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Inelastic atom-surface scattering at hyperthermal (- 1 ev) energies is discussed. In this regime, the scattering is almost classical. 

However, for a surface at low temperature, peaks in the final energy distribution are broadened by quantum effects. The widths of 

these peaks provide a direct measure of the zero point motion of the surface atoms. For impulsive collisions, we derive a simple 

expression for these widths. As an example, we present a semi-quantitative analysis for He striking a LiF surface, using Born-Mayer 

forces between the atoms to estimate the amplitude of the zero point fluctuations. We discuss, in detail, how single peaks may be 

isolated in an experiment. Measurements of this effect could provide an important probe of surface dynamics. 

1. Introduction 

The present state of the art of atom surface 
experiments allows the production of highly 
monoenergetic incident beams (AE/E = 1%) [l], 
and the resolution of both the angular and the 
energy distributions of scattered beams [2]. At 
thermal energies in particular, theory has followed 
experiment closely, and there are now many calcu- 
lations which yield good agreement with experi- 
ment for both elastic [3] and inelastic [4] scatter- 
ing. For example, surface phonon dispersion curves 
have been derived by using energy and momen- 
tum conservation alone, from studies of one-pho- 
non events which are pro~nent at these energies 
[2]. From an analysis of experiments in this energy 
regime, dominated by quantum effects, a variety 
of parameters describing the surface structural 
properties [5], surface lattice dynamics [2] and the 
atom-surface potential [6] have been deduced. 
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0849, USA. 
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There are no major experimental difficulties [7] 
in working with high quality beams at energies up 
to a few eV, where quantum effects are rather 
small. Experiments at these energies in principle 
contain information about the motion of individ- 
ual atoms, as opposed to the global information 
contained in experiments with low energy atoms 
of long Debye wavelength. However, theoretical 
analysis of such experiments has been limited to 
either purely classical calculations [8], or partially 
quantum mechanical calculations [9]. In general, 
the relation between surface features and the final 
energy and angular distributions of the scattered 
atoms is quite complex, and most such calcula- 
tions require considerable numerical work to make 
a realistic comparison with experiment [lo]. 

In this paper, we show that inelastic scattering 
at hyperthermal energies can yield a direct mea- 
sure of the quantum zero point motions of atoms 
at the surface of a crystal. To illustrate this effect 
we consider first classical elastic scattering at nor- 
mal incidence from a rigid one-dimensional surface 
at zero temperature (see fig. 1). The beam particles 
are reflected at the classical turning points of the 
atom-surface potential for the given incident en- 
ergy. For simplicity, we have chosen a curve with 
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Fig. 1. Classical elastic scattering from a one-dimensional 

monatomic surface at zero temperature. The solid line is an 

equipotential curve along which the potential energy equals the 

initial energy of the incident particle. 

a corrugation small enough to avoid multiple 
scattering events. For this case, a detector in the 
scattering direction Br = 0 (beams A and A’) sees 
only particles impacting directly on a local maxi- 
mum or minimum of the turning point curve. 
Under inelastic scattering conditions with target 
temperature T = 0, each impact parameter (dis- 
tance from beam A) will still give rise to a unique 
scattering angle, 8,, and final energy E,. In par- 
ticular, normal scattering (0, = 0) will still come 
only from beams A and A’ but, because of the 
physical difference between the two impact points, 
there will be two different final energies, E, and 
E,‘, associated with 8, = 0. Thus the final energy 
spectrum consists of two delta function peaks at 
energies less than the initial energy. Lastly, we 

consider the corrections to this picture due to 
quantum mechanics. Fig. 2 is a schematic of how 
the final energy distribution appears. Atoms 
scattered in the direction 8, = 0 will have an en- 
ergy distribution consisting of two peaks whose 
finite widths reflect the zero point motion of the 
atoms. 

Broadening of loss spectrum peaks is a well- 
known phenomenon in ion-scattering [ll]. Unfor- 
tunately, the ability to detect and measure zero 
point motion is limited by the minimum energies 

achievable with ion beams [12]. Biiheim and Brenig 
[ 131 have discussed this “quantum broadening” 
for atom-scattering and noted its origin in zero 

point vibrations. However, they consider only flat 
surfaces, which yield a single peak in the final 
energy spectrum. Furthermore, in their calculation 
of the magnitude of this effect, they use the trajec- 

tory approximation [9], which has been shown to 
be inaccurate under many conditions [14]. We 

employ a more recent theory whose range of valid- 
ity is much broader and is better understood [14]. 
In this paper we show how these “quantum” 

widths may be calculated for any surface whose 
vibrational properties and interaction with an inci- 
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Fig. 2. Schematic final energy spectrum for quantum mechani- 
cal inelastic scattering at normal incidence and reflection from 

the surface shown in fig. 1. 
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dent atom are known. Thus, the widths of these 
peaks give detailed information about the dy- 
namics of the individual surface atoms. 

For impulsive scattering from a single surface 
atom, the calculation becomes extremely simple, 
and an analytic result is given. For a real corru- 

gated surface there will generally be several peaks 
in the final energy spectrum, but by careful con- 

sideration of the mapping of impact parameters to 
final momenta, we show how the final energy 
distribution reduces to a single peak for some 

scattering conditions. For a prototype experiment, 
we consider noble gas scattering from alkali halide 
surfaces, as the atom-surface potential and zero 
point fluctuations of the surface atoms may be 
theoretically estimated for these systems. As an 

illustration, we study the case of He striking a LiF 
surface in detail; we choose this system both to 
minimize errors made in our approximations and 
because it offers a simple final energy spectrum. 

However, we provide sufficient information to re- 
peat the calculation for other noble gas-alkali 
halide systems, and our analytic expression may 
also be useful in the study of more complicated 

surfaces. We use our model to show how the 
widths depend on the incident and final direc- 
tions, the incident energy and the ratio of the 

masses of the incident and surface atoms. We also 
discuss how these widths are increased at finite 
surface temperatures. 

In section 2 we present the semiclassical result 
which is the basis of our approach. We also derive 
a simple expression for the width when the inci- 
dent particle is scattered impulsively from a single 
surface atom. Section 3 describes the calculation 
of surface properties needed to make predictions 
for the widths, viz. the atom-surface potential and 
the zero-point fluctuations of surface atoms. In 
section 4 we present results for a prototype sys- 
tem: He in-plane scattering from the LiF(OO1) 
surface at 0.5 eV energy and indicate how a simple 
final energy spectrum may be obtained. In section 
5, we consider the temperature dependence of the 
peak widths and suggest an experiment to test our 
predictions. The last section gives our conclusions. 
The appendix consists of a description of how the 
surface vibrational amplitudes were estimated 
using Born-Mayer [15] potentials. 

2. Calculation of widths 

This section is devoted to calculating the widths 
of energy peaks when the collision is impulsive, 
and the incident particle interacts with only one 

surface atom. The starting point of our calculation 
is a result derived in recent work of Jensen et al. 
[14]. In this work, a semiclassical theory of inelas- 
tic scattering for low surface temperatures is de- 
rived by expanding quantum mechanical expecta- 

tion values in powers of fi. The lowest order 
contribution to the square uncertainty of an en- 
ergy peak distribution for a particular final 
scattered direction is: 

(1) 

Here E, is the classical final energy; X, and Z’, are 
the position (measured from equilibrium) and 
momentum coordinates of an atom in the crystal, 
while i and j label all spatial atomic coordinates 
(3N for a crystal of N atoms). The expectation 

values are to be evaluated quantum mechanically 
for the undisturbed crystal. The derivatives are of 
the classical final energy with respect to initial 

values for the surface position and momentum 
coordinates, and are to be evaluated at the classi- 
cal equilibrium values of the coordinates. The 
incident and final directions and the initial energy 
of the scattered particle are held fixed in these 

derivatives. AE is the width of the peak, defined 
by the relation 

(AE)2 = p(w - a2 dE 

I( ) ZE dE 
(2) 

where Z(E) is the intensity and E is the mean 
energy of the peak. For a harmonic crystal, the 
quantum expectation values appearing in eq. (1) 
are proportional to tt, so that AE - A’/‘, and eq. 
(1) is exact to this order [16]. 
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Eq. (1) is a prescription for calculating the 
width of an energy peak in the final energy spec- 
trum. It is useful because it requires knowledge of 
only classical solutions of scattering problems and 
of the quantum mechanical surface dynamics in 
the absence of the scattering atom, both of which 
have been studied in detail for many different 
systems [17]. Higher order corrections are negligi- 
ble if ho, is much smaller than Eloss, where w ,, 
is the Debye frequency of the crystal and Eloss is 
the classical energy loss of the incident particle 
due to the collision. For typical solids [18] Awn is 
of order 50 meV so that a 0.5 eV beam which loses 
a substantial fraction of its energy on striking a 
surface, easily satisfies this condition. At these 
energies, the incident particle interacts strongly 
with only a small number of surface atoms near 
the impact point, so that in practice relatively few 
derivatives need to be summed over. 

We now apply this formula under very specific 
assumptions which allow a simple analytic expres- 
sion for the width of a peak. To begin with, we 
assume that the incident atom interacts with only 
one surface atom, which we call the target atom; 
secondly, that the collision is so abrupt that the 
restoring forces on the surface atom have negligi- 
ble effect on the collision; and finally, we consider 
only those collisions in which the incident atom 
does not strike the target atom more than once in 
the course of the scattering process. The first of 
these conditions precludes scattering from any 
point on the surface where more than one atom 
makes a major contribution to the potential. Thus 
we would not be able to find the widths of the 
peaks due to scattering from the valleys between 
atoms in fig. 1. The second condition is called the 
impulse approximation, as the energy exchange 
during the collision occurs too quickly for the 
lattice forces to have appreciable effects. The last 
condition, combined with the first two, restricts us 
to cases where the incident mass is less than the 
mass of the target atom, the ensure that the inci- 
dent atom is moving away from the surface after 
the collision. 

For the above conditions, the calculation itself 
is simple. The incident atom strikes a single surface 
atom which acts like a free particle. For a two-par- 
ticle free collision, energy and momentum con- 

servation yield, for the magnitude of the final 
momentum of the incident particle, in a given 
final direction 

Pf= PIPi+pl i .n,+ ([(PI++ 

+ [I + PI [(I - PM - mi . p 

x(1 +pL)-l 

f12P2 
l/2 

1, > 
(3) 

In this expression p = m,/m,, the ratio of the 
incident atom’s mass to that of the surface atom: 
P is the initial momentum of the surface atom and 
pi and pf are the initial and final momenta of the 
incident particle; and, for any vector p, p = ( p ( 
and n = p/p. As E, = pf/2mi, we see that E, is 
independent of the initial position of the target 
atom (for a fixed final direction), so that, from eq. 
(1) only momentum fluctuations contribute. Sub- 
stituting both eq. (3) and its first derivative with 
respect to P at P = 0 into eq. (l), we find, for the 
conditions stated above, 

Ef=f(ni.nr)Ei, (4) 
,. n 

(AE)‘=EiCg,p(ni, nf12(~pR) ( (5) 
4 

where 

.fCni ’ “f > 

= ~(“i.nf) + \j’(ni’nf)2~2+1 -~2 

I 

’ 

l+P I 
7 (6) 

and 

(%qp=,= (23 

Here (Y and p denote the Cartesian components of 
the surface atom. The function f and gap are 
purely kinematic factors depending only on “i 
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and n,. These equations are universal, as they 
apply to the scattering of any atom from any 
crystal surface, once the above conditions are met. 
We refer to such single impulsive two-body colli- 
sions as simple collisions. We note also that the 
atom-surface interaction does not enter these 
equations, and that its sole relevance is in de- 
termining when a collision is simple. 

3. Simple collisions 

3.1. The atom-surface interaction 

In this section, we give a simple prescription for 
estimating the atom-surface potential at hyper- 
thermal energies for noble gases interacting with 
alkali halide surfaces. The fundamental assump- 
tion is that the potential may be written as the 
sum of pair potentials between the incident par- 
ticle and each surface atom [19]. This assumption 
works well for species with closed electronic shells, 
as is the case here [20]. We further assume that 
these pair potentials are the same as those found 
in ion beam experiments, where a beam of either 
alkali or halide ions collides with a neutral noble 
gas. Such potentials can be very well approxi- 
mated (in this regime) by a simple exponential 
repulsion [21]: 

V(r) = V, exp( -r/d), (9) 

where r is the separation distance and V, and d 

are two empirical parameters which depend on the 
species involved. We emphasize that eq. (9) is an 
empirical approximation to the total potential, 
rather than just the repulsion due to electronic 
wavefunction overlap. However the effect of the 

F 

(relatively) small attractive well is negligible at 
these large incident and outgoing energies. We call 
V, the strength of the repulsion and d its range. 
Values for the strengths and ranges from many 
closed-shell species interactions are available from 
both ab initio calculations (e.g., the work of 
Gordon and Kim [22]) and from beam experi- 
ments (e.g., the work of Kita, Noda and Inouye 
[21]). Table 1 lists some of these values, and they 
are used to plot the equipotential surfaces shown 
in fig. 3. These are defined by 

V(r) = Ei, 00) 

where V(r) is the total potential felt by the inci- 
dent atom at a position r, when the surface atoms 
are in their equilibrium positions. The first surface 
is for He interacting with LiF with Ei = 0.5 eV, 
the second being the He-CsF potential at the 
same energy. In fig. 3a, we see that the potential 
surface is only slightly convex over a Li atom. 
This shows that the F atoms nearest to a Li atom 
make a substantial contribution to the potential at 
this point. Thus the width of the peak due to a 
collision with the Li atom cannot be estimated 
using our simple expression. 

3.2. Surface vibrational properties 

Many calculations of surface phonon spectra 
and polarizations show excellent agreement with 
the results of low energy experiments [4]. Such 
calculations could be used to calculate the expres- 
sions ( Tiz;.) and ( iiij) in eq. (1). However, 
crude estimates for these quantities are more easily 
obtained by assuming that an atom in an alkali 
halide crystal may be treated as an anisotropic 
Einstein oscillator. For collisions with such an 

Fig. 3. Equipotential surfaces for two different systems. The first is He-LiF at 0.5 eV, the second is He-CsF at 0.5 eV. The 

interatomic spacing in (a) is 2.01 A while that of (b) is 3.00 A. 
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Table 1 

Pair potential parameters used to construct fig. 3 

Atom IOII b 

(W 

d 

(4 

He 

He 

He 

Ne 

‘) Ref. [30]. 

‘) Ref. [31]. 

‘) Ref. [32]. 

‘) Ref. [33]. 

Lit 428 0.20 a) 

F_ 560 0.25 h’ 

CS+ 1380 0.28 cl 

cs+ 5580 0.26 ‘) 

atom at zero temperature, the expectation value 
appearing in eq. (5) becomes: 

&,i;i> = &j(+Q%), (11) 

where w, is the frequency in the a-direction. The 
frequencies are determined by the harmonic re- 
storing forces felt by the atom when it is displaced 
slightly from equilibrium. We use the Born-Mayer 

scheme for estimating these forces. This calcula- 
tion is straightforward and is described in the 

appendix; here we simply give expression for the 
frequencies of oscillations perpendicular and 
parallel to the surface of a crystal with the NaCl 
structure 

wlf = wB /(a/p - qL4m - 2) . (13) 

Here wg is the effective Einstein frequency for a 
bulk atom, p is the decay length of the Born- 
Mayer repulsion and a is the interatomic spacing. 
The constants c, and c,, are aproximately 0.542 
and 2.636, respectively. Both p and wB are ex- 
pressed in terms of the bulk modulus of the crystal 
and the interatomic spacing in the appendix. We 
may also calculate the corresponding mean square 
velocities of the zero point motion. These agree to 
within 20% with values reported for six alkali 
halide crystals, obtained from more sophisticated 
calculations [23]. The values for the frequencies 
are listed in table 2. Where available, we use the 
results of the more sophisticated calculations for 
estimating peak widths in the remainder of this 
work. 

3.3. Simple collisions 

With our estimates for the interaction and 
vibrational frequencies, we can now determine if a 
collision is simple. We demonstrate this for our 
prototype, He on LiF(OO1) at 0.5 eV. For the 

experimental repulsion given by eq. (9) a measure 
of the time spent in the vicinity of the surface 
atom, r, is of the order d/u, + d/u,, where u, and 

ur are the initial and final velocities of the incident 
particle, respectively. If w is a frequency char- 

acteristic of the surface atom’s motion, then a 
collision is impulsive if wr < 1. For normal inci- 
dence and detection, we find wr = 0.4 for the 
collision with the F atom. We performed numeri- 

cal calculations to check that the value was suffi- 
ciently small. We assumed that the incident par- 

ticle interacts with only one atom (the F atom) 
and that the target atom is an Einstein oscillator. 
For this scattering geometry, the problem becomes 
one-dimensional, and only the perpendicular 
frequency is relevant. Both the width and the 

classical final energy were found to agree with the 
impulsive results to within 15%. 

For He striking F, the mass ratio p is small 
(= 0.2) and one finds that only a single collision 
takes place during the scattering process. Note 
that for many other systems (e.g., with larger mass 
ratios or with less impulsive collisions) multiple 
collisions must be accounted for [24]. Finally, we 
must check that the effect of neighboring atoms 
on the final energy is negligible. This will depend 
on the particular trajectory considered. For exam- 
ple, for normal incidence and detection after 

Table 2 

Frequencies associated with various alkali halide crystals (all in 

units of 10’” rad/s) 

Atom 

Li 

Crystal 

LiF 

WI WI1 *a 

7.28 7.19 8.35 

(6.42) (6.64) (7.16) 
F LiF 4.42 4.73 5.07 

(4.13) (4.80) (5.16) 
cs CsF 1.11 1.33 1.38 
F CsF 2.94 3.51 3.65 

The three columns of figures give the surface and bulk frequen- 
cies. The figures in brackets are calculated from values given 

by Chen et al. [23]. 
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scattering from a F atom, the turning~oint of the 
incident He atom will be about 1.7 A above the 
equilibrium position of the F atom. At this point 
the force on the He atom due to neighboring 
atoms is only 1% of the force exerted by the target 
atom. Thus, such a collision is “simple”. 

4. Results 

Before considering a realistic two-dimensional 
surface in detail, we return briefly to the sche- 
matic one-dimensional surface in fig. 1 to il- 
lustrate a few key features. For general inelastic 
scattering from such a surface, the final energy 
spectrum may be quite complicated. As a guide to 
the number and position of final energy peaks, we 
consider classical scattering from a rigid hard 
surface positioned at the equipotential curve [eq. 
103. To begin with, we note that for a sufficiently 
smooth surface and small angle of incidence, 
neither shadowing nor multiple collisions will oc- 
cur, i.e., there will be a one-to-one correspondence 
between impact parameters and points on the 
surface. Under these circumstances, the total 
scattering angle will be simply twice the angle 
between the incident beam and the surface normal 
at the point of impact. Thus, for any given inci- 
dent angle, the direction of the surface normal 
uniquely determines the final scattered direction. 
If, for example, we fii the total scattering angle to 
be zero, so that we detect only particles directly 
backscattered from the surface, then the beam 
points along the normal at the impact point and, 
by rotating the direction of incidence, we can 
usually detect scattering from exactly two distinct 
points on the surface. However, as we reach the 
angle corresponding to the point of inflection of 
the surface, these two impact points coincide (see 
fig. 4). The intensity becomes singular at this 
angle, and, for larger incident angles, it vanishes 
entirely. This is known as a classical rainbow {lo] 
and an angle at which the intensity becomes singu- 
lar is called a rainbow angle. For classical inelastic 
scattering from a realistic potential, there will also 
be a maximum angle beyond which no scattering 
can occur, and at this angle, only one peak will 

Fig. 4. Illustration of classical scattering from a rigid hard 
surface, where Bi = &, the direction of the surface normal tilted 
furthest from the vertical. Particles reflected from just one 

point in each unit cell will be directly backscattered. 

appear in the final energy spectrum, as shown in 
fig. 5. Note that such a direction will always be a 
rainbow angle, so the scattered intensity (in- 
tegrated over a small detector width) will be rela- 
tively large. 

Now we can discuss He scattering from 
LiF(OO1). Using the results of the previous two 
sections, we find, for the square of the energy 
width of a simple peak: 

(AE12= [g,(P* @i, @f)ft~, 

+gll(P, @i, flt)hall]Ei* 04) 

The notation used is shown in fig. 6. ei and 8, are 
the incident and final scattering angles, respec- 
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final energy 
E, ’ 

Fig. 5. Schematic final energy spectrum for direct backscatter- 
ing at the largest incident angle at which scattered particles are 
detected. The dashed lines and arrows indicate how the spec- 

trum changes as Bi increases from 0 o to this angle. 

tively, and C#J~ and (pf are the azimuthal angles. 
The total scattering angle is denoted by 0,( = ei + 
0,). In-plane scattering (to which we restrict our- 
selves) occurs when c#+ = C#Q (we use negative val- 
ues of 0, in place of C#Q = pi + 12). In these coordi- 

/I 
0 =F 

Y 0 = Li 

Fig. 6. Notation for angles, surface atoms and directions in the 
surface. 

nates the equations for the kinematic factors, de- 
fined by eqs. (6) to (8) become: 

g,(PT ei, ef> 

J(PJu P case 

II 
i [ 

l+P f 

2 
+ (l+P) cos ei - p cos e, cos et 

\/1i-q%@ II ’ (15) 
= f&7 4) P 

P i [ 
l+l~. sine,-((l+p)sin8, 

+ p sin e, cos 8, > 

X ({T=&G?SJ 

where 

(16) 

As (apf/aP),,, vanishes by symmetry for direc- 
tions perpendicular to the scattering plane [see eq. 
(8)], there is no contribution to the width due to 
fluctuations in this direction. We denote surface 
positions by (.&?/a, yfi/a) where the origin is 
centered on an F atom, and the orientation of the 
axes is as shown in fig. 6; surface directions are 
defined with respect to these two axes. For exam- 
ple, there is a Li atom at (1, 1) and the line 
connecting it to (0, 0) points in the (11) direction. 

Next we consider which peaks will be seen in 
the final energy spectrum. From the translational 
symmetry of the crystal surface, the final energy 
and direction of an atom scattered from a point 
(x, y) in the surface will be identical to that of an 
atom scattered from any other point related to 
(x, y) by a translation vector of the surface lattice. 
Thus we need only study points of incidence within 
one unit cell, which we choose to be the square 
with corners at (1, l), (- 1, l), (- 1, - 1) and 
(1, - 1). As a guide we again imagine classical 
scattering from a hard rigid surface identical to 
the elastic potential surface at the incident energy, 
as illustrated in fig. 3a. As the surface is fairly flat 
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and we will not be considering large incident 
angles, the direction of the surface normal will 
determine the final scattered direction. Fig. 7 is a 
contour plot of @,, the polar angle of the surface 
normal, in the unit cell. It vanishes at all maxima, 
minima and saddle points of the surface, and has 
four maxima itself, as indicated in the figure. 
From symmetry, the value of 19, is the same at 
each of these maxima. We denote this maxima 0, 
by SC (the critical angle), and the four values of (p, 
are 0, :rn, IT, $r. For direct ba~kscatte~g from 
this surface at 8, = 8, and in one of these azimuthal 
planes, only one peak will be seen. For inelastic 
scattering from the real surface, the same consid- 
erations imply that this statement is still true, 
although the value of SC will, in general, be differ- 
ent. 

Fig. 8 is an estimated final energy spectrum for 
He striking LiF(OO1). The peak in the loss spec- 
trum is due to a single collision with a F atom. 
The scattering is in-plane along the (10) direction. 
The incident beam has an energy of 0.5 eV. The 
detector is set for direct backscattering, of = - Bi. 

Fig. 7. Contour plot of the polar angle of the normal to the 
~uipotenti~ surface shown in fig. 3. A F atom is in the center, 
while there is a Li atom in each comer. Directly above each 
atom 8, vanishes. The black squares indicate the positions of 

maximum fl,. 

1.0 ,//,If,() ,,,, ,/k/,,,,, 

t 

0.8 L 

I 1 
0.0 II ,(I, 111111111 / 1 I / 

0.0 0.10 0.20 0.30 0.40 0.50 
Energy f av 1 

Fig. 8. Calculated final energy spectrum for 0.5 eV He directly 
backxattered from LiF in the (10) plane and at the largest 

incident angle for which scattered particles may be detected. 

The surface is at a low temperat~e (see section 5). 
We have calculated the width assuming 8, = 27 O, 
the critical angle for elastic scattering from the 
equipotential surface shown in fig. 3a. For the real 
inelastic scattering, this angle will be different, but 
the final energy spectrum (at the real 8,) will be 
appro~ately the same; for direct backscatte~g, 
the classical final energy is independent of the 
incident angle (given our assumptions), while the 
width is also insensitive to 8i for an oscillator as 
nearly isotropic as F in LiF (see table 2). Again we 
expect relatively large intensity, as this angle is a 
classical rainbow angle. We estimate the error in 
energy loss due to interaction with the F atom’s 
neighbors to be less than 15%. 

In practice, the source and detector cannot be 
completely aligned so that, for in-plane scattering, 
we must have a finite total scattering angle. This, 
however, does not invalidate our conclusion that, 
for a fixed total scattering angle, there will exist a 
critical incident angle at which just one peak is 
seen, and beyond which, the intensity vanishes 
(provided we continue to avoid multiple scattering 
and shadowing). Fig. 9 shows an estimated final 
energy spectrum for the F peak of fig. 8, with a 
different source-detector angle. This has been 
calculated from eqs. (14) to (17) assuming (a) that 
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Fig. 9. Calculated final energy spectra for different total 

scattering angles. The conditions are the same as for fig. 8, 

except that the total scattering angle is varied. 

the point of inflection (strictly, the point of zero 
Gaussian curvature) of the equipotential surface is 
the impact point and (b) that the normal here 
passes through the equilibrium position of the F 
atom [25]. From these calculations, for a source- 

detector angle of 90 O, the final scattered angle 
will be 19~ = 79”, so multiple collisions may occur 
in this case. 

As long as only one peak appears or, if more 
than one, that a simple peak is resolvable, we may 
use eqs. (14) to (17) to predict its dependence on 
the adjustable experimental parameters. The mean 
final energy is linear in the incident energy, while 
the width varies as its square root. In varying the 
incident energy, however, one must be careful not 
to reduce it below the range of validity of the 
impulsive approximation or the semiclassical the- 
ory. Furthermore, the complete angular depen- 
dence is given by the kinematic factors g, and g,,, 
although their variation may be small over the 
range of angle in which this peak is resolvable. We 
may also deduce the qualitative nature of the final 
energy spectrum as a function of 8; ( = - 8, ) and 
&( = +r) from our rigid hard wall model. To be- 
gin, we align the scattering plane along (10) and 
keep Bi large. We rotate the plane of the surface 
about (01) (i.e., reduce 6;) until a peak appears in 

the final energy spectrum. Just at this point, rota- 
tions of the scattering plane (i.e., changes in &) 
will make the peak disappear. As Bi is further 
decreased, this one peak will widen, eventually 

splitting in two, while, for a fixed 8,, rotations of 
the scattering plane will decrease its width. How- 
ever, as 6, is reduced, other peaks, due to scatter- 
ing from different points in the unit cell, will 

appear, and may obscure these features. Eventu- 
ally, near normal incidence and reflection, there 
will be several peaks, one of which will correspond 
to simple collisions with the Li atom which, if it 
can be isolated, will obey eqs. (14) to (17) also. 
Although it is beyond the scope of the present 
work, in principle, the entire spectrum and its 

angular dependence are calculable [14]. 
We conclude this section with a discussion of 

another possible surface on which this trial experi- 
ments might be performed, and which illustrates 
other features. Fig. 3b is an equipotential surface 
for 0.5 eV He scattering from CsF(001). The larger 
hills correspond to the Cs ions, so that the single 
peak visible at the critical polar angle is due to 
simple collisions with these ions. The left peak in 
fig. 10 is an estimated final energy spectrum for a 

He 
08 - I 

08 - 

: 

Fig. 10. Estimated final energy peaks for He and Ne back- 
scattered from CsF. The scattering is in &he (01) plane and at 

the largest incident angle for which scattered particles may be 

detected. The initial energy of the He is 0.5 eV, and of the Ne 

is 2.5 eV. 
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0.5 eV He beam directly backscattered from 
CsF(001) at the critical polar angle, along the (01) 
direction. The scattering is very close to elastic, 
due to the small ratio of the He and Cs masses. If 
the beam now seeded with Ne, and the crystal is 
rotated (about (10)) to the new critical angle, the 
spectrum shown by the right peak in fig. 10 re- 
sults. As seeding produces a Ne beam with the 
same initial velocity as the He, the incident energy 
is 2.5 eV. A similar spectrum could be found for 
Ar seeding. Thus the dependence of peak width on 
the mass ratio, for fixed initial velocity, may be 
tested. Finally, in fig. 11, we show again 0.5 eV He 
on CsF(OOl), but now at normal incidence and 
detection. We expect four peaks in this case: the 
two simple peaks due to collisions with Cs and F, 
an almost elastic peak due to reflection from the 
global minima, and a peak due to reflection from 
the saddle points. These last two are shown only 
schematically. Thus it may be possible, for this 
system, to identify and measure the width of the 
peak due to simple collisions with the smaller ion 
also. 

I.0 , , , , , , , , I , I I I I ( I I , I , I I I /I, 

I/ 
I I 

cs II- 
03 - 

0.2 - 

0.0 1 1 
0.0 0.10 0.20 0.30 0.40 0.50 

Energy (eV) 

Fig. 11. Estimated final energy spectrum for 0.5 eV He on 
CsF(OO1) at normal incidence and reflection. The two solid 
peaks are due to simple collisions with the Cs and F, while the 

dotted ones are schematics based on crude estimates. 

5. Extension to finite surface temperatures 

Finally we consider the temperature depen- 
dence of the widths of these peaks. Eq. (1) is also 
expected to be accurate for surfaces at finite tem- 
peratures, provided k,T, K ELossr where T, is the 
surface temperature [14]. This condition is easily 
satisfied by surfaces at room temperature (k,T, = 
25 meV) for the systems discussed here. For a 
simple peak the only change with temperature is 
an increase in the size of the momentum fluctua- 
tions of the surface atom. For a single oscillator 
we have 

(e’) = (;Amw) coth( eT). (18) 

Here 3 is the momentum operator, m the mass, w 
the frequency and T the temperature of the oscil- 
lator. From eq. (14), we find that the width, as a 
function of T,, is given by 

(19) 

This function is plotted against temperature in fig. 
12. The parameters are those for the peak shown 
in fig. 8, but now with the surface at finite temper- 
ature. At low temperatures (T, -c hw,) the width 
is dominated by quantum effects. In fact, for 
temperature up to 50 K the fluctuations are still 
almost entirely quantum mechanical. When we go 
to high temperatures thermal broadening will 
dominate the quantum effects, and the peak itself 
may become difficult to identify. At room temper- 
ature the width is practically proportional to T,, 
and this dependence has been seen experimentally 
by Hurst et al. [26] in the scattering of Ar from 
tungsten. However, they did not perform measure- 
ments at temperatures sufficiently low to see the 
quantum fluctuations. From eq. (1) it is clear that 
the finite (quantum mechanical) value at T, = 0 
and the linear behavior at high T, are qualitative 
features of all peaks, not just of the type we have 
been studying. 
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Fig. 12. The width of the peak, shown in fig. 8 at zero 
temperature, as a function of surface temperature (solid line). 

The dashed line indicates the classical behaviour. 

Available techniques should be sufficient for 
determining this zero point motion effect. Both 
the source and the detector need to operate at 
energies of 0.5 eV to ensure that peaks can be 
made sufficiently narrow for the semiclassical the- 
ory to apply. The resolution of final energies and 
angles attainable with a velocity selector at ther- 
mal energies will suffice. (As these peaks contain a 
large fraction of the outgoing intensity, the loss of 
intensity involved in using a velocity selector 
should not be a problem.) The effects of thermal 
broadening will be relatively small below - 50 K. 
Other desirable features of such an experiment 
include the ability to rotate the crystal and to vary 
the surface temperature. Finally, the source-de- 
tector angle should not be fixed at too large a 
value. 

6. Discussion 

The success of this prototype experiment would 
provide justification for more detailed calculations 
and further experimental investigation. The tech- 
nique will yield information complimentary to that 
found in thermal energy experiments; it will probe 
directly the dynamics of individual atoms, rather 

than the motion of normal modes. The full classi- 
cal map of impact parameters and initial momenta 
to final momenta can be calculated by numerical 
simulation, once the potentials involved are 
known. This can be used to identify situations 
where isolated peaks occur, whose widths may be 
found from eq. (1). It may be possible to probe all 
points on the surface unit cell in this manner, 
from a variety of different incident angles. For 
atom-surface collisions which are not so impul- 
sive (e.g., noble gases on metals), there will be 
larger contributions from the interatomic correla- 
tion functions appearing in eq. (1). Thus, several 
force constants may be determined. By measuring 
these local force constants, we can make direct 
comparisons with models of interatomic surface 
forces. These may differ considerably from those 
in the bulk, even, as we showed, in the simple 
Born-Mayer scheme. 

The new technique will provide, at the very 
least, constraints on theories of interatomic forces. 
A case in point concerns the frequency of the 
Rayleigh mode in LiF(OO1) at the M-point of the 
surface Brillouin zone. Models of the interatomic 
forces, fitted to bulk data, yield a value about 10% 
higher than that determined by scattering experi- 
ments performed at thermal energies. This dis- 
crepancy can be removed by assuming various 
modifications in the properties of the ions at the 
surface [27]: increased F- polarizability, different 
non-central nearest-neighbor transverse forces, or 
the charge overlap effect. Each modification may 
give rise to different widths of the final energy 
peaks in the experiment suggested above, and 
accurate measurements of these widths (combined 
with numerical calculations) may provide a crite- 
rion for choice between the various models. 

To conclude, hyperthermal atom-surface scat- 
tering behaves almost classically. At some rainbow 
angles, the final energy spectrum can be reduced 
to one (or more) easily identified peaks. The zero 
point vibrations of surface atoms cause a broad- 
ening of these peaks. This is a quantum mechani- 
cal effect, and provides a new sight into surface 
dynamics. In this paper, we studied impulsive 
two-body collisions, and derived an analytic result 
for the width of an energy peak in this case. As an 
example, we made semi-quantitative predictions 
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for He scattering from LiF. Our general formalism 
applies to many physical systems and may provide 
a useful method for obtaining information about a 
surface’s dynamical properties. Experimental test 
of our predictions would provide justification for 
more detailed calculations. 
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Appendix 

To estimate the vibration frequencies of the 
atoms in an alkali halide crystal with the NaCl 
structure we use the Born-Mayer scheme. We 
look at both bulk and surface frequencies and 
compare our results with those of detailed slab 
calculations. 

The ions are taken to interact through both 
long-range Coulomb forces and a short range ex- 
ponential repulsion between nearest neighbors 
only, 

V(r) =A exp(-r/p). (Al) 

The values of A and p may easily be related to the 
bulk modules B and the equilibrium interionic 
spacing a for the material [15]. In particular, the 
decay constant, p, obeys the relation 

U/P = 2 + 18Ba4/( c&)) (f-w 

where (Y is the Madelung constant and e is the 
electronic charge. To find the bulk frequencies, we 
consider the restoring forces on an ion displaced 
slightly from its equilibrium position, holding the 
other atoms fixed. Cubic symmetry and Laplace’s 
equation require the Coulomb contribution to 
vanish, and from the Born-Mayer repulsion we 
find 

wg = d_~, (A-3) 

where wn is the bulk frequency of the atom, and 
m is its mass. Comparison of this frequency for 

the lighter atom with the measured optical 
frequency at k = (a/a, 0,O) yields an error of no 
more than 30% for any alkali halide with NaCl 
structure. 

The surface frequencies are found in a similar 
fashion. The small relaxation that occurs has a 
negligible effect on the frequencies [28], and can 
be ignored. Now the Coulomb contribution does 
not vanish. A simple calculation gives: 

WI = 
i i 

2 I/( U/P - 4 + 31/(u)/( u/p - 2) ) 

(A.9 

and 

@II = wB /<UP - 3/2 - 31/4a)/( UP - 2) , 

(A.5) 

where 
(m+n+l) 

IE C’ C-1) 

( m2 + n’) 
3/2 . (A.6) 

m,n 

The sums over m and n above range from - 00 to 
+ co, excluding the pair m = 0, n = 0. The sum 
may be easily performed [29], and I = 2.646. Note 
that for very steep repulsive forces (p < a), wI - 
‘+/a and W,, - WB. 

Table 2 shows results for the crystals men- 
tioned in this paper. The restoring forces are close 
to isotropic in all cases, and the frequencies are in 
the range 10’3-10’4 rad/s. We also show frequen- 
cies calculated from the mean square velocities at 
zero temperature given by Chen et al. [23] for LiF. 
Their values were obtained from studies of the 
complete lattice dynamics. We use these in our 
width estimates. For the six alkali halides for 
which Chen et al. give figures, the above formulae 
are accurate to within 20%. 
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