) = (Kσ(l) + λ(l)I)−1u(l), l = 1, . . . , L. (3)

Here, for each basis function coefficient, u(l) and λ(l) are
regularization parameters and Kσ(l) is a Gaussian kernel
with kernel width σ(l). The λ(l) and σ(l) can be cho-
sen individually for each basis function via independent
cross-validation (see [12, 23]). This ML for the HK model
avoids prior gradient descent procedures and with it the
necessity to “de-noise” the gradients. Due to the inde-
pendence of Eq. 3 for each l, the solution scales nicely.

Functional and Density driven error

How can the performance of the ML-HK map be mea-
sured? It has recently been shown how to separate out
the effect of the error in the many-body effects func-
tional F and the error in the density n(r) on the re-
sulting error in the total energy of any approximate, self-
consistent DFT calculation[24]. Let F̃ be the approxima-
tion of the many body functional F , and ñ(r) the approx-
imate ground state density when the approximate many
body functional is used in the Euler equation. Defining
Ẽ[n] = F̃ [n] +

∫
d3rn(r)v(r) yields

∆E = Ẽ[ñ]− E[n] = ∆EF + ∆ED (4)

where ∆EF = Ẽ[n] − E[n] is the functional-driven er-
ror, while ∆ED = Ẽ[ñ] − Ẽ[n] is the density-driven er-
ror. In most calculations, the error is dominated by the
functional-driven error. The standard approximations

can, in some specific DFT calculations, produce abnor-
mally large density errors that dominate the total error.
In such situations, using a more accurate density can
greatly improve the result [24–26]. We will use these def-
initions to measure the accuracy of the ML-HK map.

1-D potentials

The following results demonstrate how much more ac-
curate ML is when applied directly to the HK map.
The box problem originally introduced in Snyder et al.
[16] is used to illustrate the principle. Random poten-
tials consisting of three Gaussian dips were generated in-
side a hard-wall box of length 1 (atomic units), and the
Schrödinger equation for non-interacting electrons solved
extremely precisely. Up to 200 cases were used to train
an ML model for Ts[n].

To measure the accuracy of an approximate HK map,
the analysis of the previous section is applied to the KS
DFT problem. For truly non-interacting electrons, the
many-body functional F is just the kinetic energy, and
the functional error is simply

∆EF = T̃s[n]− Ts[n], (5)

i.e., the error made in an approximate functional on the
exact density. Table I on the left gives the errors made
by ML-OF for the total energy, and its different com-
ponents. The density-driven contribution to the error is
always comparable to, or greater than, the functional-
driven error. This means the calculation is abnormal,
and can be significantly improved by using a more accu-
rate density. As M grows, the error becomes completely
dominated by the error in the density. This shows that
the largest source of error is in using the ML approxima-
tion to Ts to solve the Euler equation to find the density.

Now this separation of errors can be used to analyze
the direct ML-HK map. The most accurate EML[n]
model, in this case the one trained on 200 data points,
is taken and the density-driven error of the ML-HK map
is calculated. The average error of EML[n] on the ex-
act density is only 0.04 kcal/mol, as given by ∆EF . For
M ≤ 50, the error in the EML[n] map is negligible rela-
tive to the density-driven error, so the total energy error
is almost identical to the density-driven error here.

Three variants of the ML-HK map were tested. First,
direct prediction of the grid coefficients: In this case,

u
(l)
i = ni(xl), l = 1, . . . , G. This variant is tested in 1-d

only; in 3-D the high dimensionality will be prohibitive.
500 grid points were used, as in Snyder et al. [16]. Sec-
ond, a common Fourier basis is tested. The density can
be transformed efficiently via the discrete Fourier trans-
form, using 49 Fourier basis functions in total. In 3-D
these basis functions correspond to plane waves. The
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ML-OF E[v] ML-HK n[v]
∆E ∆EF ∆ED ∆E grid ∆ED grid ∆ED Fourier ∆ED KPCA

M MAE max MAE max MAE max MAE max MAE max MAE max MAE max
20 7.7 47 7.7 60 8.8 87 2.15 11.5 2.14 11.5 1.7 9.8 0.37 5.5
50 1.6 30 1.3 7.3 1.4 31 0.26 2.4 0.26 2.4 0.26 2.4 0.061 0.96

100 0.74 17 0.2 2.6 0.75 17 0.084 0.82 0.081 0.82 0.083 0.81 0.033 0.43
200 0.16 2.9 0.039 0.6 0.16 2.9 0.042 0.059 0.019 0.45 0.02 0.45 0.026 0.26

Table I. Errors (kcal/mol) on the 1-D dataset for different numbers of training data, M . The ML-HK errors are calculated
using the ML-OF functional with 200 points.

back-projection u 7→ n to input space is simple, but al-
though the basis functions are physically motivated, they
are very general and not specifically tailored to density
functions. This is a motivation for exploring, third, a
Kernel PCA (KPCA) basis[27]. KPCA[28] is a popular
generalization of PCA that yields basis functions that
maximize variance in a higher dimensional feature space.
The KPCA basis functions are data-driven and comput-
ing them requires an eigen-decomposition of the Kernel
matrix. Good results are achieved with only 25 KPCA
basis functions. The KPCA approach gives better re-
sults because it can take the non-linear structure in the
density space into account. However, it introduces the
pre-image problem: It is not trivial to project the densi-
ties from KPCA space back to their original (grid) space
(see supplement). It is thus not immediately applicable
to 3-D applications.

The results are shown on the right-hand side of Ta-
ble I. For all values of M , and all three variants, the
average density-driven errors are typically an order of
magnitude smaller than their counterparts on the left
(ML-OF). This demonstrates that direct learning of the
HK map is much easier than deducing that map from
a machine-learned kinetic-energy functional. The table
also shows the corresponding errors in energy for the
ML-HK map, when combined with the highly-accurate
M = 200 energy map. These, again, are much smaller
than their counterparts for the ML-OF map, for the same
reasons.

The number of Fourier basis functions can be reduced
to 30 without getting significantly higher errors. The
mean average error ∆ED for M = 100 increases from
0.083 to 0.93. Further reduction leads to inaccuracies in
the TML

s predictions.

3-D molecules

We next apply the ML-HK approach to realistic DFT
calculations of small molecules. All the methods, except
the new one, applied in the previous section to the box
problem become prohibitively expensive in 3-D, because
the gradient descent procedure does not converge even
with unrealistically many training points. Thus we can

not compare to the ML-OF approach anymore and in-
stead compare the ML-HK map to a ML-KS approach.
We again measure the density-driven error of the ML-HK
map:

|∆ED| =
1

K

K∑
k=1

|EML[nk]− EML[nML[vk]]|. (6)

Since the total energy functional is unknown, but neces-
sary to compute the density-driven error, an ML model
EML[n] is trained for it. This map EML[n] is trained on
significantly more training points than nML[n] to be as
accurate as possible and yields errors far smaller than
any of the maps being tested.

We can not define a density-driven error of the ML-
KS map and therefore directly measure the total energy
error

|∆E| = 1

K

K∑
k=1

|EML[vk]− Evk |, (7)

where Evk is the result of the KS calculation for the ex-
ternal potential vk(r).

Both approaches require the characterization of the
Hamiltonian by its external potential. The external
(Coulomb) potential diverges for the 3-D molecules and
is therefore not a good feature to measure the distance
in ML. Instead, we use an artificial Gaussians potential
in the form of

v(r) =

Na∑
α=1

Zα exp

(
−‖r −Ri‖2

2γ2

)
(8)

where Ri are the positions and Zα are the nuclear charges
of the Na atoms. The Gaussian potential is used for
the ML representation only. The width γ is a hyper-
parameter of the algorithm. The choice is arbitrary
but can be cross-validated. We find good results with
γ = 0.2Å. The idea of using Gaussians to represent
the external potential has been used previously[29]. The
Gaussians potential is discretized on a course grid with
grid spacing ∆ = 0.08Å.
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Our first prototype is H2 as the simplest molecule. Let
R be the distance between the H atoms. A dataset of
150 geometries is created by varying R between 0.5 and
1.5 angstrom (sampled uniformly). This dataset is split
into a grand training set of 100 geometries and a test
set of 50 geometries. The test set is unseen by the ML
algorithms and only used to measure the out-of-sample
test error. We report only out-of-sample errors which are
always measured on the complete test set.

The EML[n] used to measure the accuracy of the ML-
HK map is trained on the full grand training set. To
evaluate the performance of the ML-KS map and the
ML-HK map, subsets of varying sizes M are chosen out
of the grand training set to train the EML[v] and nML[v]
models on. Because the required training subsets are so
small, careful selection of a subset that covers the com-
plete range of R is necessary. It is ensured by selecting
the M training points out of the grand training set so
that the R values are nearly equally spaced (see supple-
ment for details).

ML-KS EML[v] ML-HK EML[nML[v]]
∆E ∆Ro ∆θ0 ∆E ∆Ro ∆θ0

M MAE max MAE max
H2

5 1.7 5.5 2.6 - 0.25 0.99 0.17 -
7 0.37 1.4 0.23 - 0.038 0.21 0.070 -

10 0.060 0.33 0.18 - 0.024 0.14 0.071 -
H2O

15 0.12 0.51 0.16 0.20 0.088 0.44 0.10 0.31
20 0.10 0.47 0.13 0.21 0.013 0.086 0.020 0.14

Table II. Prediction errors on 3-D molecules versus M , the
number of training points, on a hold-out set for the ML-HK
map (EML[v] via Eq. 7) and the ML-KS map (EML[nML[v]]
via Eq. 6). Energies in kcal/mol, bond-lengths in pm, and
angles in degrees.

The performance of the ML-HK map and ML-KS map
is compared by training EML[v] that maps from Gaus-
sians potential to total energy and nML[v] that maps
from Gaussians potential to the ground-state density in
Fourier basis representation (l = 25). The models are
evaluated as in Eq. 7 and 6. The prediction errors for
H2 are listed in Table II. With M = 7 training data,
the MAE of the ML-HK map is one order of magnitude
smaller than of the ML-KS map. This indicates that even
in 3-D, the potential-density relationship via the HK map
is much easier to learn than the potential-energy relation-
ship via the KS map.

Fig. 1 shows the errors made by the ML-OF and
the ML-HK maps. The equilibrium bond-distance is
R0 = 0.74Å. The error of the HK is much smaller
and smoother, except when the separation becomes very
small. The machine learning models are trained on
reference data from KS-DFT calculations with PBE
exchange-correlation. The mean average error that is

introduced by the PBE approximation on our H2 dataset
is 2.3 kcal/mol (compared to exact calculations), i.e., it
is well above the errors of the ML model and verifies that
the error introduced by the ML-HK map is negligible in
a DFT calculation.

The next prototype is H2O, a more complicated 3-D
molecule that is parametrized with 3 degrees of freedom:
two bond lengths and a bond angle. To create a dataset,
the equilibrium configuration (R0 = 0.97Å, θ0 = 104.2◦

using PBE) is taken and each bond length is varied by a
uniformly sampled value between ±0.075 angstrom away
from R0. The angle θ is also varied between ±8.59 de-
grees (±0.15 rad) away from θ0. In total 350 geometries
are sampled this way (see supplement for a visualization
of the sampling range). A random subset of 50 geometries
is taken as the out-of-sample test set and the remaining
300 geometries are taken as the grand training set just
as for H2. Again, EML[v] is trained on the full grand
training set. Because there are now 3 parameters, it is
harder to select equidistant samples for the training sub-
set of M data points. We therefore use K-means to find
M clusters and select for each cluster the geometry of
the grand training set closest to that cluster’s center for
the training subset (see supplement for details).

Models are trained just as for H2 and the results are
given in Table II. As expected, due to the higher degree
of freedom in H2O compared to H2, a larger training set
size M is required. However, even for the more compli-
cated molecule the ML-HK map works consistently bet-
ter than the ML-KS map, and provides an improved po-
tential energy surface, as shown in Fig. 2.

The PBE mean average error on the H2O dataset is 1.2
kcal/mol. Again, it can be concluded that ML does not
introduce a new significant source of error.

Geometry Optimization

The ML-HK map can also be used to find the mini-
mum energy geometry configuration. The total energy is
minimized as the geometry varies with respect to both
bond lengths and angles. For optimization, we use Pow-
ell’s method [30], which requires a starting point and an
evaluation function to be minimized. A random geome-
try from the training set is used as starting point. The
evaluation functions are EML[v] and EML[nML[v]]. For
the H2O case, the search is restricted to symmetric con-
figurations. This optimization consistently converges to
the correct minima regardless of starting point, consis-
tent with the maps being convex, i.e., the potential en-
ergy curves are sufficiently smooth as to avoid accidental
local minima.
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Figure 2. Top. Distribution of errors against PBE on the
H2O dataset for ML-KS EML[v] and ML-HK EML[nML[v]].
The errors are plotted on a symmetric log scale with linear
threshold of 0.01, using nearest neighbor interpolation for col-
oring. Black dots mark the test set geometries. Bottom
left. Comparison of the PBE errors made by ML-HK and
ML-KS on the test set geometries. Bottom right. Energy
landscape of the ML-HK map (R against θ, colorbar is offset
by −1.3812 × 104 kcal/mol). All models trained on M = 20
training points. Energies and errors in kcal/mol. A black
cross marks the PBE equilibrium position.

DISCUSSION

For several decades, density functional theory has been
a cross-disciplinary area between theoretical physics,
chemistry, and materials sciences. The methods used,
and advances made, in each field have cross-fertilized
comparable and even better advances in the other fields.
This has led to its enormous popularity and widespread
success, despite its well-known limitations in both accu-
racy and the systems and properties to which it can be
applied.

The present work makes a key step forward toward
adding an entirely new ingredient to this mix, namely the
construction of functionals via machine learning. While
previous work showed proofs of principle in 1D, this is
the first demonstration in 3D, using real molecules and
production-level codes. This opens the possibility that
machine-learning methods, which complement all exist-
ing approaches to functional approximation, could be-
come a new and very different approach to this problem,
with the potential to greatly reduce the computational
cost of routine DFT calculations.

Our new method, directly learning the Hohenberg-
Kohn density-potential map, overcomes a key bottle-
neck in previous methodologies, that only became appar-
ent when going beyond 1D calculations. This approach
avoids solving an intermediate more general problem (the
gradient descent) to find the solution of the more specific
problem (finding the ground-state density). This is called
transductive inference by the machine learning commu-
nity and is thought to be key to successful statistical
inference methods[31].

We also confirmed that following a direct prediction
approach with the ML-HK map increases the accu-
racy consistently on both 1-D examples and small 3-D
molecules. We are also able to learn density models that
outperform energy models trained on much more training
data. This quantitative observation allows us to conclude
that learning density models is much easier than learning
energy models. Such a finding should be no surprise to
practitioners of the art of functional construction (see,
e.g., [22]), but the present work quantifies this observa-
tion using standard statistical methods.

We have also derived a way to use basis functions to
make the approach computationally feasible. This makes
it easier to integrate the method into existing DFT codes.
Another advantage is the possibility to take the innate
structure of the densities into account, i.e. spatial corre-
lations are preserved by using low frequency basis func-
tions. Again, this fits with the intuition of experienced
practioners in this field, but here we have quantified this
in terms of machine-learned functionals.

Direct prediction of energies (e.g., the ML-KS map)
always has the potential to lead to conceptually easier
methods. But such methods must also abandon the in-
sights and effects that have made DFT a practical and
usefully accurate tool over the past half century. Many
usefully accurate DFT approximations already exist, and
the corrections to such approximations can be machine-
learned in precisely the same way as the entire functional
has been approximated here. If machine-learning correc-
tions requires less data, the method becomes more pow-
erful by taking advantage of existing successes. Further-
more, existing theorems, such as the viral theorem[32],
might also be used to directly construct the kinetic en-
ergy functional from an ML-HK map. Finally, in the case
of orbital-dependent functionals, such as meta-GGA’s or
global hybrids, the method presented here must be ex-
tended to learn, e.g., the full density matrix instead of
just the density. All this provides useful directions in
which to expand on the results shown here.
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METHODS

Kohn-Sham Density Functional Theory (KS-DFT)

Density Functional Theory is a computational elec-
tronic structure method that determines the properties
of many-body systems by using functionals of the elec-
tron density. The foundation is the Hohenberg-Kohn
theorem[33] that establishes a one-to-one relationship be-
tween potential and density, i.e. at most one potential can
give rise to a given ground-state density.

Kohn-Sham DFT avoids direct approximation of many
body effects by imagining a fictitious system of non-
interacting electrons with the same density as the real
one[1]. Its accuracy is limited by the accuracy of exist-
ing approximations to the unknown exchange-correlation
energy, while its computational bottleneck is the solu-
tion of the Kohn-Sham equations that describe the non-
interacting particles.

Here, all 3-D DFT calculations are performed with the
Quantum ESPRESSO code[34] using the PBE exchange-
correlation functional[35] and projector augmented waves
(PAWs)[36, 37] with Troullier-Martin pseudization for
describing the ionic cores[38]. All relevant parameters
are converged to 0.01 kcal/mol.

The 1-D dataset is taken from Snyder et al. [16].

Kernel Ridge Regression (KRR)

Kernel ridge regression[39, 40] (KRR) is a machine
learning method for regression. It is a kernelized version
of Ridge Regression which minimizes the least squares
error and applies an `2 (Tikhonov) regularization. Let
x1, . . . , xm ∈ Rd be the training data points and let
Y = (y1, . . . , ym)

T
be their respective labels. KRR then

optimizes

min
α

m∑
i=1

∣∣∣∣∣∣yi −
m∑
j=1

αjk(xi, xj)

∣∣∣∣∣∣
2

+ λ‖α‖2 (9)

where k is the kernel function and λ is a regularization
parameter. It admits an analytical solution

α = (K− λI)−1Y. (10)

K is the kernel matrix with Kij = k(xi, xj). Most pop-
ular is the Gaussian (radial basis function) kernel which
allows to find a smooth non-linear model function in in-
put space that corresponds to a linear function in an
infinite dimensional feature space[23].

For the ML-Hohenberg-Kohn map, the canonical cost
function is given by the L2 distance between predicted
and true densities

C(β) =

M∑
i=1

‖ni − nML[vi]‖L2
(11)

=

M∑
i=1

∥∥∥∥∥∥ni −
L∑
l=1

M∑
j=1

β
(l)
j k(vi, vj)φl

∥∥∥∥∥∥
L2

. (12)

The ML model coefficients β(l) can be optimized inde-
pendently for each basis coefficient l via

β(l) = (Kσ(l) + λ(l)I)−1u(l), l = 1, . . . , L. (13)

Cross-validation

Note that all model parameters and hyper-parameters
are estimated on the training set; the hyper-parameter
choice makes use of standard cross-validation procedures
(see Hansen et al. [12]). Once the model is fixed after
training, it is applied unchanged out-of-sample.

Exact calculations

An exact binding energy curve of H2 is calculated with
the Full Configuration Interaction (FCI) method using
the Molpro Quantum Chemistry Software[41]. For H2O,
accurate energies are calculated using CCSD(T)[42].
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