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Most realistic calculations of moderately correlated materials begin with a ground-state density
functional theory (DFT) calculation. While Kohn-Sham DFT is used in about 40,000 scientific papers
each year, the fundamental underpinnings are not widely appreciated. In this chapter, we analyze the
inherent characteristics of DFT in their simplest form, using the asymmetric Hubbard dimer as an
illustrative model. We begin by working through the core tenets of DFT, explaining what the exact
ground-state density functional yields and does not yield. Given the relative simplicity of the system,
almost all properties of the exact exchange-correlation functional are readily visualized and plotted. Key
concepts include the Kohn-Sham scheme, the behavior of the XC potential as correlations become very
strong, the derivative discontinuity and the difference between KS gaps and true charge gaps, and how
to extract optical excitations using time-dependent DFT. By the end of this text and accompanying
exercises, the reader will improve their ability to both explain and visualize the concepts of DFT, as
well as better understand where others may go wrong. This chapter will appear in the book of the
Autumn School on Correlated Electrons: Simulating Correlations with Computers (2021) prepared by
Forschungszentrum Jülich.
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1. INTRODUCTION

Density functional theory (DFT) is an extremely
sophisticated approach to many-body problems [1, 2]. It
must be among the most used and least understood
of all successful theories in physics. Currently, about

50,000 papers each year report results of Kohn-Sham
(KS) DFT calculations [3], including room temperature
superconductors under high pressure [4], heterogeneous
catalysis at metal surfaces and for nanoparticles [5],
understanding the interior of Jupiter and exoplanets [6],
studying how ocean acidification affects the seabream
population [7], and even which water to use when making
coffee [8].

But much of modern condensed matter physics involves
using model Hamiltonians to study strongly correlated
systems, where understanding new phenomena is considered
far more important than generating accurate materials-
specific properties [9, 10]. In fact, our standard
diagrammatic approach (expansions in the strength of
the electron-electron coupling) is hard-wired into all our
descriptions of such many-body phenomena, be it the
fractional quantum Hall effect [11] or the Kondo effect (even
when perturbation theory fails, we still think of resummed
diagrams) [12].

Because DFT is logically subtle, without requiring much
mathematical gymnastics (although they are available for
those that enjoy them [13]) or skill with summing Feynman
diagrams, and because DFT is entirely different from the
standard approach, most of what you may have learned is
hopelessly confused or simply downright untrue. Hence the
title of this article, taken from a popular book on history
[14]. For example, any conflation of the KS scheme with
traditional mean-field theory is a dire mistake, and should
be avoided at all costs.

This chapter is primarily designed to explain essential
concepts of DFT to theorists more familiar with standard
many-body theory and perhaps more experienced in dealing
with strongly correlated systems. It should also prove
useful for anyone performing DFT calculations on weakly
correlated systems, who might be wondering where things
go wrong as correlations grow stronger. Additionally,
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1.1 Background DFT on Hubbard Dimer

the Hubbard dimer is a wonderful teaching tool for basic
concepts, as so many of its exact results can be derived
analytically.

The first use of this material came in a conversation
between KB and Duncan Haldane at a meeting sponsored
by the US Department of Energy. Duncan asked KB to
explain this DFT business, and he suggested the dimer as
the minimal relevant model. After 45 minutes of tough
argument, Haldane said “That’s the first time I’ve ever really
understood this Kohn-Sham scheme. Thanks.” Within 2
years, he was awarded a share in a Nobel Prize in physics
[15]. While correlation is not causation, Haldane did not
win his share until after he understood KS-DFT with the
aid of this simple model!

However, it is important to note that the benefits of this
type of analysis are not solely limited to those working in
theoretical physics. In the fields of theoretical chemistry and
material science, for instance, where ground-state electronic
energies are often required to be extremely accurate [16–18],
there has been growing technological interest in the study of
both chemically complex and strongly correlated materials
[19, 20]. This chapter was partly designed with these
fields in mind, serving as a resource for any computational
scientist who wishes to better comprehend the limitations of
their computational methods. Throughout this text, there
will be various highlighted sections dedicated to examples,
exercises, and key concepts to aid the reader in applying
what is learned in this study to their own endeavors.

There are now a huge number of diverse introductions
to DFT, with many different perspectives. These include
a simple tutorial for anyone with knowledge of quantum
mechanics [21], a very long online textbook with lots of
nasty problems [22], a many-body introduction [23], and
even video lectures [24]. But this chapter is specifically
aimed at explaining the most essential concepts, and why
strongly correlated systems are more challenging in DFT.
All the Hubbard material appears in two long review articles,
one on the ground state theory [25] and a second on
linear-response TDDFT [26]. The Hubbard dimer has
been recently used to explore effects in other aspects of
DFT, such as magnetic DFT [27], ensemble DFT [28], and
thermal DFT [29].

Takeaway: DFT appears deceptively simple to
understand. It is much trickier than people realize.
This chapter provides a unique explanation of basic
ideas using a simple model.

1.1. Background

We work in the non-relativistic non-magnetic Born-
Oppenheimer approximation, using Hartree atomic units
(e2 = ~ = me = 1). The Hamiltonian for the electrons
is simple and known exactly

Ĥ = T̂ + V̂ee + V̂, (1)

where T̂ is their kinetic energy, V̂ee is the electron-electron
Coulomb repulsion, and V̂ is the one-body potential, equal
to a sum of Coulomb attractions to the ions in an isolated
molecule or solid. We let N be the number of electrons.

A first-principles approach to this problem is to feed a
computer a list of nuclear types and positions and, following
a recipe, it spits out various properties of the electronic
system. In quantum chemistry [30], the recipe is called a
model chemistry [31, 32] if both the method (e.g. Hartree-
Fock) and the basis set are specified.

We contrast this with traditional approaches in condensed
matter [33]. Often a model Hamiltonian is written down,
hoping that it describes the dominant physical effects. For
most interesting problems, standard approaches to solving
this Hamiltonian will fail, i.e., be hopelessly inadequate
or require near-infinite computer resources. An inspired
approximation may be found that works well enough,
and so the underlying physics can be explained. Well
enough will usually mean that with good estimates of the
model parameters, qualitative and even semi-quantitative
agreement is found with key properties of interest.

Each of these are excellent approaches, especially for the
purposes they were designed for. Modern DFT calculations
of weakly correlated materials (and molecules) are of the
first-principles type, and often yield atomic positions within
1-2 hundredths of an Ångstrom and phonon frequencies
within 10%, without any materials-specific input, an
impossibility with a simple model Hamiltonian. On the
other hand, with standard approximations, DFT calculations
always fail whenever a bond such as H2 is stretched, and
correlations become strong [34]. Even simple Mott-Hubbard
physics is beyond such methods (and we shall see why in
this chapter), or Kondo physics (but see Reference [35]).

But more and more of modern materials research requires
the intelligent application of both approaches, and many
methods, such as DFT+U [36] or dynamical mean field
theory (DMFT) [37–40] are being developed to bridge the
gap. Many of the materials of greatest practical interest to
energy research (such as for batteries [19] or photovoltaics
[20]) include a moderate level of correlation that require a
pure DFT approach to be enhanced, by adding vital missing
ingredients of the physics.

The US and Britain are friends ‘separated by a common
language’ [41]. This is essentially true of the mass of
confusion between traditional many-body theory and DFT.
In DFT, we use the same words as in MBT, but giving them
different meanings, simply because we enjoy confusing folks.

Finally, we mention an intermediate Hamiltonian between
the dazzling complexity of the real physical and chemical
world and the beautiful simplicity of the Hubbard model. A
great challenge to studying the effects of strong correlation
has been the difficulty in producing highly accurate
benchmark data. Molecular electronic structure calculations
are much simpler than materials calculations, and quantum
chemistry has long been able to provide highly accurate
answers for many small molecules at or near equilibrium
[32], as well as the complete binding energy curves of others
[42]. But this is much harder to do for materials. Recent
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1.2 Hubbard dimer DFT on Hubbard Dimer

illustrations of this difficulty are the careful bench-marking
of model Hamiltonians (such as an 8×8 Hubbard lattice)
using highly accurate many-body solvers [43], the amount of
computation needed to find an accurate cohesive energy of
the benzene crystal [44], and the celebration of merely being
able to agree on approximate DFT results with a variety of
solid-state codes [45].

To overcome this difficulty, about 10 years ago, a
mimic of realistic electronic structure calculations was
established [46]. This mimic uses potentials that are defined
continuously in space (i.e., not a lattice model) but are
one-dimensional. In fact, ultimately, a single exponential
was chosen [47], whose details mimic those of the popular
soft Coulomb potential. With about 20 grid points per
‘atom’, standard density-matrix renormalization (DMRG)
methods [48, 49] could then rapidly produce extremely
accurate ground-state energies and densities for chains of
up to about 100 atoms [46]. By living in 1D, not only is
DMRG very efficient, but the thermodynamic limit (of the
number of atoms going to infinity with fixed interatomic
spacing) is also reached much more quickly than in 3D.
Moreover, the parameters were chosen so that standard
density functional approximations, such as the local density
approximation [50], succeeded and failed in ways that were
qualitatively similar to those in the real world [51]. We will
refer to this 1D laboratory for further demonstration of some
of the simple results shown in this chapter.

Takeaway: DFT is ideally suited to produce
useful accuracy for ground-state energetics of
realistic Hamiltonians. Many-body theory is more
often used to produce approximate answers to
model Hamiltonians, and often focuses on response
properties. Both are useful in their own fields and,
increasingly, interesting problems require input from
both.

1.2. Hubbard dimer

The Hubbard model (in 1, 2 or 3D) [52] is the standard
model for studying the effects of strong correlation on
electrons. By default, it implies an infinite periodic array
of sites. For our demonstration, we simply need two sites.
We have N = 2 and the ground-state is always a singlet.
The Hamiltonian (in 2nd quantization) is

Ĥ = −t
∑
σ

(
ĉ†1σ ĉ2σ + h.c.

)
+ U

∑
i

n̂i↑ n̂i↓ +
∑
i

vin̂i .

(2)
The kinetic term is just hopping between the sites, and is the
discretization of the kinetic operator on the lattice, with the
diagonal elements set to 0. The electron-electron repulsion
is just an onsite U, while the one-body operator is just an
on-site potential, v1 and v2.

In this chapter, we imagine a world in which Eq. (1) is
replaced by Eq. (2), i.e., as if the many-body problem to

FIG. 1. Two distinct regimes of the asymmetric Hubbard
dimer. On the left, the charging energy is much greater than
the difference in on-site potentials, and the left- and right-
occupation numbers are similar. On the right, the situation
is reversed, and the occupation on the left is much greater
than that of the right. Reproduced from Ref. [25].

be solved is simply that of Eq. (2). So, for us, the Hubbard
dimer is not an approximation to anything. We will choose
the values of U, t, and vi as we wish, to explore various
regimes in the model. Any question concerning the origins
of these values in terms of realistic orbitals and matrix
elements is irrelevant to our work here.

Since a constant in the potential is just a shift in the
energy, we set v2 =−v1 and use the parameter ∆v= v2−v1

as the sole determinant of the potential of our system.
Similarly, with N = 2, n2 =N−n1, and we use ∆n=n2−n1

as the single parameter characterizing the ground-state
density. Thus ground-state DFT in this model is simply site-
occupation function theory (SOFT) and density functionals
are replaced by simple functions of a single variable, ∆n.
Finally, we choose t= 1/2 and report all variables in units
of 2t, as one can scale all energies by a constant.

Different physics appears depending on the ratio of U to
∆v, i.e., on-site repulsion versus inhomogeneity, see Fig. 1.
When U�∆v, the system is strongly correlated, with both
site occupations close to 1, despite any inhomogeneity. For
∆v � U, the system is weakly correlated, and the on-site
U is insufficient to stop one occupation becoming much
greater than the other.

For those with a chemical inclination, this is a minimal
basis model for a diatomic with 2 electrons (with some
matrix elements and orbital overlap ignored). For H2,
∆v = 0, but t decreases as the separation between the
nuclei is increased, so that U (in units of 2t) grows
exponentially. The ground-state is close to a single Slater
determinant near equilibrium (U�1), so that Hartree-Fock
(HF) is a reasonable approximation. But U�1 when
very stretched, so that the ground-state is now a Heitler-
London wavefunction, and (restricted) HF is very poor. The
highly unsymmetric case corresponds to HeH+, where both
electrons reside on the He side, as long as ∆v remains larger
than U as the bond is stretched.

There are well-known analytic solutions for all states of
the 2-site Hubbard model and the behavior of the ground-

3
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1.2 Hubbard dimer DFT on Hubbard Dimer

FIG. 2. Exact ground-state energy of the Hubbard dimer
as a function of ∆v for several values of U. The qualitative
behavior changes as ∆v passes through U. Reproduced from
Ref. [25].

state energy [25] is shown in Fig. 2. Simple limits include
the symmetric case

E = −
√

1 + (U/2)2 + U/2, ∆n = 0 SYM (3)

An expansion of the square root in the symmetric case
in powers of U has a radius of convergence of 2, while
the opposite expansion in 1/U has a radius of 1/2. Thus
there is a well-defined critical point at U = 2, below which
perturbation in the electron-electron coupling strength
converges, i.e., the system is weakly correlated, and above
which it is strongly correlated. Another simple limit is the
non-interacting (tight-binding) case (U = 0)

E = −
√

1 + ∆v2, ∆n = −2
∆v√

1 + ∆v2
(U=0) (4)

which is given by the blue curve in the figure. We see from
the figure that, on a broad scale, E ≈ −(∆v−U) Θ(∆v−
U). Explicit formulas exist for all the excited-state energies,
wavefunctions, and densities also. Approximations in
many different limits are given in the many appendices of
Reference [25].

We can also extract any other property we wish from the
analytic solution, such as the one-electron density (here the
occupations). Fig. 3 shows the ground-state density as a
function of ∆v for several values of U. For any U, n2 = n1

when ∆v = 0. The blue line is essentially the tight-binding
solution. In that case, as ∆v increases, the occupation
difference rapidly increases towards 2. Then, as we turn on
U, this increase becomes less and less rapid. By the time U
reaches 10, the occupations remain close to balanced until
∆v becomes close to 10, when (on the scale of ∆v), it
rapidly flips to close to 2.

FIG. 3. Ground-state occupation of the Hubbard dimer as
function of ∆v for several values of U. Reproduced from Ref.
[25].

Takeaway: We take the 2-site Hubbard model as
our Hamiltonian, and apply DFT concepts directly
to it. Here, it is not a simple model for a more
realistic Hamiltonian. Analytic solutions are trivial,
and we can plot any properties we wish.

2. DENSITY FUNCTIONAL THEORY

We have now defined the machinery required to
understand the central theorems of DFT through the lens
of the Hubbard dimer. The theorems discussed in this
section, like their real-space counterparts, are exact and
apply directly to ground-state calculations (we will cover
time-dependent DFT later). Most DFT calculations are
used to determine the ground-state electronic energy of
a system, or more specifically, determine the energy of a
system as a function of nuclear coordinates. In this section,
we will discuss the underlying principles of these calculations
by examining their role at the most fundamental level, in
their simplest form.

The Hohenberg-Kohn theorem[53] is actually three
theorems in sequence. These were proved in a simple
proof-by-contradiction argument based on the Rayleigh-Ritz
variational principle for the wavefunction. Later, the more
direct and more general constrained search approach was
given by Levy [54] and Lieb [13].

2.1. Hohenberg-Kohn I

HKI proves that the (usual) map of ∆v → ∆n is
invertible, i.e., ∆n is a single-valued function of ∆v for
a given U. This is obvious from Fig. 3 (and its inversion,

4
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2.1 Hohenberg-Kohn I DFT on Hubbard Dimer

FIG. 4. Ground-state potential difference as a function of ∆n
for several values of U .

Fig. 4), and in the TB case

∆v =
∆n√

4−∆n2
(U=0). (5)

Fig. 4 is simply Fig. 3 drawn sideways, i.e., with x and y
axes reversed. Clearly, for any given value of U, there is a
unique ∆v.

A much-stated (but often out of context) corollary of
this is that all properties of the system are (implicitly)
functionals of n1. While this is true, almost all research in
DFT focuses on the ground-state energy functional, because
it is so useful, and we have few useful approximations
for others (e.g., for the first excited-state energy, but see
discussion in TDDFT section). Recently, machine learning
methods have been trained to find some of these other
functionals [55, 56].

2.2. Hohenberg-Kohn II

HKII states that the function below exists and is
independent of ∆v:

FU(n1) = min
Ψ→n1

〈Ψ|T̂ + V̂ee|Ψ〉 = max
∆v

{
E(∆v)−∆v∆n/2

}
.

(6)
where the minimum is over all antisymmetrized normalized
2-electron wavefunctions whose occupation of site 1 is n1.
The middle expression is the constrained search definition
due to Levy [57]. The rightmost form is due to Lieb [13].
Either definition works here. This FU functional was termed
universal by HK, by which they simply meant that it does
not depend on the ∆v of your given system, i.e., it is a
pure density functional. The phrase, often appearing in the
literature, that F is a universal functional, is not meaningful.

Although one can write analytic formulas for the ground-
state energy for the dimer, there is no explicit analytic
formula for F. It is trivial to calculate F numerically and
F is shown in the Fig. 5. In the special case of U = 0, it is

FIG. 5. Universal part of the energy function(al) of a Hubbard
dimer as a function of n1 for several values of U. As U
increases, F tends to U |1−n1|. Reproduced from Ref. [25].

easy,

FU=0(n1) = TS(n1) = −
√
n1(2− n1). (7)

Here we have attached the subscript S to remind us that
U = 0, so this is the kinetic energy function for a single
Slater determinant, and is indistinguishable from the blue
line of Fig. 5.

2.3. Hohenberg-Kohn III

HKIII states that there is a variational principle for the
ground-state energy directly in terms of the density alone:

E(∆v) = min
n1

{
FU(n1) + ∆v∆n/2

}
. (8)

This bypasses all the difficulties of approximating the
wavefunction (but of course buries them in the definition
of FU). Usually, the minimum can be found from the Euler
equation

dFU(n1)

dn1
− ∆v

2
= 0, (9)

and the unique n1(∆v) is the one that satisfies this
equation.

This allows us to find a solution to the many-body
problem, without ever calculating the wavefunction. Given
an expression for FU(n1), either exact or approximate, for
any value of ∆v, one can solve Eq. (9) above to find the
corresponding ∆v (exact or approximate) and insert into
Eq. (8) to find the energy. Any approximation to F (n1)
provides approximate solutions to all many body problems
(every value of ∆v).

5
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DFT on Hubbard Dimer

Takeaway: The HK theorems prove the existence
of an exact variational principle for the ground-state
energy based on the density, not the wavefunction,
but give no information on how to approximate it.
This is an (almost) useless statement in practice.
But to any unbeliever in DFT, one can always tell
them (to go look at) FU.

3. KOHN-SHAM DFT

The original DFT, called Thomas-Fermi theory [58, 59],
tried to approximate FU(n1) directly, but such direct
approximations have never been accurate enough for most
electronic structure calculations. A tremendous step
forward occurred when Kohn and Sham considered a
fictitious system of non-interacting fermions with the same
ground-state density as the true many-body one [60]. In
our case, this is just the TB problem, for which we already
have explicit solutions.

They wrote the F function in terms of quantities that
could easily be calculated in such a system:

FU(n1) = TS(n1) + UH(n1) + EXC(n1). (10)

Here, TS is just the TB hopping energy of Eq. (4), and
the Hartree energy is just the mean-field electron-electron
repulsion

UH =
U

2

(
n2

1 + n2
2

)
, (11)

which is an explicit function of the occupations. Then EXC,
the exchange-correlation (XC) energy (about which, much
more, later) is simply everything else, i.e., EXC is defined
by Eq. (10). It is then trivial to show, from the Euler
equation, that the TB potentials that will reproduce the
exact occupations are

vS,i = vi + Uni +
∂EXC

∂ni
. (12)

The first correction to vi is the Hartree potential, while the
second is the XC potential. These KS TB equations must
be solved self-consistently, as the potentials depend on the
occupations. Once converged, the final densities can be
used to extract the total energy of the MB system, via

E = TS+UH+EXC+V = ε−UH+EXC−∆vXC∆n/2 , (13)

where ε is the eigenvalue in the TB KS calculation. Again,
just like in the HK case, once EXC(n1) is given (either
approximate or exact), the KS equations can be solved
for any electronic system and a ground-state energy and
occupation extracted.

The wondrous improvement due to the KS scheme is
that only a small fraction of the total energy (the XC
part) need be approximated. Many of the most important

FIG. 6. KS DFT view of an asymmetric half-filled Hubbard
dimer as a function of U . The on-site potential difference ∆v
is shown in black and the KS on-site potential difference ∆vS
is in red. Reproduced from Ref. [25].

quantum effects, such as screening, shell structure, binding
energies, etc. are mostly accounted for by the quantum
effects of the one-body system. Finally, a very simple,
intuitive approximation suggested by KS themselves (the
local density approximation (LDA) [50, 61]) produced far
better results than they expected (but with binding energy
errors too large for quantum chemistry taste).

Fig. 6 gives us some sense of how this works, for ∆v = 1.
Then, if U = 0, most occupation is on the left. For U = 2,
the repulsion makes the occupations more equal. The KS
potential is simply that TB potential that produces those
(many-body) occupations. So it must be a smaller potential
difference than the real potential. One can see that the
Hartree potential will typically overestimate repulsion, while
XC corrects that to give the exact answer. Finally, when U
is ramped up to 5, the occupations become very close to
equal, and the KS potential difference becomes very small.

Traditionally, EXC is separated into an exchange and a
correlation contribution. The exchange contribution is then
defined as

EX = 〈ΦS|V̂ee|ΦS〉 − UH, (14)

where ΦS is the KS wavefunction, and EX is always negative.
Then one can show correlation is just

EC = 〈Ψ|Ĥ|Ψ〉 − 〈ΦS|Ĥ|ΦS〉 (15)

and, by the variational principle, is also never positive.
These definitions (almost) match those of quantum
chemistry [62], except that in KS-DFT, all orbitals come
from a single potential, while in HF orbitals are freely
chosen to minimize the HF energy. But there are some
surprises relative to the traditional many-body expansion.
For example, because of the definitions, EX includes some
‘self-exchange’, i.e., it is non-zero even for a single electron
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DFT on Hubbard Dimer

(where EX is −UH and EC = 0). DFT approximations
which do not satisfy these conditions for all one-electron
densities are said to have self-interaction errors [63].
Moreover, ‘higher-order exchange effects’ are all lumped
into the correlation energy. In any event, for our 2-electron
problem, in a spin singlet, EX = −UH/2, but no simple
relation exists for larger N.

The traditional Hartree-Fock approximation comes from
expanding the electron-electron interaction to first order,
which means neglecting EC, and then minimizing the
energy. In full DFT terms, for our 2-electron system,

FHF = TS +
1

2
UH, (16)

or in KS-DFT terms

EHF
XC = −UH/2 . (17)

Thus, solving the TB equation self-consistently with
Eq. (17) produces the minimum for the total energy using
FHF of Eq. (16).

In Fig. 7, we show the contributions to the KS potential
for a sequence of different U values, as a function of the
occupation. The effect of repulsion is to always oppose
the potential difference, making the KS potential difference
smaller. In the first, U is small, and correlation is of order
U2 (see Reference [25]). Thus the correlation contribution
is negligible (red and green overlap) and HF is an excellent
approximation. In the middle, U = 1 is moderate, and
now we begin to see the difference correlation makes in the
potential. Moreover, its effect is to make ∆vHXC deviate
from a straight line. Finally, for strong correlation, the
HXC potential (almost) exactly is equal and opposite to the
one-body potential. Again, the HX contribution has much
curvature, but now correlation wipes that out (almost)
entirely. Clearly, the HF approximation will be terrible
for the potential in this case, and yield entirely incorrect
densities. In fact, a lower-energy solution appears if one
allows spin symmetry breaking [64].

It is now relatively routine to calculate accurate KS
potentials from highly accurate densities found, e.g., via
quantum chemical methods [65]. In an insanely demanding
calculation, it is even possible to solve the KS equations
using the exact XC functional [66]. Convergence becomes
more difficult as correlations grow stronger, but remains
possible [67].

Takeaway: The KS scheme is exact meaning that,
if we only knew the exact exchange-correlation
functional, we could determine the ground-state
energy exactly, of every electronic problem. There
are many existing calculations of the exact XC
potential. In practice, we must approximate XC, but
because XC is a small fraction of the total energy,
standard KS calculations are usefully accurate for
ground-state energies and densities.

FIG. 7. Plots of ∆vS (blue) and its components, the one-body
potential ∆v (black), the Hartree plus exchange potentials,
U∆n/2 (red), and the same with correlation added, U∆n/2+
∆vC (green) plotted against n1 for various values of U .
Reproduced from Ref. [25].

7

http://dft.uci.edu/publications.php


DFT on Hubbard Dimer

3.1. KS spectral function

There is a pernicious superstition [68] that the KS
spectrum is related to the physical response properties of
the real system. This false belief has arisen because, for
weakly correlated systems, this is approximately true, apart
from the fundamental gap of a semiconductor. From a
practical viewpoint, the KS bands are marvelously useful
as a starting point for Green function calculations of real
spectral functions. Moreover, long ago, when the local
density approximation ruled supreme, there was no way
to know if differences between the KS and exact response
properties was due to the crudeness of this approximation
[69, 70]. These days, there are simple exact answers to such
speculations, if we only have the patience to read them.

3.2. The ionization potential theorem

As a simple example of the mysterious workings of the
exact functional, we state an important exact result

I(N) = E(N−1)− E(N) = −εHO(N). (18)

Here E(N) is the ground-state of the N -electron system,
and εHO is the energy of the highest-occupied KS orbital.
(For those with some chemistry leaning, Koopmans’
theorem is an approximate version of this for HF calculations
[71]). This illustrates some of the power of KS-DFT.
You might think that, with the exact functional, all one
can extract is the ground-state energy and density of our
system. But the above result shows that the HO of the
KS scheme also tells you the ionization energy. One can
also extract all static response functions exactly by turning
on weak external perturbations, and applying the exact
functional to the perturbed systems. In practice, standard
DFT approximations tend to violate this exact condition
very badly [69, 70, 72]. Nonetheless, they often still yield
usefully accurate ground-state energies, thus performing
their primary function. (On the other hand, returning to
the discussion of HKI, knowing the exact XC does not,
in general, give you access to, say, the first excited state
energy. It is a functional of n1 alone, but we cannot deduce
that functional from EXC(n1).)

Increasing N by 1 in Eq. (18) yields

A(N) = E(N)− E(N+1) = −εHO(N+1) 6= εLU(N),
(19)

where A is called the electron affinity of the system in
chemistry. The difference between the KS HO of the N+1
electron system and the lowest unoccupied (LU) level of the
N -electron system is called ∆XC, where the ∆ indicates its
origin from the infamous derivative discontinuity of DFT
[69]. This simply means, that at zero temperature, the
energy of the system consists of straight line segments
between integer values, as shown below in Fig. 8. The
energy itself is continuous, but its derivative, the chemical
potential, is not. For a neutral system, the chemical
potential is −I below the integer and −A above. This

FIG. 8. Plot of E(N) for U = 1 and ∆v = 0. Reproduced
from Ref. [25].

discontinuous jump in µ shifts the KS HO eigenvalue by
the same amount, producing the difference with the KS LU
of the neutral. (Realistic electronic systems do not have an
upward pointing portion of the curve in Fig. 8. This occurs
for the dimer because electrons cannot escape to outside
the system.)

3.3. Mind the gap

We are now ready to see the relevance of this to
solids. Even for a finite system, we define the charge (or
fundamental) gap as

Eg = I −A . (20)

As the size of the system grows toward a bulk material,
this quantity tends to the fundamental charge (or transport)
gap of the system (at least for ordered systems [73]). But,
because of Eqs. (18) and (19) above, we find

Eg = Es,g + ∆XC , (21)

whereEs,g is the KS gap (i.e., the difference between the
LU and HO level, or the gap between the KS valence and
conduction bands in a solid). Thus, with the exact XC
functional of ground-state DFT, we do not get the true gap
by looking at its KS value for the neutral system.

Fig. 9 shows the spectral function (projected onto the left-
hand site) in a weakly correlated case [26], the symmetric
dimer with U = 1. We can see the sense in which the
KS spectral function (red) resembles the blue exact one:
the significant KS peaks are of about the same height
and position as their blue counterparts, and the blue peaks
without KS counterparts are relatively small. The KS gap is
smaller than the true gap, but not by much. Because both
the KS and the exact spectral functions satisfy the same
sum rule (even with an approximate XC), if the dominant
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FIG. 9. Spectral function of the symmetric dimer for U = 1
and ∆v = 0. The physical MB peaks are plotted in blue,
the KS in red. Here I = 0.1, A = −1.1, and εLU = 0.9.
Reproduced from Ref. [25].

FIG. 10. Same as Fig. 9, but now U = 5. Here I = −0.3,
A = −4.7, and εLU = 1.3. Note that the KS gap remains
unchanged by the alteration of U because ∆n = 0 in both
cases. Reproduced from Ref. [25].

peaks are reproduced (even with the wrong gap), only small
peaks are missed in the KS spectrum.

On the other hand, Fig. 10 shows the same system with
a larger U value. Now the strong KS peaks are not in the
right place and are noticeably too large. Moreover, the blue
peaks with no KS analogs are a substantial contribution.
Finally, in the inhomogeneous case, the potential asymmetry
overcomes the effects of the Hubbard U. In Fig. 11, we see
that for ∆v = 2 and U = 1, the KS spectral function is
almost identical to the true one.

Lastly, we finish this section illustrating the relevance of
this discussion to the thermodynamic limit. The canonical
example of the Mott-Hubbard transition is a chain (or
lattice) of H atoms. Each atom has one electron, so the

FIG. 11. Same as Fig. 9, but now U = 1, ∆v = 2. Here
I = 0.27, A = −1.27, and εLU = 1.25. Reproduced from Ref.
[25].

FIG. 12. Exact gaps for chains of N soft hydrogen atoms
with atomic separation b = 4 (error bars are less than symbol
sizes). The upper curve is a quadratic fit of exact gaps of the
largest six systems and extrapolates to a finite value Eg ≈
0.33. The exact Kohn-Sham gaps, in contrast, extrapolate to
zero showing that for N →∞ the true KS system is metallic
(lower curve is a linear fit of exact KS gaps of the largest six
systems). Reproduced from Reference [46].

bands of the KS potential are always half-filled, with no gap
at the Fermi energy. Thus the gap is always zero and the KS
band structure suggests it’s a metal. This may be true at
moderate separations of the atoms, but as the separation
is increased, the electrons must localize on atoms, and it
must become a Mott insulator.

Fig. 12 shows the gap, calculated for chains of well-
separated 1D H atoms of increasing length [46]. By
performing the calculation with finite systems, i.e., without
periodic boundary conditions, we calculate the gap for each
N by adding and removing electrons, as in Eq. (20), and
then take the limit as N → ∞. On the other hand, we
extract the exact ground-state density from our DMRG
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calculation at each N, and find the corresponding exact KS
potential for each N. We could then as easily extrapolate
the KS gap, from the HO and LU, showing that indeed
the KS gap vanishes in the thermodynamic limit – exactly
the same as if we had calculated the KS band structure,
in which the Fermi energy would be right in the middle of
the band. This provides a dramatic illustration of the KS
underestimate of the true gap, even when using the exact
XC functional.

Takeaway: The KS Green function does not match
the true Green function. If correlation is weak, it
may be a good approximation to it, with its main
deficiency being an underestimate of the gap. For
stronger correlations, there can be huge differences,
and there are always more features in the real Green
function. In the thermodynamic limit, the exact KS
gap can vanish for a simple Mott insulator.

3.4. Talking about ground-state DFT

First, we review our crucial formal points.

1. In general, the KS scheme with the exact functional
yields ground-state energy and density, and any other
quantities that can be teased from them, such as
static response properties and ionization potentials.

2. There is no formal meaning for most KS eigenvalues
in ground-state DFT, despite the fact that many
practitioners treat them as if there were. Of
course, they do provide tremendous physical and
intuitive insight, especially for weakly correlated
systems, where they are good approximations to the
excitations (either quasi-particle or optical). But
when correlations are strong, explicit methods are
needed to correct them [74].

3. The strongest manifestation of point 2 above is that
the exact KS gap is typically smaller than the true
gap, and can vanish in cases where the true gap is
finite (Mott insulator).

4. Moreover, there is an exact formula relating the total
energy to the sum of the KS eigenvalues, which
contains finite corrections for double counting. There
is no ambiguity about these corrections, they are
derived from the formal theory, and yield the exact
many-body energy. But when correlated methods are
used for a subset of the orbitals, ambiguities can arise
that affect occupancies [75].

5. Although in principle, all properties are functionals
of the ground-state density, knowledge of the exact
ground-state energy functional (via EXC) does not
provide a way to calculate these other functionals.
As we see later, TDDFT is a way to do precisely this.

Next, we discuss how these points show up in practical
DFT calculations of solids, where XC approximations must
be made.

1. The steady progress within quantum chemistry and
materials in functional development is almost entirely
focused on improvements in accuracy and reliability
of the total energy for weakly correlated systems
[76, 77]. This is by far the most important use of DFT
in modern electronic structure. Such improvements
are often not particularly relevant to the response
properties of greatest interest in strongly correlated
materials. For example, the KS eigenvalues are often
not improved significantly by functionals yielding
better energies [78, 79]. Although the KS eigenvalues
cannot be directly interpreted in general, they are
uniquely defined (up to a constant). Thus the exact
KS Hamiltonian is a well-defined starting point for
many-body methods.

2. The KS scheme is not a mean-field scheme in the
traditional sense of the word, and it can be extremely
difficult to relate its features to those of traditional
many-body theory. The KS wavefunction is typically
a single Slater determinant, but yields the exact many-
body energy via its density.

3. Standard approximations, such as LDA and
generalized gradient approximations (GGA), by
construction produce total energies that are smooth
and continuous at integer N , unlike the exact E(N).
Thus their corresponding ∆XC is zero[69]. According
to Sec. 3.3, the KS band gap in such approximations
is their prediction for the fundamental gap. In fact, it
has been found that their KS gaps are likely a good
approximation to the exact KS gap [80], but their
lack of discontinuous behavior means they miss the
correction to turn it into the true gap.

4. On the other hand, the range-separated hybrid
functional HSE06 is well-known to produce reasonable
gaps for moderate gap semiconductors. This is
because, instead of performing a true pure KS
calculation, most codes (like VASP) perform a
generalized KS calculation [81] when a functional is
orbital-dependent[82, 83]. They treat the orbital-
dependent part of the potential as if it were a many-
body potential, just as is done in HF. (A similar but
smaller effect occurs in meta-GGA’s that depend on
the kinetic energy density, such as SCAN [84]). And
in fact clever tricks may be used to extract the true
gap, even from a periodic code [85].
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Takeaway: Even with the exact functional, the
KS band gap does not equal the true transport
gap of the system. Likely, semilocal functionals
yield accurate KS gaps but, because they lack a
discontinuous behavior at integer particle numbers,
cannot yield accurate transport gaps. Modern
hybrid functionals that depend explicitly on KS
orbitals yield band gaps closer to fundamental gaps,
but only when treated with generalized KS theory.

4. TIME-DEPENDENT DFT (TDDFT)

Our last main section is about time-dependent density
functional theory (TDDFT) [86–89]. While this uses many
of the forms and conventions of ground-state DFT, it is
in fact based on a very different theorem from the HK
theorems. When applied to the linear response of a system
to a dynamic electric field, it yields the optical transitions
(and oscillator strengths) of that system. It has become
the standard method for extracting low-level excitations in
molecules, where traditional quantum chemical calculations
are even more demanding than those for the ground state.

The Runge-Gross theorem [90] states that, for a
given initial wavefunction, statistics, and interaction, the
time-dependent density uniquely determines the one-body
potential. In principle, this can be used for any many-
electron time-dependent problem, including those in strong
laser fields [86]. In practice, such calculations are limited
by the accuracy of the approximations and whether the
observable of interest can be extracted directly from the
one-electron density. One constructs TD KS equations,
defined to yield the exact time-dependent one-electron
density. Because TDDFT applies to the time-dependent
Schrödinger equation, the XC functional differs from that of
ground-state DFT in general, and has a time-dependence.

Our interest will be only in the linear-response regime. In
that case, one can derive a crucial result, which we give in
operator form, called the Gross-Kohn equation [91]

χ(ω) = χS(ω) + χS(ω) ∗ (fH + fXC(ω)) ∗ χ(ω), (22)

where χ(ω) is the dynamic density-density response function
of the system, and χS is its KS counterpart. The kernel, f,
is the functional derivative of the time-dependent potential.
Thus, fH is the Hartree contribution, while fXC(ω) is the
XC correction.

Eq. (22) is a Dyson-like equation for the polarization.
If we set fXC = 0, it is the standard random-phase
approximation, the Coulomb interaction simply dressing the
bare interaction, and producing all the bubble diagrams.
But things get a little weird when we assert that inclusion
of fXC(ω) produces the exact response of the system,
for all frequencies. From a many-body viewpoint, this is
suspicious, as these are a closed set of equations without
coupling to 4-point functions. But the logic is sound and

exactly analogous to the ground-state: there exists such a
function that could be considered as defined by Eq. (22).

The excitations of a system are given by poles of
its response function. Simple analysis (exactly that of
RPA) yields a matrix equation that corrects KS transition
frequencies to the true transition frequencies, where the
matrix elements involve fH + fXC. With standard ground-
state approximations, folks have merrily calculated mostly
low-lying valence transitions from the ground-state of many
molecules [92], finding accuracies a little lower than those
of ground-state DFT [93], and computational costs that are
comparable. This has been invaluable for larger molecules,
where many excitations of the same symmetry may overlap,
and so TDDFT yields a semiquantitative signature that can
be easily matched with experiment [94].

However, not all is well in paradise. Almost immediately,
it was noticed that the use of a ground-state approximation
is simply the static limit of the corresponding kernel, and can
be easily shown to produce only single excitations. While
useful workarounds were created for some cases, it was also
found that going to higher-order response does not solve
the problem. And many of the most exciting transitions in
biochemistry are double excitations.

Takeaway: Time-dependent DFT applies DFT
methods to time-dependent problems. Within
linear response, this yields exact expressions for the
dynamic polarization, but at the cost of introducing
a new functional, the frequency-dependent XC
kernel. Ignoring its frequency dependence yields
useful accuracy for low-lying molecular excitations
with standard functionals. TDDFT is now standard
for calculating optical response of molecules and
materials.

4.1. Hubbard dimer

Happily we care only about Hubbard dimers, where
everything is much simpler. First, we note our Hubbard
dimer, in the singlet space, has just three states: the
ground-state, the first excited state, which has a single
excitation, and the second excited state, which is a double
excitation out of the ground-state. Since there are no spatial
degrees of freedom, our χ(ω) is the Fourier transform of
∆n(t)/∆v(0), which is just a scalar, with ω-dependence

χn(ω) =
a1

ω2 − ω2
1

+
a2

ω2 − ω2
2

, (23)

where ωi denotes the transition frequency and ai is related
to its oscillator strength [26]. Thus χ has poles at each of
the transition frequencies. Fig. 13 shows the value of each of
these transitions as a function of ∆v for U = 1. The double
excitation is a little above the single for the symmetric case,
but grows linearly with ∆v. The single remains about the
same, and even dips, until ∆v = U, and then begins to
grow itself. Here we can use our model system to examine
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FIG. 13. Transition frequencies of the first and second
excitations as a function of ∆v for U = 1.

FIG. 14. Same as Fig. 13, but with KS transitions (depicted
in blue). For ∆v > U, the KS transition is a very good
approximation to the true transition.

one of the key mysteries of practical TDDFT: Where did all
the higher excitations go?

First we do an exact ground-state KS calculation, as
in the previous sections. Thus the exact KS system
is a tight-binding problem with effective potential, ∆vS,
defined to yield the exact ground state ∆n. This yields
two eigenvalues, the lower symmetric combination and the
higher asymmetric combination. The KS ground-state has
the lower one doubly occupied. There do exist KS analogs
of the many-body states. The single excitation has one
electron excited to the higher level, the double has both.
Fig. 14 adds the KS transitions to Fig. 13, showing that they
loosely follow the accurate transitions, but are significantly
different.

In the KS response function, χS, the matrix elements of
the density operator between ground and double excitation
are zero, since both KS orbitals are different, so the Slater
determinants are not coupled by a single density operator.
Hence, such states have no numerator, eliminating any poles
that might have arisen in the denominator, i.e.,

χS(ω) =
as

ω2 − ω2
s

. (24)

Thus the second KS transition, the double, does not appear

FIG. 15. Same as Fig. 13, but with the adiabatically exact
approximation (AE, pink dashes).

at all in the response function! It’s position is correctly
marked in Fig. 14, but cannot be seen in χS.

By requiring the poles occur at the right places, one
finds (in general) a matrix equation in the space of single
excitations for the true transitions, whose elements are
determined by the kernel. Here, this is one dimensional,
yielding

ω2 = ω2
S + 2ωS fHXC(ω)

2

1 + ∆v2
S

. (25)

The adiabatically exact approximation (AE) is to use
the exact ground-state functional here to calculate fHXC.
This corrects the single KS transition and is shown in
Fig. 15. This works extremely well to capture almost all
the difference with the KS transition, yielding very accurate
excitations. This becomes even better for ∆v greater than
U , where the corrections virtually vanish (just as in Fig. 11
for the spectral function).

But Eq. (25) just has one solution if the ω-dependence
in the kernel is neglected. On the other hand, if there is
strong frequency dependence in the kernel, new transitions,
not in the KS system, may appear. In fact, we know that
is precisely what happens, as the physical system does have
a double excitation. To understand how standard TDDFT
fails, we note that we can calculate the exact kernel by
finding χ(ω) from many-body calculations, χS(ω) by the
techniques of the earlier section, inverting and subtracting

fHXC(ω) = χ−1
S (ω)− χ−1(ω) . (26)

Fig. 16 shows the singular frequency-dependence of the
kernel from Eq. (26), which allows Eq. (25) to have an
additional solution.

However, while all this provides insight into how the exact
functional performs its magic, it does not tell us directly
how to create a general purpose model, which would build
this frequency-dependence into an explicit density functional
sufficiently accurately to capture double excitations [89].
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FIG. 16. Frequency dependence of exact (black) and Kohn-
Sham susceptibilities (blue) and exchange-correlation kernel
(red) for U = ∆v = 1. Poles marked by dashed vertical
lines, as a function of frequency ν. The red line shows the
exchange-correlation kernel. Reproduced from Ref. [26].

Takeaway: The Hubbard dimer demonstrates
the accuracy of the adiabatic approximation in
TDDFT for single excitations, and also the missing
frequency dependence needed to generate the
double excitations missing in adiabatic TDDFT.

4.2. Talking about TDDFT

We saw in the earlier sections how the KS eigenvalues
did not have a formal meaning in pure ground-state KS-
DFT. We have seen here that, with the advent of
TDDFT, they form the starting point of a scheme which
produces the optical excitations. These are not the quasi-
particle excitations associated with the Green function,
which involve a change in particle number.

While the primary function of approximate ground-
state DFT is to find energies, it usually also produces
reasonably accurate densities, but rather erroneous XC
potentials. In fact, this feat is achieved by having all
the occupied orbitals shifted (higher) than their exact
KS counterparts. A constant shift has no effect on the
density. But if the unoccupied levels (at least, the low-lying
valence excitations) suffer the same shift, then KS transition
frequencies are unaffected, and the adiabatic approximation
(usually applied to the same XC approximation as the
ground-state calculation) is reasonably accurate for many
weakly correlated molecules.

Linear-response TDDFT has been less used in solids,
because in the case of insulators, it became clear early
on [95] that there is a long-range contribution to the XC
kernel (as long-ranged as the Hartree contribution is) that is
missed when using a semilocal ground-state approximation
adiabatically. There are now many ways around this
difficulty [96], some based on modelling the kernel using

many-body techniques.
There have been many other approaches suggested for

extracting optical excitations from DFT. An old simple
one is called ∆-SCF [97], which involves simply using
excited-state occupation numbers in a KS calculation, and
finding the energy the usual way. Another, which has seen
considerable recent interest [98, 99], is to use ensemble DFT
[100].

Takeaway: TDDFT can be considered an algorithm
for finding the functional (of the ground-state
density) for optical excitations.

5. SUMMARY

This short review is aimed at broadening understanding of
the basic differences between a density functional viewpoint
and that of traditional many-body theory. The emphasis
here has been on the exact theory, which we have illustrated
on the 2-site Hubbard model. We have shown it is confusing
to consider KS theory as any kind of traditional mean-field
theory, and how the addition of TDDFT allows one to
consider the KS eigenvalues as zero-order approximations
to the optical excitations, not the quasiparticle excitations.

However, the only reason that anyone cares about the
exact theory of DFT is because, in practice, it is extremely
useful with relatively unsophisticated approximations.
These begin with the famous local density approximation, in
which the XC energy per electron at each point in a system
is approximated by that of a uniform gas matching the
density at this point. This was introduced already in the KS
paper (where the statement of exactness appears as a mere
footnote), thereby totally muddying the waters between
exact and approximate statements. Walter Kohn told KB
that he simply noticed the exact nature of the KS scheme
after submitting the paper. From about 1990 onwards,
many users began using more sophisticated functionals,
whose primary effect was to improve total energies and
energy differences.

This article has said little or nothing about how to
understand such approximations. This is because local (and
semilocal) approximations capture a universal limit of all
electronic systems, by yielding relatively exact XC energies
in this limit [101–104]. Traditional many-body theory
generally considers a power series expansion in the electron-
electron interaction. The alternative limit simultaneously
increases the number of particles, in a way that the total
electron-electron repulsion remains a finite fraction of the
total energy even as interactions become weaker. The
simplest example of this is that the LDA for exchange, whose
formula can be derived by hand, has a percentage error that
vanishes for atoms as Z = N →∞ [102].

This limit is hard-wired into the last term of the real-space
Hamiltonian of Eq. (1), which is the integral of the density
times the one-body potential. This is why the density is
the basic variable in DFT. Even if formal theorems can be
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proven using other variables, this is why density functional
theory has been so successful. It is also the case that the
one-body potentials to which we apply DFT are diagonal
in coordinate space, which is related to why the LDA is a
universal limit.

Thus, key aspects of DFT approximations that are
crucial to its success are missing from lattice models like
the Hubbard model. There is no corresponding universal
limit in which LDA becomes exact, even if one uses an
approximation based on the uniform case [105, 106]. Again,
this is why we created our 1D real-space mimic of 3D reality,
instead of just solving lattice models.

Takeaway: This chapter has illustrated a variety
of key conceptual points about DFT on a simple
model system. Anyone who can answer the exercises
will have absorbed 90% of the material, and should
be well-qualified to understand exactly what a DFT
calculation does, and does not, tell you. In the
twenty-first century, with so many DFT calculations
being performed in so many different fields, the
phrase “Oh, that’s just mean-field theory” should no
longer have any place in scientific discussions about
DFT results.
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Appendix A: Exercises

If you have followed the logic throughout this tutorial,
you will enjoy sorting out these little questions. If you want
solutions, please email either of the authors, with a brief
note about your current status and interests.

1. State which aspect of Fig. 4 illustrates the HKI
theorem.

2. What geometrical construction gives you the
corresponding ground-state potential for a given n1

in Fig. 5?

3. Study the extreme edges (n1 = 0 and 2) of Fig. 5.
What interesting qualitative feature is barely visible,
and why must it be there?

4. What feature must always be present in Fig. 5 near
n1 = 1? Explain.

5. How can you be sure that, no matter how large U
becomes, FU(n1) is never quite U |1−n1|?

6. Assuming the blue line is essentially that of U = 0,
use geometry on Fig. 3 to find ∆vS for U = 5.

7. What is the relation, if any, between each of the blue
plots in the three panels of Fig. 7? Explain.

8. What is the relation, if any, between each of the red
plots in the three panels of Fig. 7? Explain.

9. Why is the green line almost the mirror image of the
black line in the U = 10 panel of Fig. 7? Could it be
the exact mirror image? Explain.

10. From Fig. 8, using E(N) about N = 2, determine the
locations of the largest peaks of Fig. 9 and compute
the gap between them.

11. Sketch how Fig. 8 must look if U = 10 and ∆v = 0.

12. What is the relation between the two blue lines in
Fig. 14? Explain.

13. Give a rule relating the numbers of vertical lines of
different color in Fig. 16.
Explain its significance.

14. Recall the definition of the kernel from section 4.
Using this, derive fH and fX, and draw them on
Fig. 16. Explain where double excitations must come
from for 2 electrons.

15. Using formulas and figures from both sections, deduce
the results of Fig. 15 in the absence of correlation
(Hint: You will need to solve the Hartree-Fock self-
consistent equations), and comment on the relative
errors. This is a little more work than the other
exercises.
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[7] Zélia Velez, Christina C. Roggatz, David M. Benoit,
Jörg D. Hardege, and Peter C. Hubbard, “Short- and
medium-term exposure to ocean acidification reduces
olfactory sensitivity in gilthead seabream,” Frontiers in
Physiology 10, 731 (2019).

[8] Christopher H. Hendon, Lesley Colonna-Dashwood, and
Maxwell Colonna-Dashwood, “The role of dissolved
cations in coffee extraction,” Journal of Agricultural
and Food Chemistry, Journal of Agricultural and Food
Chemistry 62, 4947–4950 (2014).

[9] Frank Lechermann, “Model hamiltonians and basic
techniques,” in [107].

[10] I V Solovyev, “Combining DFT and many-body methods
to understand correlated materials,” Journal of Physics:
Condensed Matter 20, 293201 (2008).

[11] D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-
dimensional magnetotransport in the extreme quantum
limit,” Phys. Rev. Lett. 48, 1559–1562 (1982).

[12] Jun Kondo, “Resistance Minimum in Dilute Magnetic
Alloys,” Progress of Theoretical Physics 32, 37–49 (1964).

[13] Elliott H. Lieb, “Density functionals for coulomb systems,”
Int. J. Quantum Chem. 24, 243–277 (1983).

[14] J. Loewen, Lies My Teacher Told Me: Everything Your
American History Textbook Got Wrong (New Press,
2008).

[15] F. Duncan M. Haldane, “Nobel lecture: Topological
quantum matter,” Rev. Mod. Phys. 89, 040502 (2017).

[16] Timothy J. Lee and Gustavo E. Scuseria, “Achieving
chemical accuracy with coupled-cluster theory,” in
Quantum Mechanical Electronic Structure Calculations
with Chemical Accuracy , edited by Stephen R. Langhoff
(Springer Netherlands, Dordrecht, 1995) pp. 47–108.

[17] David Feller and Kirk A. Peterson, “Probing the limits
of accuracy in electronic structure calculations: Is
theory capable of results uniformly better than “chemical
accuracy”?” The Journal of Chemical Physics 126, 114105
(2007).

[18] Stefan Vuckovic, Suhwan Song, John Kozlowski, Eunji
Sim, and Kieron Burke, “Density functional analysis: The
theory of density-corrected DFT,” Journal of Chemical
Theory and Computation 15, 6636–6646 (2019).

[19] Jürgen Hafner, Christopher Wolverton, and Gerbrand
Ceder, “Toward Computational Materials Design: The
Impact of Density Functional Theory on Materials
Research,” MRS Bulletin 31, 659–668 (2011).

[20] Brian O’Regan and Michael Grätzel, “A low-cost, high-
efficiency solar cell based on dye-sensitized colloidal tio2
films,” Nature 353, 737–740 (1991).

[21] Kieron Burke and Lucas O. Wagner, “DFT in a nutshell,”
International Journal of Quantum Chemistry, International
Journal of Quantum Chemistry 113, 96–101 (2013).

[22] K Burke, The ABC of DFT (2007).
[23] R.M. Dreizler and E.K.U. Gross, Density Functional

Theory: An Approach to the Quantum Many-Body
Problem (Springer Berlin Heidelberg, 1989).
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