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Finite Debye-Wailer factor for "classical" atom-surface scattering
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We consider atom-surface scattering at low surface temperature, fixed incident energy, and fixed
interaction potential. We examine the limit as the mass m of the incident particle ~ ~, and thus its
de Broglie wavelength ~0. We show that in this "classical" limit, at zero temperature, the Debye-
Waller factor, i.e., the probability of strictly elastic scattering (a quantum efI'ect), tends to a finite
limit ( & 1). We propose scattering of 20-meV Ar atoms from cold Cu(111) as a promising experi-
ment to verify this effect, and estimate the Debye-Wailer factor for this system.

I. INTRODUCTION

Surface-scattering experiments are generally regarded
from the standpoints of two extreme regimes: the
quantum-mechanical regime or the classical regime.
Consider a surface which is cold (T=0) and relatively
smooth (exhibits little or no diffraction). Then quantum-
mechanical scattering is exemplified by a light incident
atom such as He with a low initial energy of, say, 20
meV. Under these conditions, one-phonon peaks may be
easily distinguished, and the technique is often used to
measure surface phonon dispersion curves. ' On the other
hand, classical scattering occurs with heavy incident par-
ticles such as Xe at hyperthermal energies of several eV.
The results of such experiments are usually compared to
either classical or semiclassical calculations. The transi-
tion between these two regimes is continuous. However,
it is generally expected that, as the mass of the incident
atom is increased, characteristic quantum effects disap-
pear. We will, however, show that (in particular sense)
quantum effects remain finite, if the initial energy of the
incident atom is kept fixed.

To clarify the discussion, we reexpress the distinction
of regimes in terms of the following dimensionless param-
eters: A, /d and n, where A, is the de Broglie wavelength of
the incident atom, d is a "range" of the atom-surface in-
teraction, and n is the mean number of phonons excited
by the collision. Consider first scattering from a rigid lat-
tice. Then the incident atom behaves classically if A, ((d
and quantum mechanically if A, d. Similarly, the lattice
behavior is characterized by n. If after the collision
n —O(1), the lattice exhibits quantum effects, while for
n ))1, it behaves classically. For the experiments de-
scribed above, both incident atom and lattice behave ei-
ther classically or quantum mechanically. A typical
energy-loss spectrum in the latter regime, integrated over
all outgoing directions, is shown in Fig. 1. At DE=0,
there is a substantial no-loss line due to elastic scattering
from the surface (this has been broadened in the figure to
simulate a finite energy resolution). This is a characteris-
tic quantum effect since, for classical scattering with a
finite incident energy, there is necessarily a finite energy
loss to the lattice. We refer to the scattering as weakly

inelastic when most of the outgoing distribution lies in
the no-loss line. The Debye-Wailer factor is the ratio of
strictly elastically scattered Aux to the incident Aux, and
its calculation, in general, poses an interesting theoretical
problem.

In this paper, we are interested in a mixed regime:
A, «d but n —O(l). This may be achieved physically by
a heavy particle (of mass m) with low incident energy E
striking a surface (at T=O). For fixed E, as I is in-
creased, the initial velocity of the incident atom U de-
creases and the scattering becomes increasing adiabatic
and more and more nearly elastic. In the limit of infinite
mass, the scattering is completely elastic, and the adia-
batic limit is achieved. For large but finite m, the scatter-
ing is almost adiabatic, and we call this the quasiadiabat-
ic regime. For cold surfaces in this regime, the energy-
loss spectrum of Fig. 1 is compressed toward the DE =0
region. However, assuming we have sufficient energy
resolution to determine its shape, there are three possibil-
ities which may be imagined: (1) The scattering becomes
completely elastic and the inelastic shoulder disappears,
(2) the system behaves classically, and the elastic no-loss
line disappears, or (3) a finite fraction of both elastic and
inelastic scattering remains, as illustrated in Fig. 2. We
show in this work that the third of these possibilities ac-
tually occurs, providing a striking demonstration of a
quantum-mechanical effect that does not vanish as the
mass of the incident atom grows large. (However, the
splitting between the elastic peak and the inelastic shoul-
der approaches zero. )

In Sec. II of this paper, we make a realistic estimate of
the Debye-Wailer factor in the limit of large I, but first
we give a simple plausibility argument for the above
claims. Let us denote by U the velocity of the particle
during the interaction, and by r (=d /v ) the nominal col-
lision time. For increasing m, ~ increases as m' . The
slowly varying force exerted by the incident atom on the
surface atoms can excite only those modes with frequen-
cies ~ ~ 1/~, i.e., only long-wavelength acoustic phonons.
The probability of exciting a single phonon of frequency
co is then approximately

P"'(co)—(b.k3) u 3(co),
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no —loss line

FIG. }. Typical (angle-integrated) energy-loss spectrum for atom scattering from a cold surface. The no-loss line has been
broadened to simulate finite-energy resolution,

where Ak3 is the perpendicular momentum transfer to
the surface for elastic scattering and u 3(co) is the contri-
bution from a normal mode of frequency co to the mean
square vibration of a surface atom perpendicular to the
surface in the undisturbed crystal. The elastic fraction,
written e, is the Debye-Wailer factor. For small 8'

e = 1 —28'and by Aux conservation

28'- g (hk3)u 3(co) . (2)

This is just the standard expression for the Debye-Wailer
factor (well known from x-ray and neutron scattering ),

fnass = 2fYl

mass = m

FIG. 2. Change in energy-loss spectrum for a heavy particle when incident mass is doubled. The inelastic shoulder grows in
height (by a factor of &2) and is compressed towards hE =0 (again by a factor of &2), so that its total area remains unchanged. The
no-loss peak does not change at all, so that the Debye-Wailer factor remains finite.
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except for the cutoff at co = 1/r due to the slowness of the
incident atom. We may estimate 28' using the bulk
properties of the solid in the Debye model

(2k3)

COD
3

(u3)
(3)

d

where ~D is the Debye frequency of the crystal, M the
mass of a lattice atom, Ei:—k3/2m, and (u3 ) is the
mean square of zero point vibrations in the crystal per-
pendicular to the surface. Note that this is independent
of m, and therefore 8'remains finite as m ~ ~. Finally
we note that, with an attractive well of depth D, E~
should be replaced by Fi+D in Eq. (3) (the Beeby correc-
tion). " Thus, we still find a finite Debye-Wailer factor
for m —+ oo.

We note here that this result is not in conAict with that
of Levi and Suhl, ' who find that 28'~ ~ as m ' . Their
calculation treats finite surface temperatures, whereas our
result is for T=O. The complete T dependence of the
Debye-Wailer factor in the quasiadiabatic regime is dis-
cussed in Sec. III.

In Sec. II we describe our model for the atom-surface
interaction and the approximations used to calculate 8'
more accurately. The quasiadiabatic regime is discussed
and illustrated in Sec. III by simple models for the in-
teraction. In Sec. IV, we apply these results to noble gas
scattering from metal surfaces, and suggest an experi-
ment for the case of Ar scattering from Cu(111). We
choose this system because the static corrugation is ex-
pected to be small (so that difFraction effects may be
neglected) and because it provides an experimentally ac-
cessible system with a relatively heavy incident atom.
Properties of other systems are compared with this. In
Sec. V we discuss our results and their implications for
future work, both theoretical and experimental. Appen-
dixes A and 8 deal with technical details; Appendix C
demonstrates the validity of the trajectory approximation
for weakly inelastic scattering in the quasiadiabatic re-
gime.

plane and v3 perpendicular to it; its length is denoted by
v. The only exception to this is the use of z to denote the
component of the incident atom's position perpendicular
to the surface. We also use, in general, primed letters to
denote quantities after the collision.

A. The atom-surface interaction

We make the Born-Oppenheimer approximation' for
the electronic motion, which is valid in this regime. Then
a general atom-surface interaction may be written
V(r, [uI ) where r is the position of the incident atom,
and the set [uI is the set of all displacements of the
atoms from their equilibrium positions in the crystal lat-
tice. We make the assumption (for simplicity only) that it
may be modeled by a "perpendicular" potential function
of the form

V(r, [uI )= Vi(z —Z(R, [uI )),
where r=(R, z) is the position of the incident atom and
Z(R, [uI ) is the so-called corrugation function for the
atom-surface system, which is chosen to best model the
true many-body potential. The corrugation function will
also be a function of incident energy, not written explicit-
ly here. For the small incident energies discussed here,
the incident atom remains far from the surface atoms,
and this approximation will be valid. For small displace-
ments of the surface atoms,

V(r, [uI)=V(r, [0I )+OUI'ViV~ (o)+. . . ,
I

where I labels each equilibrium site in the crystal, and
[0I indicates no displacements from equilibrium; the gra-
dient with respect to uI is denoted V'&. Then, for a per-
pendicular potential, as defined by Eq. (4),

V(r, [ uI ) = Vi(z —Zo(R) )

av,—gut f(R —L) +. . . ,
z —zo(R)

II. THEORETICAL FORMULATION

In this section, we introduce a model for the atom-
surface interaction and demonstrate how the final energy
and angular distributions may be calculated from it. We
are interested in the quasiadiabatic regime, achieved by
letting m ~ ~, while keeping E and all substrate proper-
ties fixed. However, to simplify the calculations, we
make several approximations which are valid for noble
gases scattering from metal surfaces at thermal energies,
the specific systems studied in this paper. For example,
we assume throughout that the displacements of the sur-
face atoms are small. We also use the trajectory approxi-
mation' (TA) to calculate the scattered distribution. Al-
though the validity of the TA is proved here (Appendix
C) only for weakly inelastic, quasiadiabatic scattering, we
expect that the qualitative conclusions remain valid also
for strongly inelastic scattering.

Throughout, we use the standard notation for surface
scattering: A vector v has components V in the surface

where Zo(R) [—=Z(r, [OI ) j is the static corrugation of
the surface, and f(R) is the so-called transfer function,
defined by

BZ(R, [uI )

R, I OI

An illustration of Zo(R) and f(R) is given in Fig. 3. For
short-range interactions, displacements of atoms beneath
the surface will have small effects on the potential seen by
the incident atom so we retain only the l3 =0 (surface lay-
er) term in the sum in Eq. (6). From Eq. (6) we see that
this function, coupled with knowledge of the elastic
scattering potential, Vi(z —Zo(R)), and its first deriva-
tive, is sufficient to determine the potential for small dis-
placements of surface atoms. Then, for a system of negli-
gible static corrugation, the Hamiltonian takes the form

H =H;„,+HO+Pi(z)j(R),
where H;„,=p /2m+ Vi(z) is just the Hamiltonian for
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(b}

t,(R}

where A is the area of the surface unit cell, and
represents the entire surface. The sum over I. now yields

g(R) =g f(Cx+Q).v, e'&'"u (co, )(a, +at, ) .

(a} As only low-frequency modes are excited, we approxi-
mate f(K) by its behavior in the long-wavelength limit
which yields

Z(R) g(R)=g(v )3e'~' u(co )(a +a q)
q

(see Appendix A).

(13)

B. The trajectory approximation

FIG. 3. Schematic of corrugation function for a many-body
potential. (a) The solid lines indicate atomic positions and cor-
rugation function at equilibrium positions. The dashed line
shows the change in the corrugation function due to moving the
central atom a small amount perpendicular to the surface. (b)
The transfer function in the perpendicular direction.

where

u(co )=
+2NMco

(10)

In this expression, advantage has been taken of the
translational symmetry parallel to the surface; N is the
number of atoms in the crystal; M is the mass of a crystal
atom; Q is the phonon momentum parallel to the surface;
q =

I Q, q3 J labels the 3N different modes and
—

q =
I
—Q, —q3]; a and a are creation and annihila-

tion operators for phonons labeled q, with frequency m

and displacement vector v in the surface layer. The
function u(co ) is just the magnitude of the zero point
displacement in the bulk due to a bulk phonon of fre-
quency co, while surface effects are contained in the dis-
placement vector v . Its normalization and dependence
on co are given in Appendix B. We also define the sur-
face Fourier transform of the transfer function

=1f(K)= f d2+ e'+ R f(R)
A.

the incident particle scattering from a rigid lattice, Ho is
the Hamiltonian for the undisturbed crystal,
F~(z)= —c}V~(z)/c}z is the force exerted on the incident
atom by the crystal, and g(R) =guL f(R —L) is linear in
the surface atomic displacements. We expand the dis-
placements in terms of the harmonic normal modes of the
half-crystal:

uL=+u(co, )v (a +a
q

)e'~'

Although the Hamiltonian has been simplified by the
approximations of Sec. IIA, the scattering problem is
still not easily solved, especially for strongly inelastic
scattering. We therefore solve it within the trajectory ap-
proximation (TA), ' in which the incident particle is
treated classically, while the surface is treated quantum
mechanically. This calculation recipe has been used, but
not justified, in previous calculations of heavy atom
scattering from surfaces. ' For weakly inelastic scatter-
ing in the quasiadiabatic regime, this is shown to be valid
in Appendix C.

First we calculate the classical trajectory of the in-
cident atom, with the atoms fixed in their equilibrium po-
sitions. This is the so-called recoilless classical trajectory.
We then have a simple classical one-dimensional scatter-
ing problem. For this uniform potential, the classical
equations of motion decouple, and we write

r=(Vt, z„(t)), (14)

U (t)=F(t)e'~ 'u(co )(v )3 . (16)

The function F(t) is just F~(z) evaluated on the classical
trajectory z,&(t). This Hamiltonian describes a set of un-
coupled linearly driven oscillators, whose final states and
corresponding energy and momentum changes may be
easily calculated. ' The distribution of energy loss and
momentum exchange of the incident atom is then de-
duced from conservation laws to be

JV(bE, bK)= f dt f d R JV(t R)e'

where

(17)

A'(t, R)=exp g~ U (co )~ [exp( ice t —iQ—R) —1]

(18)

The variables AE and AK denote the energy-loss and sur-
face momentum exchange, respectively, while U~(co) is
the Fourier transform of U (t) The const.ant term (in-

where V is the initial velocity parallel to the surface. The
TA Hamiltonian then becomes [see Eqs. (8) and (13)]

HT~=+co (a a + —,') +gU (t)(a +a ), (15)
q q

where
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dependent of t and R) in Eq. (18) gives a contribution to
the final spectrum proportional to 5(EE)5(b,K), i.e., it is
the Debye-Wailer factor. Using Eq. (16) it can be written
as

2IV=QF (co +Q V)u (co )i(v )3
q

(19)

This result has the same form as Eq. (3), as F(0)=b,k3
and for large incident mass F(co~ ) will be cut off at about
1/~. In the next section we will analyze this result and
the energy-loss spectrum in the quasiadiabatic regime in
more detail.

III. THK QUASIADIABATIC RKGIMK

II

d
(20)

where g"=d g/ds . The boundary conditions are
g'(+oo )=+1. With this choice of origin, g(s) is sym-
metric in s, and independent of m (but not of E). In
terms of these variables, the energy-loss spectrum is
denoted JV„where E=bE r/A' and the normalization is
chosen so that f JV, dc, /2m= 1. Then, from Eq. (16), with
R =0, we may write its Fourier transform as

JV(s) =exp[a[y(s) —y(0)]],
where

(21)

In this section we discuss the behavior of the energy
and momentum transfer distribution found in Sec. II [Eq.
(18)] in the quasiadiabatic regime. We introduce dimen-
sionless variables to show explicitly the dependence on m
of each quantity calculated. In particular, we find that
the mean number of phonons excited and the Debye-
Waller factor are independent of m, while other proper-
ties, such as the shape of the energy-loss distribution,
scale in simple ways with m.

To begin with, we restrict our attention to normal in-
cidence on a surface at zero temperature, and calculate
the angle-integrated energy-loss spectrum. For the classi-
cal trajectory of the incident atom, we choose the origin
in space and time to be at the position and moment of
turning, i.e., dz/dt =0 at z =0 and t =0. As we are in-
terested in the behavior of the system as m ~~, we write
the trajectory in terms of the dimensionless variables used
in Sec. I: g=z/d, s=t/r, and' P(g)=Vi(z)/E. The
equation of motion for g is then

28'=+I), (24)

27TV

sinh(nv)

for the pure exponential repulsion and

2rrv cosh(Pvrv)
sinh(harv) coshh (~v)

(25)

(26)

for the Morse potential, ' ' where
P=2( 1 n'tan —'VE/D ). These functions are plotted
in Fig. 4, and their corresponding final energy spectra in
Fig. 5. The dramatic difference is due to the attractive
well, which accelerates the incident particle as it passes
over it. From Table I, we see that this greatly enhances
I&, leading to a large decrease in the Debye-Wailer factor.
We stress the fact that this reduction is entirely due to
the attractive well, and is not due to the large incident
mass.

To clarify further our discussion of the loss spectrum,
we introduce a number of parameters characteristic of
the collision. From the spectrum given by Eq. (18), it can
be shown that the mean phonon frequency to which the
incident atom couples is co=(I2/I, )r '. The mean ener-

gy loss may also be calculated, and we find AE =AaI2/~.
Then a measure of the number of phonons excited during
the collision is given by n =AE /co, or

n =28'. (27)

The meaning of this result is intuitively clear: When few
phonons are excited (n «1), the scattering is predom-
inantly elastic (weakly inelastic scattering), while for
n ))1, the converse is true.

Next, we discuss temperature effects. Equation (18)
may be easily generalized' to finite surface temperature,

where I„=f 0 dv v" g"
~

. This shows explicitly that 2W
is independent of m, and has the form of Eq. (3).

To illustrate these results we use two simple potentials
for which analytic results may be obtained: the exponen-
tial repulsion and the Morse potential. For both poten-
tials we choose d to be the decay length of the repulsive
part of the potential and a=O. 1, a value appropriate for
the experimental conditions discussed in Sec. IV. For the
Morse potential, we also choose a well depth a=2.3E
for the same reason. The dimensionless forms for the
Fourier transform of the acceleration are then

o. =24 E
%coD

' (u,'),
d2

y(s) = f d v~g"
~

ve
0

(22)

(23)

TABLE I. Constants characterizing quasiadiabatic scattering
for three di6'erent potentials: the exponential repulsion, the
Morse potential, and the potential used to model the Ar/Cu sys-
tem.

and g" is the Fourier transform of g"(s). In these expres-
sions, we use the long-wavelength limit to calculate the
phonon properties, as described in Appendix B. The
quantity ( u 3 ), is a measure of the zero point displace-
ments perpendicular to the surface of atoms in the sur-
face, and is also described in Appendix B. The Debye-
Waller factor is then given by exp[ —ay(0) ], so that'

Constant

Io
Il
Iq

I3
e

—2W

Exponential

2.07
0.72
0.41
0.31
0.93
0.07

Morse

25. 1

31.0
52.5

111
0.04
3.1

Ar/Cu

21.7
23.0
34.4
64.9
0.10
2.3
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Morse potential

C)
0 6

FIG. 4. Fourier transform of classical accelerations for two potentials in dimensionless variables: v=cor and g" =Z /U.

o

Morse potential

Y)
th Q

~~

O

. . .. . pure repulsion

I
Ca o
C

0 20

FIG. 5. Energy-loss spectra for two potentials in the quasiadiabatic regime. Only weakly inelastic scattering occurs for the ex-
ponential (n =0.07), but for the Morse potential, the acceleration due to the well leads to strongly inelastic scattering (n =3. 1).
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T. The only change this leads to in Eq. (19) is an extra
multiplicative factor of coth(co~ /2kii T ), due to the
thermal motion of the crystal atoms. ' For small T, the
Debye-Wailer factor behaves as a Gaussian function of T.
We find 8'( T)= W(0)+ T /T, with

T. 3T= (28)
2~ 8o.

where kIiT, =filr Fro. m the definition of a IEq. (24)]
and using r=d Iv, it is straightforward to show that T is
independent of the functional form of the potential.
However, the range of temperature over which the
Debye-Wailer factor displays Gaussian behavior is deter-
mined by the form of the interaction potential. For high
temperatures (T))T, ) the usual exponential dependence
of the Debye-Wailer factor is regained, with a decay tem-
perature of

T-T=
2aIO

(29)

It is this regime which has already been well studied by
Levi and Suhl, ' who point out that the dependence of T
on the other parameters diA'ers markedly from standard
expressions, due to the cutoff in Fi(co) at 1/r.

The general character of the T dependence in the
quasiadiabatic regime is illustrated in Fig. 6. As stated

1/2
8o,I3p

3

Va

c,
(30)

where v, =A/md and c, is the transverse speed of sound
in the crystal. The dimensionless constant p is an elastic
property of the crystal, with a value of 0.9 for Cu (Ap-
pendix B).

above, at zero temperature the Debye-Wailer factor tends
to a finite limit. For large but fixed m, as a function of T,
there is a dramatic decrease in the Debye-Wailer factor at
about T„with an exponential decay thereafter. As T, is
proportional to I ', the width of the region in which
the substantial low-temperature Debye-Wailer factor may
be seen decreases as m ~~. On the other hand, for fixed
finite T, as m ~ ~, T ))T„so that coth(cv /2k~ T ) ))1

for all excited phonons, and the probability of excitation
is greatly enhanced. Hence the Debye-Wailer factor ap-
proaches zero, and vanishes in the limit of infinite mass.
Levi and Suhl' investigated only this regime, where they
noted an enhancement of the Debye-Wailer factor rela-
tive to the standard expression. However, the e6'ect we
are discussing occurs only close to zero temperature
where, for large masses, the Debye-Wailer factor is ex-
ponentially greater than that at high temperatures.

Finally, we note that the angular distribution is Gauss-
ian, of width

C)
C7

mass = 4m

mass = 2m

G0
00
a

I
Q

~)Q
C)

mass = m

4 ~ ~ I I I

20 40 60 80 100 120 140

Surface Temperature (oK)

FIT+. 6. Temperature dependence of the Debye-Wailer factor in the quasiadiabatic regime for different masses (calculated for an

exponential repulsion with a = 1 and T,= 80 K for mass =m). The zero-temperature value is independent of m, but both the temper-

ature at which the sudden drop begins (-T,) and the decay length of the exponential tail (T) depend on m.
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Variable Value

TABLE III. Calculated properties of quasiadiabatic scatter-
ing for the energy-loss spectrum of Fig. 7.

TABLE IV. Calculated Debye-Wailer factors for Ar on three
different crystals. D denotes the estimated well depth and cx is
defined by Eq. (23).

CO

AE
T.
T
T

w
CO/MD

8.2 meV
19 meV

63 K
19 K
14 K

2
0.30

Metal

Ag
A1
Au

D (meV)

44.6
64.5
69.6

a/ac„

1.60
1.18
2. 17

—2W

3.2
1.1
0.09

surface is at zero temperature. The spectrum has been
convoluted with a Gaussian of width 2 meV, to simulate
an experimental resolution of 10%. Its shape is very
similar to that of the Morse potential shown in Fig. 5, ex-
cept for the cutoff at the incident energy. The elastic
peak contains about 10% of the scattered particles, while
another 50% are scattered into the inelastic shoulder. A
further 40%%uo remain stuck to the surface (negative final
energy in the trajectory approximation). The energy of
the incident particles in the interaction well is =65 meV,
whereas the calculated mean energy of the scattered par-
ticles is =46 meV, fortunately in qualitative agreement
with the recoilless TA, for which both energies would be
65 meV. (Qualitative considerations lead us to believe
that a better calculation of the Debye-Wailer factor
would yield a fraction somewhat larger than the 10%
fraction quoted above. )

We conclude our discussion of Ar on Cu by examining
other properties of the outgoing distribution. From
Table III, we see that the angular distribution is quite
narrow (a half-width of 2'), so that a detector with a wide
aperture (about 8 ) could count all scattered particles
simultaneously. We can also show that the scattered dis-
tribution is insensitive to the angle of incidence, so the
experiment could be performed with the convenient total
scattering angle of 90'. Lastly, the temperature depen-
dence of the no-loss peak of Fig. 7 is given in Fig. 8. As
noted in Sec. III, it is a Gaussian near T =0, but becomes
an exponential for higher temperatures. The figure shows
that the surface needs to be cooled to a temperature
T&30 K to ensure that the elastic peak is substantial.
We note here that the Debye-Wailer factor at T=O is
more than eight orders of magnitude larger than that at
room temperature for this system.

We have also examined the possibility of using other
heavy noble gases as incident atoms. Clearly, for Kr or

C)

00
V0
L
4)

II
O

Oo

20 60

Surface temperature ( K)

I

80 100

FIG. 8. The dependence on surface temperature of the peak shown in Fig. 7.
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Xe, the scattering is closer to adiabatic than for Ar.
However, the larger well depths which these incident
atoms experience reduce the Debye-Wailer factor so
much that the no-loss line is very small. We have also ex-
amined different crystals, to see if' a larger Debye-Wailer
factor is likely to be found. In Table IV, we give results
for three other surfaces: Ag, Al, and Au. The potentials
and surface elastic properties for these surfaces were es-
timated in the same way as those of Cu. Although the
well depth for Ag is very close to that of Cu, the increase
in n, due to the lower Debye temperature, reduces its
Debye-Wailer factor. In the case of Al, it is the increased
well depth that leads to the small Debye-Wailer factor,
while for Au, both these effects occur. However, any of
these surfaces are possible candidates for seeing this
effect. On the other hand, the well depth for Ar on W is
so large '

( —100 meV) that it is an unpromising choice.

V. CONCLUSIONS

A heavy incident atom, with fixed (thermal) energy,
scatters almost adiabatically from a target surface. In
our model, for T=O, in the limit of infinite mass, the
Debye-Wailer factor tends to a finite limit ((1). This is
because the slowly moving incident atom can only excite
low-frequency phonons. We used the trajectory approxi-
mation to estimate the final energy spectrum. We find
that 20-meV Ar striking a cold (T ~ 30 K) Cu(111) sur-
face should exhibit substantial (about 10%%uo) purely elastic
scattering. Other rare-gas —metal systems appear to be
less favorable. This Debye-Wailer factor becomes negli-
gible at higher temperatures.

We have also shown in Appendix C that, for quasiadia-
batic weakly inelastic scattering, the trajectory approxi-
mation is valid. The question of its validity for strongly
inelastic scattering and for the scattering of light atoms
will form the subject of future work.

Although we used several simplifying assumptions in
our model calculation, all of these (apart from the exten-
sion of the TA to strongly inelastic scattering) were
justified in this work, to varying degrees, for quasiadia-
batic scattering of noble gas atoms from smooth metal
surfaces. Clearly, for more accurate comparison with ex-
periment, once the effect has been seen, more refined cal-
culations are necessary. Nonetheless, we strongly believe
that our basic conclusion, that in the adiabatic limit
(m ~ ~ ) the zero-temperature Debye-Wailer factor tends
to a finite value, is independent of these assumptions.
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APPENDIX A: THE SURFACE-AVERAGED
TRANSFER FUNCTION

In this appendix, we derive general expressions for the
surfaced-averaged transfer function for a given atom-

Vi(z —Z0(R) —u f(R) ) =gv (
~
r —

r&
—5i Qu ),

l

(A2)

where f(R) is the transfer function [defined in the main
text, Eq. (7)]. Expanding the potential functions about
their equilibrium values, we find

f(R)=
Vi (z —Z0(R) )

(A3)

where r=r/r. The primes on the potentials indicate the
derivatives with respect to their explicit dependent vari-
able, i.e., v'(r) =dv/dr, Vi (z —Z0(R)) =BV~/Bz. Note
that, despite appearances, f(R) is implicitly independent
of z, by definition. Then

f(0)= d R r.
Vi (z —Za(R) )

(A4)

Now we make use of our second assumption, viz. , that
Z0(R) is fairly smooth, to replace Vi(z —Z0(R)) in the
above expression by its average and to bring it outside the
integral

(A5)

where

Vi = f d R VI (z —Z0(R)), (A6)

the average being taken over only one unit cell as the
static potential has the translational symmetry of the sur-
face. From Eq. (A4) we see from symmetry that the
transverse component,

F(0)=—0 . (A7)

To find f3(0), we note from Eq. (A6)

(A8)

using Eq. (A2) with u=0. By replacing ~r
—

r&~ with a
new variable r in each sum we find

surface interaction. We restrict ourselves to potentials
which may be written as a sum of pair potentials, and
whose static corrugation is relatively small. We also con-
sider only monatomic surfaces. We find the perpendicu-
lar component is a constant, independent of the interac-
tion, and the parallel components vanish.

For a many-body interaction which is the sum of pair
potentials, we may write

gv( ~r —r&
—

u& ) = Vi (z —Z(R, IuI )),
I

where V~(z —Z(R, tuI)) is the perpendicular potential
approximating the true potential and v (r) is the interac-
tion between the incident atom and a single surface atom,
a distance r apart. The label I ranges over all equilibrium
positions rr in the crystal, while u& are the displacements
of the crystal atoms from these positions. Now consider
an infinitesimal displacement u of the 1=0 atom (on the
surface). Then
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V'= dR
r

(A9)
mK

2~
D

2

(86)

which, when substituted into Eq. (A5), yields

f (0)=1,
the desired result.

(A 10)

Imd33(Q, 13,13;co iE)—=Qc, p(13,co/gc, ), (87)

and 1 (= I/n '~
) is a measure of the atomic spacing. Be-

cause we have an elastic continuum, we may write

APPENDIX B: THE SURFACE DISPLACEMENT
PARTIAL SPECTRAL DENSITY PERPENDICULAR

TO THE SURFACE FOR AN ISOTROPIC
ELASTIC MEDIUM

Near the adiabatic limit the incident atom excites only
the low-frequency phonons of the crystal, so we use only
the long-wavelength properties of the crystal. We esti-
mate the desired quantities by treating the crystal as iso-
tropic, which considerably simplifies the calculations.

The properties of an isotropic elastic medium with a
surface (at z =0) were originally calculated by Maradudin
and Mills. We define v to be an eigenvector of the
dynamical matrix of the (half-)crystal, with normalization

1—gvq (1)v~ ( I ) =5
I

(81)

where I labels the equilibrium positions of the atoms in
the crystal, and N is the number of atoms in the crystal.
As the crystal has translational symmetry parallel to the
surface, we may write

v (1)=v (13)e'O L

For bulk phonons far within the crystal (13~ oo ),

v~(13 ) =e~e ' ', where e is a polarization vector of unit
length. For bulk phonons at the surface of the crystal
(13=0), the lengths of these vectors are greater than 1,
due to enhancement of atomic displacements at the sur-
face. Finally, for surface phonons, it should be noted
that, for low-frequency displacements, as co~0, the dis-
placement vectors increase as co'~ (for bulk phonons,
they are independent of co). In terms of these displace-
ment vectors, we may now define the Green's function by

[v,* 13 ].[v, 13 lp

q

(83)

which has been Fourier transformed parallel to the sur-
face. Here a and P denote the Cartesian components.
Then the displacement partial spectral density perpendic-
ular to the surface is defined as

where p is a dimensionless function, given (for 13 =0) ill

Eq. (A6) of the appendix of Stutki and Brenig, and c, is
the transverse velocity of sound in the bulk. Substituting
this expression back into Eq. (85), and using the
definition of KD given in Eq. (86) and the standard Debye
frequency, we find

y(l, ;co)co
g(13', co) = e(coD —co),

COD

where

y(13=0;co)=
3 [6,' '( oo )

—6,' '(co/Qc, )]
6

(88)

(89)

and

,p(13 =0;x')
6,'"'(x)= f '

P (x & )2+211
(810)

Here o =c, /c& is the ratio of transverse and longitudinal
velocities in the bulk. Furthermore, as the Rayleigh ve-

locity is the minimum velocity for any elastic wave in the
surface, G(x) =0 for x ~ c~ /c„where c~ is the Rayleigh
wave velocity. Thus for low frequencies y(13;co)=y(13)
is a constant. From Eq. (88) it is clear that y(13)~1 as
13~ oo (the interior of the crystal), while y, —=y(13 =0) is

generally larger than one, due to enhancement of atomic
displacements at the surface. Furthermore we write

(u3), =y, /(4McoD) as a measure of the mean-square
displacement perpendicular to the surface at the surface
(M is the mass of a surface atom). These definitions, and
the spectral density of Eq. (88), lead to the simple form of
Eqs. (22) and (23) of the main text.

The result that g, (co) is proportional to co for small co

clearly depends only on the three-dimensional nature of
the crystal. It is only in estimating the proportionality
constant that we use the isotropic model as an approxi-
mation. For anisotropic crystals, we write o =c, /c&,
where the velocities have been averaged over all direc-
tions in the bulk.

We conclude by noting that the factor p occurring in

Eq. (30) of the text, and contributing to the width of the
angular distribution, is simply G'"( oo )/6' '( oo ).

g (13;co ) = g ~ [v (13 ) ]3 ~
6(co—

roq ),1

3N

yielding

(84)

APPENDIX C: VALIDITY OF THE TRAJECTORY
APPROXIMATION IN THE QUASIADIABATIC REGIME

In this appendix we show that, for weakly inelastic
scattering and small displacements of the surface atoms,
the recoilless TA is valid in the quasiadiabatic regime,
i.e., when the mass of the scattered particle becomes
large. This is because the incident atom does indeed
behave classically, although the surface does not. We

(85)

chere KD is the two-dimensional Debye wave number,
defined by

g(13;co)=—f Imd33(g, 13,13;co i E), —~D dg 2'
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calculate the angle-integrated energy-loss spectrum using
the distorted-wave Born approximation, and compare re-
sults with those found from Eq. (21).

In the language of quantum-mechanical scattering
theory we write, for the energy-loss spectrum,

2

yl&~lT„, „lo) l'5(E. —z, —.),
K k3k3

(Cl)

&&lTI,", „lo&—g&e„, lF, (z) e'k3)5K K+QQq(&q),
q

where Ti, . i, is the T matrix for scattering the incident
atom with wave vector k to final wavevector k', with en-
ergy loss E. It is an operator on the states les) of the un-
disturbed crystal, where lo) is the ground state. These
states have energy E . To find this matrix element, we
linearize the potential in the displacements of the surface
atoms [see Eq. (6)] and, for weakly inelastic scattering,
apply the first-order distorted-wave Born approxima-
tion

dz F,(z)
k3k3

k '0 k3(z)k 3 (z)

1/2

Xexpti[$1, (z) —P„,(z)]] .

(C7)

We may expand Ak3(z) [=k3(z)—k3(z)] for large m,
and find hk3(z) =mcu/k3(z) to leading order in m '~ . In
this expression, the denominator never vanishes, as we
have excluded the turning point from our integration in-
terval. Next we consider the classical trajectory z,~(t) as-
sociated with the static perpendicular potential. We
define it as a time-symmetric function starting at —~,
reaching the turning point at t =0 and continuing on to
+ ~. On the interval 0 to ~, it is an invertible function
of t, so that t =t,&(z) is well defined. Changing variables
from z to t using this function, we find a very simple re-
sult for the phase of our integral, viz. ,

(C2) $1, (z) —Pq. (z) =co[t,)(z) —to], (C8)

where T"' is the leading inelastic contribution to the T
matrix. Here 41, (z) is the scattering solution for an in-

3

cident atom of perpendicular wave-vector component k3
scattered from Vo(z). We have again used
f(Cy+Q)=(0, 5G o) for simplicity.

The 5 functions in Eqs. (C 1) and (C2) impose conserva-
tion of energy and surface crystal momentum on the out-
going states. At fixed incident energy, as m —+~, both
k3 and k&~~, so that WKB wave functions may be
used to calculate the matrix element containing Fi(z).
We write

M'++'=
l
Ai+

l
u f dt Fi[z„(t)]e

0
(C9)

where U is the initial velocity of the incident particle. Fi-
nally, as m —+ ~ and A, ~O, so that to~0, the integrand
is well behaved and we have

where to=t„(zo). We use the same change of variables
for the entire integral, and use k3 ——k3 in all other func-
tions to get the leading order contribution:

&'Ilq, lFi(z)l%'t, ) = f dz 'Il", (z)Fi(z)+t, (z)

+ f dz 4„*,(z)Fi(z)@t, (z) .
zo

(C3)

M'++ '=
l

W
I+ ' l'u

Fi(cu)
k3 2

(C 10)

Here, the origin of the z axis is chosen at the classical
turning point of the particle with energy E, while zo is
chosen such that zo ))A, , but also so that zo —+0 as
m —+ ~ (in a fashion described below). Thus, to evaluate
the second integral, we may use the WKB states. We
define these by

where F~(cu) is the Fourier transform of the classical
force exerted on the incident atom. In an obvious nota-
tion, we find M'+ '=M' +'=0 due to the rapid oscilla-
tion of the phases in the integrals, while, from symmetry,
M' '=

l At', 'l uFi(cu)/2. Then, conservation require-

ments yield

( )( )—
3

k3

k3(z)

1/2
+i P(z)

7 (C4) & +„,lFi(z) l 4& ) =uF&(cu) . (C 1 1)

where

P(z) = f k3(z')dz'
z0

(C5)

'u (z)= A'+'y' '(z)+ A' 'y '(z) .k3 k3 k3 k3 k3 (C6)

The second integral appearing in Eq. (C3) will have four
contributions. Consider the first of these:

and k3(z)= 1/ k&
—2m'(z). Then the physical scatter-

ing wave functions may be written

Inserting this matrix element back into the T matrix, and
using that to calculate the energy-loss spectrum, we find
identical results to the TA for weakly inelastic scattering
[i.e., expanding the exponential in Eq. (18) in a power
series, and keeping only the first term].

We conclude by showing that the first integral in Eq.
(C3) is negligible in the adiabatic limit. First note that,
for z & —zo, we may again use the WKB approximation
to show that this contribution becomes exponentially
small as m ~ ~ . Then, around the turning point z =0,
there is a small interval, —d to d, in which the potential
may be well approximated by a linear function. The
value of d depends only on E and the shape of the poten-
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tial, and is therefore independent of m. For —d &z (d,
we may use Airy functions to approximate the wave func-
tions. If we choose zo=[2mFt(t =0)] ', where Ft(0)
is the classical force at the turning point, we find the in-

tegral from —zo to zo to be finite, and proportional to zo.
This choice obeys the requirements stated above, and
yields a vanishing contribution [of O(m '~ )] as m ~ ao.
This completes the proof.
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