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We consider the scattering of an incident particle by bosons. We assume the coupling is linear in the
boson coordinates, but can be quite general in the incident particle coordinate. We show that when the
final distribution is close to elastic, the independent-boson model applies to this problem. It yields a loss
distribution which is simply the exponentiation of the first-order distorted-wave Born approximation
(DWBA). Furthermore, we demonstrate that in this regime, for short wavelengths of the scattered parti-
cle, this exponentiated Born approximation reduces to the trajectory approximation (TA). Thus it in-
cludes both the DWBA and the TA as special cases. We also give a simple recipe for estimating the er-
ror this approximation makes. We illustrate these results on a simple one-dimensional model involving a
single oscillator, and discuss their relation to previous studies of overlapping regimes. This approxima-
tion and accompanying error estimate should prove very useful in analyzing multiphonon effects in
atom-surface scattering.

I. INTRODUCTION

There exists, as yet, no generally solvable theory to de-
scribe the scattering of neutral atoms from solid surfaces,
even within the Born-Oppenheimer approximation for
electronic motion. ' The problem consists of a continuum
of phonons in a semi-infinite crystal interacting with a
single-incident atom, and poses an interesting theoretical
challenge. Many approximations have been used in
different regimes, some without compelling justification.
In particular, the trajectory approximation (TA) has been
used to analyze scattering results in the semiclassical re-
gime, i.e., where all quantum corrections to classical re-
sults are small. In this regime a large number of phonons
are excited, as E;,Ef, ~Ef E; ~

))A'coD,—where E, and Ef
are the initial and final energies of the incident particle,
respectively, and coD is the Debye frequency of the target.
Furthermore, the de Broglie wavelength of the incident
particle is short, so that the Wentzel-Kramers-Brillouin
(WKB) approximation is valid for the eigenstates of the
potential felt by the incident particle when the lattice is
rigid. However, the TA has recently been shown to be
inaccurate for semiclassical scattering by Jensen, Chang,
and Kohn (hereafter JCK). They found that, for an ex-
tremely simple model, the TA fails except when the mean
energy transfer is small.

In this paper, we discuss the general problem of nearly
elastic scattering of an incident particle by a boson bath.
To make clear what we mean by nearly elastic, we consid-
er a Hamiltonian of the form

bath inc

where Hb„h describes the bosons, H;„, the single incident
particle, and V the coupling between them. In general,
H;„, contains both the kinetic energy of the incident par-
ticle and some one-body potential. For example, in
atom-surface scattering, this potential is usually chosen
to be the static reAection potential, i.e., that potential ex-
perienced by the incident atom while all the surface

atoms are kept at their equilibrium positions. We denote
the eigenstates of H;„, by ~

k ), where k is the wave vector
of the incoming part of the wave function, far from the
scattering region. If in Eq. (1) V were zero, the scattering
would be purely elastic, i.e., no energy transfer would
occur between the incident particle and the bath. Fur-
thermore, the expectation value for the number of parti-
cles in state ~k) would be unity for k=k;, the initial
wave vector, and zero for all others, throughout the dura-
tion of the collision. Now for nonzero V, by nearly elas-
tic we mean that this expectation value is dominated by
states at or close to k; at all times during the collision.
For short wavelengths of the incident particle, nearly
elastic is equivalent to requiring that the particle s recoil-
less trajectory is not strongly modified by the coupling to
Hb„h. Note that in nearly elastic scattering, the number
of phonons excited in the collision is not restricted, but
their cumulative effect on the state of the incident parti-
cle must be small.

We illustrate this concept by studying scattering in one
dimension from a single oscillator via a purely repulsive
interaction. Figure 1 shows some schematic loss spectra
for this system. The energy loss of the particle is plotted
along the horizontal axis, and the probability of that loss
is represented by a vertical column. If the interaction
were turned off; then the loss spectrum would be just a
column of unit height at the origin. In the presence of
the interaction, nearly elastic scattering occurs when AE
is small in this simple model. However this does not
necessarily mean the scattering is weakly inelastic, i.e.,
has a large elastic fraction as shown in Fig. 1(a). In fact,
Fig. 1(b) has the same mean energy loss as Fig. 1(a), al-
though here the scattering is strongly inelastic, i.e., the
elastic fraction is negligible.

We solve the nearly elastic scattering problem for in-
teractions which are linear in the displacements of the
bosons. We find the independent-boson model applies to
this case, leading to a loss spectrum which is just that of
linearly driven oscillators. The driving forces are given
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FIG. 1. Schematic quasielastic loss spectra, calculated in the
simple model described in Sec. V. The probability is plotted vs

energy loss of the incident atom. In (a) there is a large elastic
fraction, but in (b) it is negligible, although both have the same
AE.

simply by the matrix elements of the interaction, evalu-
ated on the uncoupled scattering states. For atom-
surface scattering, these are just the matrix elements
occurring in the distorted-wave Born approximation. Be-
cause of the form of the final spectrum Isee Eq. (11)], we
call this the exponentiated Born approximation (EBA).

The EBA is an old idea, applied to surface scattering
by many previous authors. Unlike the (distorted-wave)
Born approximation, it is not an expansion in the number
of phonons excited. In the early 1980's, Brenig and co-
workers ' thoroughly investigated the application of
the EBA to the problem of atoms scattering from pho-
nons at a surface. There it was called the static approxi-
mation. However, as early as 1971, Beeby' had used it
in an estimate of the Debye-Wailer factor in this case,
and Mueller-Hartmann, Ramakrishnan, and Toulouse'
had applied it to atom scattering from bosonized elec-
tronic excitations. It has also been combined with vari-
ous other approximations, e.g. , short wavelengths of the
incoming atom, ' ' or hard-wall interactions. ' In fact,
it has recently been applied to the scattering of 70-meV
He from Pt, with considerable success. ' Nevertheless,
the EBA itself has never been justified on more than in-
tuitive grounds, nor has its entire regime of validity been

specified.
This paper contains several important results, of both

practical and formal significance. To state our formal re-
sults precisely, we introduce at this point the term "qua-
sielastic" scattering, which we distinguish from "nearly
elastic" scattering. By quasielastic, we mean that AE is
infinitely small relative to all other energy scales in the
system. Quasielastic scattering includes, as special cases,
weakly inelastic scattering, semiclassical scattering with
small energy transfer, and quasiadiabatic scattering.
Brenig argues that the EBA is valid when the scattering
is quasielastic. We rigorously demonstrate that quasielas-
ticity is a sufficient requirement for the EBA's validity for
the class of Hamiltonians described in Eq. (1).

We can now also quantify what we mean by nearly
elastic. Since the EBA yields the leading corrections to
elastic scattering, we call the scattering nearly elastic
when the error made by the EBA is small, say less than
10%. In fact, our formal derivation provides a simple re-
cipe for estimating the error involved in the use of the
EBA for Hamiltonians of the type described by Eq. (1).
Thus, in any given situation one can now say just how
small AE needs to be to make the EBA approximately
true, and what is the relevant energy to compare it with.

Our method for estimating the error in the EBA may
be easily applied to the full atom-scattering problem so
that in real experiments one now has a priori condition
which, if satisfied, tells one that theoretical calculations
based on the EBA can be trusted. This should prove to
be of great benefit to the comparison of theory with ex-
periment, given the large number of parameters in-
volved, ' and the complexity of realistic calculations.

Furthermore, we find that by using a result of Burke
and Kohn, the EBA reduces to the TA when k, , A,f «d,
where X, and A,f are the initial and final wavelengths of
the particle, and d is the smallest length scale in the sys-
tem, in the same sense as used above for quasielastic
scattering. Thus, d might be the length scale on which
the repulsive part of the potential varies, or the attractive
part, etc. Note that short wavelengths do not necessarily
imply semiclassical scattering, in the sense defined above.
The short-wavelength condition, allowing the WKB ap-
proximation in evaluating the scattering matrix elements,
can be satisfied independently of the requirement for mul-
tiphonon scattering. For example, in quasiadiabatic
scattering, the wavelength of the incident particle be-
comes shorter as its mass grows, keeping E,. and the in-
teraction fixed, but the number of phonons excited
remains finite for a cold surface. In fact, our proof also
demonstrates the validity of the TA for quasiadiabatic
scattering from a linear interaction. This result had been
postulated by Burke and Kohn, but only proven for
weakly inelastic scattering. This confirmation has al-
ready been mentioned in a preliminary report. '

Our proof of the validity of the EBA for quasielastic
scattering is very general and applies to scattering from a
boson bath in any number of dimensions. However, to il-
lustrate our results, we consider scattering from the sim-
ple one-dimensional model discussed in Fig. 1. Such a
model is one of the simplest possible examples of a system
described by Eq. (1) which contains the feature of energy
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transfer from the incident particle to the target. The
model is not intended as a realistic model of all atom-
surface scattering. Indeed, it fails to include parallel
momentum transfer, diffraction, an attractive well, or a
continuum of phonons, all of which can play vital roles in
atom-surface scattering. ' The purpose of this model is
merely to show how our proof and error estimate work
through a very simple example, and develop insight into
what nearly elastic means in this simple case. Thus we
find conditions for the validity of the EBA which apply
only to this simple model. However, even here we find
that the EBA is valid in a wider range of parameter space
than either the distorted-wave (DWBA) or the TA, and a
future publication will apply our method for estimating
the error to a realistic treatment of atom-surface scatter-
ing, including both an attractive well and a phonon con-
tinuum, and giving concrete criteria for the validity of
the EBA and the TA.

In our one-dimensional model we use an exponential
repulsion, linearized in the oscillator s displacement. For
this problem, the final distribution within the EBA is sim-

ply a Poisson distribution, characterized by a single num-
ber, the Debye-Wailer exponent g, where exp( —rl) is the
fraction of purely elastic scattering. We estimate the er-
ror involved in the EBA, and show how it approaches
zero as any quasielastic limit is approached. We find re-
sults consistent with the previous studies of JCK for
semiclassical scattering on a similar model.

The bulk of this paper is concerned with a very general
proof of the validity of EBA for quasielastic scattering
described by Hamiltonians of the form given in Eq. (l).
This includes most practical cases of atom-surface
scattering. We begin with some formal definitions and a
hand-waving argument to give credence to our claims. In
Sec. III, we construct a formal proof of our result, using
simple operator algebra. In Sec. IV, we give our estimate
for the error in the EBA, and discuss its implications for
nearly elastic scattering in realistic atom-surface systems.
Only in Sec. V do we reintroduce the simple model men-
tioned above, apply our error estimate, and give condi-
tions for the validity of the EBA for this model. Finally,
in Sec. VI we discuss the implications of our results for
this field.

For this problem we have

~bath g ~gaga@
Q

Hjnc g eke kek
k

and

(3)

V= g V kcpckat, K+H. c. ,
p, k

(4)

with AK=P —K. This model has phonon modes of
parallel wave vector Q, energy co&, and creation and an-
nihilation operators aQ and aQ. These are regarded as
periodic functions of their arguments, with the period of
the two-dimensional surface reciprocal lattice. The sum
over all branches with parallel wave vector Q is implicit.
The operators c and ck create and destroy incident par-
ticles in distorted-wave states labeled p and k, respective-
ly. These states are scattering states from the static
refiection potential U(r), i.e. , the potential experienced
by the incident atom when the surface atoms are held
fixed. They are normalized so that the incoming part of
the wave function in real space is just exp(ik r) l&f), , far
from the surface, where 0 is the volume of a large box
containing the entire system. In general, their outgoing
parts include diffracted beams. Their energies are just
e& =k /2m in the continuum. We also implicitly include
in the sum over k in Eq. (3) any bound states of U(z)
which, if they exist, we assume to be at discrete energies
and of finite number.

We often work in the interaction representation, in
which the time dependence of the operators is generated
by the noninteracting Hamiltonian for the entire system,
Ho =H„„„+H;„,. In this picture, the particle-surface in-
teraction may be written as

Vt(t) = g Vp, kcp(t)ck(t)a~K(t)+H. c. ,
p, k

l CO

where ck(t) =eke " and a&(t) =a&e
The zero-temperature energy-loss spectrum (the gen-

eralization to finite temperatures and angular distribu-
tions is straightforward) may then be expressed as

II. SIMPLE ARGUMENT

Before presenting a hand-waving argument to demon-
strate the plausibility of our claims, we first introduce
some essential definitions. For definiteness, we work
within the framework of an atom scattering from vibra-
tions in a three-dimensional surface, but emphasize that
our conclusions apply generally to a Hamiltonian with
the features stated in the Introduction. In this and the
next section, we use the notation %=1; lowercase bold
letters indicate three-dimensional vectors, upper case
bold indicate two-dimensional vectors parallel to the sur-
face, the subscript z indicates the component perpendicu-
lar to the surface, and italics indicate the length of a vec-
tor. Thus, k=(K, k, ), and k=lkl. The only exception
to this is in the position coordinate of the incident atom,
denoted r=(R,z). We also denote the Fourier transform
of a function F(t) by F(co)= I dt e'"'F(t).

P ( bE ) = ( p~ l 5(Hb„„bE )
l p~ ), —

where i/I ) is the final state of the complete system (after
the scattering has occurred). The dynamics of the
scattering system are contained in how

l P& ) is generated
from the initial state of the system lk;, 0), where k, is the
initial wave vector of the incident atom and l0)
represents the ground state of the crystal. We write

where S is the scattering matrix due to the interaction V
and can, at least formally, be expressed as a power series
in V.

Using these definitions, we may present our hand-
waving argument. In the interaction representation we
write, for the effect of the potential on the initial state of
the system,
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vt(t)lk;, 0&=y vf e'" ' "" Ik b.K&,
k

(8)

where
I k, Q & is a product state with the incident atom in

state k and a single phonon of parallel momentum Q
( = b, K up to a surface reciprocal-lattice vector) excited in
the target. However, in the quasielastic regime the state
of the incident particle is almost unchanged, so that
I k, Q & =

I k, , Q &. The same reasoning applies when the
state Ik;, Q & is acted upon by the potential, and again the
wave vector of the incident atom remains approximately
unchanged. We extend this argument to all scattering
processes throughout the collision. Thus, in our calcula-
tion, we may write, approximately

t(e —E.—co&K)tVt(t)= g V g e ' ' aq~+H. c.
P

or, in the more familiar Schrodinger representation,

iHot —iHoto —iG(t, to)
U, (t, t, )=—e ' U(t, t, )e ' '=e (14)

and it is straightforward to show that 6=G(co, —ca )

has the following expansion in powers of the potential in
the interaction representation,

bosons when the scattering is quasielastic. This occurs
because boson creation and annihilation processes be-
come statistically independent in this case. In the next
section we will discuss how this limit is achieved for a
simple model.

We employ a formalism that is particularly well suited
to solving the driven oscillator problem. ' The scattering
matrix introduced in Eq. (7) is simply the t +~—limit of
the evolution operator for the complete system,—iH(t —to)
U(t, to)=—e, where H is the total Hamiltonian
for the entire system and t0 is taken to —~. In the in-
teraction representation we write

V= g U~~(t)at, ~+H. c. ,
b,K

(10) G =G'"+G' '+ G' '+

where
where U&K(t)=g V & e ' ~ and P=K+hK.
The particle is no longer coupled to the surface phonons,
and the full Hamiltonian just describes a set of oscillators
that are linearly driven by the potential. The exact solu-
tion to this problem is given simply by

~(r) =exp —g I U~„( —~~~) I'(1 —e
'"' ')

b,K

and P(bE)=JV(EE)/2rr, where A'(co) is the Fourier
transform of A'(r), and

G'"= f" V, (t)dt,

G"'= ——f dt f dt'[V, (t), V, (t')),

etc. The series becomes increasingly complex as one goes
to higher orders, but here we use only the property that
each G'"' is a linear combination of terms, each of which
involves the commutation of n Vz(t)'s together. The
Fourier transform of the energy-loss spectrum defined by
Eq. (6) is then (up to a factor of 2m )

UqK(co) =2rrvp k 6(cu+E; —
e~ ) (12) w(r) =(k, , oIe """ 'Ik, , o&, (18)

P=K+b.K, p, =+@ P+2mco . — (13)

Because of the form of Eq. (11), we call this the exponen-
tiated Born approximation, as the matrix elements
Uz~( —co~~) are just those appearing in the distorted-
wave Born approximation. This completes our hand-
waving derivation for the validity of the EBA for quasi-
elastic scattering. This result will now be derived more
carefully.

is the Fourier transform of Uzz(t). In this last result, p
is uniquely determined by energy and momentum conser-
vation,

where

iG —iG~b th ~b th

To actually calculate 8' we expand in powers of G to find
8'= 8'"+8" '+, where

) tlW'"'=, {G",H „„] (20)

lnJV(r) =y'"(r)+y' '(r)+. . . , (21)

and {G",Hb„„{—:[G, [G, . . . ,Hb„h]. . . ], i.e. , G com-
muted with Hb„h n times. Finally, once 8' has been
found, JV(r) may be expressed as a cumulant expansion,

III. VALIDITY OF THE KBA
FOR QUASIEI.ASTIC SCATTERING

where

y'"(r)= i f dr'( W—(r') &, , (22)

In this section we show that the EBA is valid for quasi-
elastic scattering from a linear interaction. The proof in-
volves finding the Anal distribution of states of the bo-
sons, and deducing the distribution of states of the in-
cident particle by conservation rules.

We begin with some formal scattering theory, and il-
lustrate how it yields the correct loss spectrum for a
linearly driven oscillator. We then apply this formalism
to the full scattering problem, and show how the interac-
tion behaves just as a time-dependent driving force on the

y' '(r) = —f dr' f dt" ( W(r') W(r") &, ,
0 0

(23)

and so forth, where the cumulants are evaluated on the
initial state Ik;, 0& and the r dependence of W(r) is

generated by Hb„h alone, i.e. , W(r)=e "'" W'e
The cumulants are defined in Ref. 23, and involve expec-
tation values with means subtracted. For example,
& W(r) &, = ( W(r) &, ( W(r) W(r') &, = & W(r) W(r') &—( W(r) &( W'(r ) &, etc. Much of this formalism is simi-



12 856 KIERON BURKE, BRANKO GUMHALTER, AND DAVID C. LANGRETH 47

lar to that used by Brenig.
We demonstrate how this rather elaborate scheme

works by applying it to a simple system of linearly driven
oscillators, with

Vt(t)= g Uq(t)[ar)(t)+aqt(t)] .
Q

(24)

Using the commutation relations of the phonon opera-
tors, it is clear from Eqs. (16) and (17) that the only
relevant contribution to G is G'". [All others vanish ex-
cept G' ', which is just a c number, and therefore does
not contribute to W in Eq. (19)]. For the same reasons,
only the first two terms in the expansion of W [Eq. (20)]
survive, namely

W'"=i g co&[ U&( —co&)a& —U&( —
co&)a& ], (25)

Q

(26)
+H. c. (29)

tegral over energies. In the above, we have relabeled k
with the set (K,ek) and p with (K+6,K, ek+co). We
have defined p(K, ek', hK, co) =c~ck, and
V(K, ek, AK', co)=(mL, /p, ) V& k, where L, is the box
length in the z direction. Thus, V is the interaction ma-
trix element evaluated on distorted-wave states, normal-
ized to unit incident flux. A factor L, /(2m) appears in
transforming from discrete to continuous p„and a factor
I/p, appears in the transformation to energies from
wave vectors.

With this form for the potential, we may calculate the
contributions to G, as given by Eqs. (16) and (17). We
find

G"'= g V(K, ek', bK, cogK)p(K, ek, bK, co~K)a~K
k, hK

As 8' contains, at most, linear powers of phonon opera-
tors, all cumulants vanish except the first and second,
whose sum yields

y(r) = g ~ Ug( —~g)~'(e u —1),
Q

(27)

Vt(t)= g f V(K, e„;6K,co)p(K, ek, bK, co)
k, b,K

X e ' 'a ~& ( t ) +H. c. , (28)

where we have transformed the sum over p, into an in-

which, when substituted into Eq. (21), gives the loss spec-
trum already quoted in Sec. I [see Eq. (11)].

We are not ready to tackle the full scattering problem.
We use the Hamiltonian introduced in Sec. I [see Eqs.
(2)—(4)], so the potential in the interaction representation
is given by Eq. (5). For convenience, we rewrite this as

f ~ dc' f ~ dc'

k, hK, AK'

X C(K, ek', b,K, co;b.K', co')

Xp( K, ek,' 4K+ b K', co+ co' )

X A (bK, co;bK', co'), (30)

where

C(K, ek, bK, co;bK', co') = V(K+6K', ek+co';9K, co)

X V(K, ek, b, K', co')

—V( K+ 6K, ek + co; b,K', co' )

X V(K, ek, AK, co) (31)

is the difference of matrix elements produced by the com-
mutator in Eq. (17) and

A (b K, co;b K', co') = ——f dt f dt'[a&&(t)+ a&&(t)][a&& (t')+a & K(t')]e' '+'
OO QO

(32)

is the combination of phonon operators surviving in G' '. When we say surviving, we refer to the fact that any parts of
G' ' which are diagonal in both particle and boson space do not contribute to the final distribution, just as in the driven
oscillator case. Such terms have been dropped from Eq. (30).

The important feature of G' ' for our purposes is in the matrix element combination given by Eq. (31). Note that if V
were independent of its first arguments, i.e., depended only on the energy and momentum transfer, and not on the initial
state of the particle, then G' ', and all higher-order contributions, would vanish identically. This is the typical case to
which the independent boson model is applied, and corresponds to a structureless interaction. For our class of prob-
lems, this will not generally be true. However, for quasielastic scattering, we expect the dominant states occurring in
the integrals to be close in k space to the initial state. We expand the matrix elements about the initial state of the par-
ticle, i.e.,

8 V(K, E;;b,K, co)
V(K;+ b K', E; +co'; b K, co)= V(K;,E;;b K, co)+b K'

BK

8 V(K;,E;b,K, co)
+CO

K=K,- BE
+ ~ ~ ~

E=E.
t

(33)
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Xp( K, ek., b K, —coqK )a ~~ ] (34)

Thus we have expanded in small changes in the initial
state of the particle, keeping the energy and momentum
exchange fixed. We show below that the EBA is
recovered by replacing V(K;+b K', E; +co', b,K, co) by
V(K;,E, ;6K,. co) in Eq. (31) and wherever it appears in
the definition of the G'"'s.

Recall that in the Introduction we defined quasielastic
scattering as being infinitely close to elastic scattering.
Clearly the replacement described above becomes exact
in this limit. Also, we can now see what is required for
nearly elastic scattering. The derivative terms in Eq. (33)
must not significantly affect the state distribution. Thus,
in any particular situation, the sensitivity of the matrix
elements to the initial state of the particle will determine
just how large an error is made in using the EBA, and so
how wide a region of parameter space can be called near-
ly elastic. Note also that since Eq. (30) contains sums and
integrals over virtual intermediate states, we require the
cumulative effect of the dropped terms to be small.

By inserting this form for V(K, +6K', E;+.co', b, K, co)
in G' ' in Eq. (30) we find that C(K, ek', bK, co;bK', co')
vanishes so that G' ' is identically zero, and, in fact, allG'"'=0 for n ) 1. Thus, for quasielastic scattering, G is
almost identical in form to the driven oscillator case.
Similar reasoning applies to the calculation of 8' and we
find a simple generalization of the linearly driven oscilla-
tor result,

W =i g coaKI V(K, ek , bK, co~K')p(K, ek,'EK, coaK)a~K
(i)—~

k, hK

—V*(K,ek,'hK, —
boa~)

to each of which the above argument applies. This leads
to a simple generalization of the above results. We define
the driving function as

Dk(~K ~)=(2~)'I
l
V(K, ek., ~K, —~)l'

X [1+n(co)]g(b,K, co)

+
i V(K, ek, b,K, co)

i

Xn( —co)g(b, K, —co)] . (37)

Here, the density of states of bosons with momentum hK
is denoted g(AK, co), and n(co) is the Bose occupation
factor, at the surface temperature. This equation in-
cludes all branches of phonons in the target and even
static corrugation may be included through the details of
g(b, K,co). Then the final distribution, calculated within
the EBA, is just

01 RP (gK e) f f eiet+ihK. R
277 4~

Xexp[D(R, t ) —D(0, 0)],
(38)

where D(R, t) is the inverse Fourier transform of the
driving function, and the normalization has been chosen
such that f" de Jdb, KPEii~(e, b,K)=1. This is the
complete solution to the scattering problem within the
EBA.

In discussing the EBA distribution, we first note that,
for weakly inelastic scattering, the exponential
exp[D(R, t)] may be expanded about 1, yielding a distri-
bution

W' ' —g ckck g co&~ V(K, ek,'AK, —co~K) I' .
k Ak

(35) P(bK, e)=[1 D( ,—0)0]5( )e5 (bK)

y(t) = Q I V(K;,E, ; b K, —cog~) I (e "—1),
b,K

(36)

where the cumulant has been evaluated on the initial
state ~k, ,0). Note that the only approximation used to
achieve this result was the replacement described after
Eq. (33).

To include the angular distribution in this proof, Eq.
(6) is generalized to an operator which also projects out
the final direction of the scattered particle, and the argu-
ment given above goes through. To include surfaces at
finite temperatures, one simply sums over a thermally
weighted distribution of initial phonon states in Eq. (11),

Finally, the same approximation, Eq. (33), may also be
used to show the cumulant expansion is just as in the
linearly driven oscillator case, i.e., only the first and
second cumulants are nonzero. The only difference with
the driven oscillator problem is that 8'is now an opera-
tor on incident particle states. But the approximation of
Eq. (33) is equivalent to allowing matrix elements with
differing particle energies to commute, i.e., to having con-
secutive phonon creation and annihilation events statisti-
cally independent. Then, by the basic theorem on cumu-
lants, the only surviving cumulants are those that sur-
vive for the driven oscillator problem. Thus we find

+Dk(b.K, co) /(2'� ) (39)

This is just the familiar distorted-wave Born approxima-
tion result.

Next, we discuss how, when the wavelengths involved
are short, the TA is recovered. For asymptotically short
wavelengths, the wave functions involved in evaluating
the driving function DzK may be approximated by their
WKB forms. Furthermore, it can be shown that the
difference in their phases, as a function of z, becomes sim-
ply coaKt(z), where t (z) is the inverse of z,~(t), the elastic
classical trajectory. The resulting matrix elements are
precisely the Fourier transform of the classical force, as
prescribed by the TA. This result was earlier argued to
be true by Sedlmeir and Brenig. When inserted into the
driving function [Eq. (37)], the EBA loss spectrum is pre-
cisely that of the (recoilless) TA, for a linear coupling.

These results for the matrix elements are derived in de-
tail in Appendix C of Ref. 4 for quasiadiabatic scattering.
In that limit, m ~ ~, with E; and the interaction fixed.
Thus, hE ~0, as the scattering becomes increasingly adi-
abatic, and the EBA becomes valid. Furthermore,
k;d —+ ~, so the EBA becomes the TA. So our proof of
the EBA for quasielastic scattering, when combined with
previous results, is also a proof of the TA for quasiadia-
batic scattering from a linear coupling. Previously this
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had only been shown to be valid for weakly inelastic
scattering, and speculated to be valid more generally.

IV. ERROR ESTIMATE FOR THE EBA

Next we use our proof to make an estimate of the error
involved in employing the EBA. We point out that the
spectrum prescribed by the EBA may always be calculat-
ed for a given system. It simply will not be a good ap-
proximation to the true spectrum unless conditions close
to those of the above proof prevail. The essential as-
sumption of the proof, Eq. (33), is that we may neglect er-
rors due to the dependence of the matrix elements on the
particle state occurring within the calculation. These will
vanish in any limit which approaches elastic scattering.
However, we would like to be able to estimate the size of
these errors to get some insight into how close to elastic
one needs to be.

The earliest point in the proof where we use this as-
sumption is when we neglect G' ' in favor of G"'. We
therefore use the ratio of these two terms as an estimate
of the error, which we denote by 4. We write

Q =(P)[G' ] (P)/(y([G"']'(y),
where ~(t ) is some typical state of the system during the
collision process. We use squares to ensure that the
operators have diagonal matrix elements. In G' ', we in-
clude only those terms which either create or destroy two
phonons simultaneously, as the other parts yield relaxa-
tions which do not contribute to final loss distribution.
For a typical state of the system, we take the particle
wave vector to be k;, as we expect our estimate to be
meaningful only when the scattering is nearly elastic. We
characterize the boson state by n excitations, where n is
the mean number of excitations in the bath after the col-
lision. This should yield a crude estimate of the error in-
volved in using the EBA, and should be sufficient for
determining qualitative trends. We will say the EBA
"works" when 6 is smaller than some chosen small value,
say 10%. The Appendix contains the details of how this
estimate is made for the simple model introduced in the
next section.

To understand intuitively why 6 estimates the error in
the EBA, consider the prescription for calculating G' '

given in Eqs. (30)—(32). We can see that G' ' is an ampli-
tude for correlated two-phonon emission and annihilation
by the incoming particle. The EBA excludes the contri-
bution from such events. Thus the particle during the
collision has no "memory" of previous events, as it only
ever emits or annihilates one phonon at a time, and al-
ways as if from the initial state of the particle.

The remainder of this section consists of a brief quali-
tative discussion of how 6 becomes small in the regimes
where the EBA works. The most obvious regime in
which b is small is when the scattering is weakly inelas-
tic. Here, V«1, and, as G' ' is proportional to V,
while G"' is proportional to V, this means 5 is propor-
tional to V. As stated above, the EBA becomes the sim-
ple first-order distorted-wave Born approximation, and is
valid here.

However, another quite distinct regime also exists in

which 6 becomes small. The operator G' ' involves the
commutator of various V operators [Eq. (31)] which may
cancel one another, even when

~ V~ is not small. In par-
ticular, if V( K, e k, b,K, —co ) were independent of K and
e&, then G' ' (and therefore b, ) would vanish. Thus b,

will be small when V(K, ek', hK, —co) does not depend
strongly on (K, ez) in the vicinity of (K, ,E;). To be pre-
cise, if ek =E;+co and K=K;+6K, then
V(K, e'k,'b, K, —co) need only be approximately indepen-
dent of (ek, K) for those values of co and bK for which
V(K, ek, b,K, —co) is nonnegligible (relative to, say, its
peak value). To illustrate this, Fig. 2 contains plots of V
(for the simple model to be described in the next section)
as a function of energy transfer. The model is one dimen-
sional, so that parallel momentum plays no role. ~ is a di-
mensionless measure of the initial wave vector. The
specific values of the parameters used in the plots are
given in Sec. V. Each plot contains V for two values of ~,
differing by the same amount in each figure. The higher
peak is always associated with the larger value of ~. In
(a), a.= 1 for one line, and a =0.7 for the other. Thus, a
decrease of 0.3 in ~ leads to a substantial change in the
matrix elements. Furthermore, the peaks are relatively
broad, giving a large contribution to the integrals in Eq.
(30). In (b), the lines are drawn for ~=2. 3 and 2, and the
difference is much smaller. Finally, in (c), v=6. 3 and 6,
the difference is negligible, and the matrix elements are
much more sharply peaked about 0, leaving a much nar-
rower region in which they need be independent of ek.
Thus, for an initial ~ of 6.3, if the scattering only involves
changes in v of about 0.3, all matrix elements (of a given
energy transfer) involved in the collision are about the
same. Then the commutator in Eq. (31) is very small, and
the corrections to EBA negligible. This conclusion is
clearly not true for an initial v of 1, where the matrix ele-
ments depend strongly on the particular value of ~.

A final important point must be made here. The rela-
tive insensitivity of V to changes in k is not a sufficient
condition for the validity of the EBA, as it implies only
that the change in matrix elements is small for a single
excitation of the surface. However, in some regimes,
there may be a large number of bosons excited, leading to
a substantial net change in k and therefore a breakdown
in the EBA. Indeed, as is discussed in some detail in Sec.
V, this is exactly what happens as the semiclassical limit
is approached, so that the EBA is not generally valid in
this limit. All the above information is, of course, impli-
citly carried in the estimate of h.

We conclude this section with a brief discussion of how
6 might be expected to behave for realistic atom scatter-
ing from surfaces, simply to highlight some of the
differences from the results of the simple model discussed
below. For example, that model does not contain an at-
tractive well ~ In the presence of such a well, especially
one whose depth D is much larger than the energy of the
incident particle, considerable sticking could occur.
Then, the mean energy transfer would be comparable to
the initial energy. However, this energy transfer would
still be small relative to the effective incident energy as
given by the Beeby corrections, ' E, +D, so that the EBA
approximation in Eq. (33) would still be good. In such a



47 NEARLY ELASTIC SCATTERING AND THE TRAJECTORY. . . 12 859

case, the naive criterion of small fractional energy
transfer would be too restrictive, as argued by Brenig.
Similarly, the presence of resonances connected with
bound states of the well' ' and the presence of a contin-
uum of phonons" will modify statements of when the
EBA applies, but in all cases a calculation of 6 as given
in Eq. (40) will indicate how well the EBA is working in
any given situation. In fact, the e6'ect of such features
will form the basis of a future paper. For now, however,
we study the simple model to illustrate how 6 works.

0.1—

0.0

V. A SIMPLE MODEL

To illustrate the proof of the previous section, we study
the properties of a simple one-dimensional model. This
keeps the number of independent parameters manage-
able, ' while allowing an intuitive understanding of why
EBA works where it does. In this model, one sees the
EBA spanning a region of parameter space which in-
cludes both that of the TA and of the DWBA. The mod-
el allows for a transfer of energy from an incident particle
to a target, but little else. It contains no directions paral-
lel to the surface, so that we need no longer keep track of
parallel momentum. It tells us nothing about situations
with an attractive well, nor with a continuum of phonons.
It is not intended as a realistic model of atom-surface
scattering. The results of this section cannot be taken as
applying to all cases of atom-surface scattering. Such
complications will be dealt with in a future publication.

To simplify the expression of results, we change nota-
tion slightly. We now restore A explicitly, and we always
use k and E to denote initial values of the incident atom's
wave vector and energy, respectively.

In the spirit of JCK, we consider an incident particle
scattering from a single oscillator via a (linearized) repul-
sion. The Hamiltonian is

0 ~ 6

5.v/E, H= + —,'M cooZ + +V(z)+F(z)Z .
2M ' 2m

(41)

0,4—

(b)
Here, P, M, Z and coo denote the oscillator's momentum,
mass, position, and frequency, respectively; p, m, and z
are the same quantities for the incident atom; and
V(z —Z) is the repulsive interaction between them, with
F (z) = —d V/dz. The position and momenta are
quantum-mechanical operators. The matrix elements of
the interaction are then

0.8— V(el„'co) =Fk(co)uo, (42)

o.o

I I I

(~) D(co) =FI, ( —co)uo6(co —coo), (43)

where Fk(co)= ~(k'~F(z)~k ) ~, k'=+k +2m'/A', and
u o =A/2M~o is the zero-point mean-square displacement
of the oscillator. The states ~k ) are here normalized to
unit incident Aux. Note that V(e„;co) vanishes for all
co & —

e& /A. This yields a zero-temperature driving func-
tion [see Eq. (37)] of

1.0—

05—

oo i

—1 0
x~yE,

FIG. 2. Plots of V as a function of energy transfer for the
model described in Sec. V. Each plot displays two values of ~,
di8'ering by 0.3. The more strongly peaked function is always
the larger ~. In (a), ~=1,0.7; in (b), re=2. 3, 2; in (c), ~=6.3,6.

from which the EBA loss spectrum can be easily calculat-
ed, using Eq. (11),

[E/ficoo j

P( bE ) =e " g 5( bF. n ficoo), —
n=O n'

(44)

b,E=ghcoo, (b,F. ) =g(g+1)A' coo . (45)

Since g=hE/Acro, under these conditions, the Debye-
Waller exponent is equal to the mean number of excita-

where r)=Fk( —coo)uo. Spectra appearing in this paper
are simply bar charts, in which the heights of the bars
represent the weights of the 6 functions. This yields the
following moments for the loss spectrum, if either
%coo(&E or r](&1:
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tions of the oscillator. Note that, if g « 1, the distorted-
wave Born approximation is recovered by expanding in
powers of g, while for g )) 1 and Acro «E, the well-
known gaussian form for the loss spectrum occurs.

We next discuss the specific case of an exponential
repulsion, V(z) = Voe ', and F (z) evaluated on the
one-dimensional distorted eigenstates yields just the
Mott- Jackson form

Fk ( co ) =trik 2~co~+sinh [~( k —k ' )d ]—sinh [~( k +k ' )d ],
where z=d /U is a measure of the collision time, as U is the initial velocity of the incident atom. In general, this problem
can be characterized by three dimensionless parameters. As we are particularly interested in studying the behavior of
this model close to the classical limit, we choose two of these parameters to be independent of A, i.e., they characterize
the classical limit of this model. In particular, we use the same parameters as JCK. We define a = I /(coor), a measure
of how close to adiabatic the scattering is, i.e., a « 1 means that the time for the collision to take place is m~ch lunger
than the oscillator's period. We also define y =d,„/d, where d,„=p;/(Meso) and p; is the initial momentum of the
incident particle. As shown in JCK, for very small displacements of the oscillator during the collision, d „is an upper
limit on its displacement during the collision. Thus, y is a measure of how close one is to scattering from a rigid poten-
tial, so that when y « 1, the oscillator hardly moves from its equilibrium position during the collision. Finally, we

2choose ~=kd as a dimensionless measure of the wave vector. In terms of these parameters, rl= (ay /2)f (~,a ), where

f(v, a ) =Fk ( —co )c/k is the dimensionless driving force and is given by [see Eq. (46)]

f(v a)= sinh vrx 1 — 1—2~ . -2
a

1 /2

—sinh ~K 1 + 1—
K(X

1/2 ' 1/2

(47)

The spectra in Fig. 1 were calculated with g =0.22 and
E= 3. A5'co Din (a), and g = 10 and E = 100IIIcoo in (b). The

plots of V versus Ace /E, . in Fig. 2 were made with y =0. 1 .
To see how the TA can be recovered from EBA for this

model, we consider the limit K~~, keeping cx fixed.
Then the driving force f( Ir, a ) becomes

2'
a sinh( m /a )

(48)

This is just the result given by the recoilless TA for this
system, as the classical recoilless trajectory is

~o
z„(t)=d ln coshE 27

(49)

Then the Fourier transform of mz, I ( t ) is kfTA, where

fTA is given by Eq. (48).

It is straightforward to show that fTA is a good ap-
proximation to the exact EBA result whenever K ))1 and
~ ))1 /a. This is demonstrated in Fig. 3, a plot of f(x,a )

versus a for various values of K. For any given value of
a( ) 1 ), the error is 0( 1 /Isa ). Of course, just because TA
and EBA coincide for a given set of parameters does not
imply that they are valid. However, any limit in which
the driving function tends to its TA form and in which
the EBA is valid, is a limit in which the TA is valid. As
we will see below, such limits include special cases of
semiclassical scattering, but also include any quasiadia-
batic scattering.

Now we consider regimes of validity of the EBA. In
general, we expect the EBA to be valid near any limit in
which all the moments of the final distribution are tend-
ing to their elastic values. We consider two specific limits

o 4

2.0
0.3

1 .5
0.2

1 .0
0.1

0.5

0.0
8 10

FICx. 3. Plot of f(», a ) [given by Eq. (47) in the text] vs a for
K —1, 2, 4, oo, from right to left. The curve v= ~ is just fT~(a).

I I I I I I
'

I I I I I I I I I I I I

\

2 3 4

FIG. 4. Plots of 5 (estimated error in the EBA) vs K (reduced
wave vector) for fixed values of n and y . The upper curve is
a =5, y =0.3, and the lower is a =5, y =0.1. The EBA works
beneath the hatched hne, i.e., where 6( 10%.
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to illustrate this property, and compare our results to
previous studies.

A. The semiclassical regime

The classical limit is defined by letting A~O, keeping
all classical quantities fixed. In terms of our dimension-
less parameters, the classical limit is found by taking
K~ ~, keeping e and y fixed. We then define the semi-
classical regime as one in which x is large but finite, and
consider corrections to classical results as a power series
in 1/~. As noted in the Introduction, this implies that
wavelengths are short, i.e., X((d (v))1), allowing the
WKB approximation for the matrix elements given by
Eq. (48). It also implies that the mean number of pho-
nons excited, b,E/A'coo( =rl ), is much greater than one, so
that the scattering is dominated by multiphonon events,
and that the initial energy is much greater than the oscil-
lator energy spacing, i.e., E; &)%coo (i~)) 1/a). JCK
found that, in the semiclassical regime, the TA generally
failed, except when either a or y was much smaller than
1. They pointed out that these regimes corresponded ei-
ther to near adiabaticity or to small displacements of the
oscillator relative to the potential range during the col-
lision, respectively.

We find the same results for EBA. Figure 4 is a plot of
6, our estimated error for the EBA, as a function of ~,
keeping a and y fixed. The higher curve is e =5, y =0.3,
and its asymptotic (and therefore classical) value is above
10%. The lower curve is a=5, y=0. 1, and its classical
value is below 10%. Thus the EBA (and therefore the
TA) fails in the semiclassical regime for the first values of
the parameters, but works for the second. Figure 5 is a
plot of constant error (b, =0.1) for i~~ oo. The asymp-
totic values of the two curves plotted in Fig. 4 are
represented by squares. Only for sufficiently small values
of a or y does the EBA work. As the EBA becomes the
TA in this limit, this is to be expected, and our results are
consistent with those of JCK. However, JCK found that
the TA worked in these regimes only in their calculation

of the mean-square width of the loss distribution, defined
as o E = ( b E ) —b,E . They also studied the so-called
mean energy shift, defined as the leading [O(R)] correc-
tions to AE in the semiclassical limit. They found that as
AE/E~O, the shift vanished for both the exact calcula-
tion and the TA, but that their ratio did not approach
one. Applying their recipe for the shift [their Eq. (21)] to
the recoilless classical trajectory, we also find no shift.
Furthermore, if we look at the loss spectrum generated
by fTA, the mean energy loss is exactly the classical
value, and again the shift- is- ™ro-.But- if we consider-
corrections to fT~, expanding the exact f(ir, ficoo/E) by
about sc~ ~, we find a shift proportional to bE/E. This
indicates that it is beyond the range of validity of the
EBA to correctly calculate this shift. Thus, the numeri-
cal result of JCK, that the ratio of the exact shift to the
shift in the TA does not approach one as b.E/E ~0, does
not contradict our result that the TA is valid for semi-
classical quasielastic scattering.

The EBA is more general than the TA, insofar as it
also works beyond the semiclassical regime. In Fig. 6 we
show just how the classical limit is approached. The al-
most straight diagonal line in Fig. 6 is a plot of g as a
function of a, for constant a (=5) and b (=0.1). To keep
6 constant, y grows as ~ grows, finally leveling out at
0.23, consistent with the previous figure. To the right of
this curve, the EBA works, while to the left, it fails. The
lower curve is a similar plot for the distorted-wave Born
approximation, while the curve to the right of the figure
is the same for the TA. It asymptotically approaches the
EBA curve as ~~ ~. How these errors are calculated is
described in detail in the Appendix. Essentially, the error
in these approximations is a sum of the error made by the
EBA with the error made relative to the EBA. Note that

1.0

0.8—

0.4—

0.0

Q

0.0 0.2 0.4 0.6 0.8 i.0
7

FIG. 5. Plot of constant error, 6=0.1, for the EBA in the
semiclassical regime, ~—+ ~ (actually, ~= 31.83). The EBA (and
thus the TA) works to the left of and beneath this curve. The
squares represent the a~ ~ limit of the two curves plotted in
Fig. 4.

FIG. 6. Plots of constant error (6=0.1) for fixed cx (=5), for
various approximations, in the (g, K) plane. g is the Debye-
Waller exponent, i.e., exp( —q ) is the probability of elastic
scattering, and ~ is the reduced wave vector. Each approxima-
tion works to the right of (and below) its hatched constant error
line. The curve entirely in the region g (0.2 is for the
distorted-wave Born approximation, the curve with It. ) 2 is for
the trajectory approximation, and the third curve is for the
EBA. The TA curve approaches the EBA curve asymptotically
as ~~ ~. How these errors were calculated is described in the
Appendix.
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along the curves the external parameter y is made to vary
(in different ways on each curve) so as to keep the error
made in each approximation fixed along its curve. Con-
sider now the distorted-wave Born approximation curve.
For these conditions, there is a maximum value of q,
above which the DWBA fails. In fact, one cannot mean-
ingfully have q) 1 in the distorted-wave Born approxi-
mation, because that would imply a greater than unity
probability of exciting the oscillator into its first excited
state. The definition of- er-r-or w-e use for- the distor-ted=
wave Born approximation, which s given in the Appen-
dix, is designed to preclude this possibility, which is why
the distorted-wave Born approximation curve in this
figure never grows beyond g=0.2 as K~~. Thus, the
distorted-wave Born approximation is limited to weakly
inelastic scattering. In fact, as K—+ ~, the loss spectrum
becomes a Gaussian with negligible probability for the
oscillator to end in either the ground state or first excited
state, and so cannot be well approximated by the
distorted-wave Born approximation. The EBA can, of
course, treat situations where g)&1, as is the case here
for large K. Similarly, the TA only works for sufficiently
short wavelengths, i.e., there is a minimum K below
which it fails. On the other hand, the EBA includes all
the parameter space covered by the other two approxima-
tions, and more. There is a trade off between scattering
strength and wave vector. In this figure, the area en-
closed by the three curves is a region in which only the
EBA works. Thus, the EBA is valid for ranges of param-
eters in which neither of the other two approximations
apply-

Figure 7 is a plot of the fractional energy loss as a func-
tion of K, for +=5 and 6=0. 1, i.e., the same conditions
as the previous figure. It illustrates the quasielastic na-
ture of the EBA. Note that only for K larger than about 3
does the criterion for the validity of the EBA become just
that the fractional energy transfer is small. For small K,
clearly a more stringent requirement takes over. For
fixed a and y, as K—+0.4, the value which corresponds to
the incident particle having just enough to excite the os-
cillator to its first state, the strength of the scattering
tends to zero. So, the EBA becomes equivalent to the
DWBA here. On the other hand, the virtual excitations

contributing to G' ' are not cut off at this value of K, so
that 6 would become very large as its denominator van-
ishes. Thus, the line of constant 5 drops to zero at
K=0.4. This is simply saying that in this vicinity the
first-order (distorted-wave) Born approximation is no
good, as the second-order terms dominate. Finally, we
mention that the DWBA cannot yield an accurate picture
of the entire spectrum for the largest values of K shown
here for the reasons given in the discussion of Fig. 6.
However, as- noted- by Brenig-, the first moment- "-f- tha
distribution, i.e., the mean energy loss, is the same in the
DWBA and the EBA, and is therefore correctly given by
the DWBA in the parameter regime below the hatched
line of this figure.

B. The quasiadiabatic regime

This is the regime studied by Burke and Kohn, in
which m ~~, with E, d, M, and coo fixed. In the limit,
the scattering is completely adiabatic, and therefore total-
ly elastic. It is corrections to this limit which are called
quasiadiabatic. In dimensionless parameters, we again let
K~~, but now keeping Kn and y /K fixed. This is
equivalent to keeping %coo/E; and uo/0 fixed. As this
limit is approached, EE~O, so we expect the EBA to
work for any values of the fixed parameters for
suf5ciently large K. This is illustrated in Fig. 8, which
consists of plots of 6 versus K for several values of the
fixed parameters. In all cases, the curves tend to zero er-
ror exponentially as K—+~. Thus, the EBA is valid for
quasiadiabatic scattering in general.

We note here that this simple model displays a qualita-
tively different behavior to that of real surfaces, because
real surfaces contain acoustic modes with frequencies
ranging continuously down to zero. Summing over those
modes would change the exponential decay of Fig. 8 into
a power-law behavior. However, as long as the number
of phonons excited during the collision remains finite (as
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FIG. 7. Same as Fig. 6, except plotted in the (fractional ener-

gy loss, ~) plane, and only the EBA curve is plotted here.

FIG. 8. Plots of 6 (EBA error) vs ~ (reduced wave vector) as
the adiabatic limit is approached. Both the ratio of oscillator
spacing to incident energy and the ratio of zero-point displace-
ment to interaction range are held fixed, at values of 0.2 and 0.2
for the highest-peaked curve, 0.3 and 0.2 for the next-highest,
and finally at 0.2 and 0.1 for the lowest.
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was shown to be the case for realistic systems by Burke
and Kohn) the EBA will be valid in the quasiadiabatic re-
girne.

VI. CONCLUSIONS

We have rigorously shown that the EBA works for
particle scattering from a boson bath when the scattering
is nearly elastic in the sense defined in the Introduction,
in agreement with Brenig's claim. We have seen how it
reduces to the recoilless trajectory approximation when
the incident particle s wavelength is sufficiently short,
and to the distorted-wave Born approximation when the
scattering is sufficiently weak. We have investigated the
semiclassical regime, and found results consistent with
JCK. We have also studied the quasiadiabatic regime,
and verified the conjecture of Burke and Kohn. We
have developed an explicit formula for estimating the er-
ror involved in the EBA and have used it to show that
the EBA is valid in regimes not covered by either the TA
or the DWBA. We have used a simple one-dimensional
model to illustrate how our error estimate works. Be-
cause of the simplicity of this model, it cannot be taken
as representative of realistic systems, but our method of
estimating the error can and will be applied to the full
atom-surface scattering problem. However, many ques-
tions concerning the TA remain unanswered.

Perhaps the most important of these concerns the
correct treatment of problems in which no single state
dominates, i.e., in which there is no unique elastic state in
the decoupled problem. A solution to this problem
would greatly extend the usefulness of the EBA to such
areas as sticking, diAraction, etc. Another important is-
sue is the question of when the TA with recoil is a useful
approximation. JCK found, for their simple model, the
TA was valid only for small energy transfer. However,
the present proof suggests that all that is really required
for the validity of the full TA is that AT@ «E, where Ace is
the mean excitation energy per phonon, and E is the en-
ergy of the incident particle at any time during the col-
lision. More complex systems may allow this condition
to be satisfied, and employ the full TA, without reducing
to the EBA. Another problem is to generalize the discus-
sion to interactions which are not linear in the surface
atom displacements. In particular, it seems likely the TA
is valid for quasiadiabatic scattering in which the surface
atoms undergo large distortions, even if the interaction is
nonlinear about the equilibrium positions, by linearizing
the potential about the adiabatically varying equilibrium
positions. Nourtier' addresses many of these questions,
but only within the approximation of short wavelength of
the incident particle. The present study suggests these
questions might also be tractable for arbitrary wave-
lengths, especially using the formalism developed here.

To conclude, we note the EBA is valid for a large
variety of atom-surface scattering experiments, and may
be used to calculate multiphonon scattering with relative-
ly little further work than the distorted-wave Born ap-
proximation. It should provide a useful tool for under-
standing atom-surface scattering, and a more detailed
study of the error it makes under realistic scattering con-
ditions will follow this work.
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APPENDIX: ERROR ESTIMATES
FOR THE SIMPLE MODEL

The error estimate for the EBA given by Eq. (40) is
designed as a qualitative indicator of when the EBA
works. It is fairly crude, and as such, we make several
further approximations (for calculational convenience
only) in applying it to the simple model of Sec. V. In that
model, we may write, for G'" and G' ',

G"'= Aa+ A a, G' '=Baa+B a a (Al)

where A, given by Eq. (29) applied to this model, is just

V(E k' cQo)p( E k'coQ )
k

(A2)

while B comes from performing the time integrals in Eq.
(32), and inserting the result in Eq. (30), to yield

C(ek ) co~ 2coo co )B=—g p(ek 2 ~oc)o~
2 oo 277k COO CO

where

C(~k~~~2~0 ~) V(~k+ ~0 ~~~)V(ek~2~0

—V(ek + co; 2coo co) V(ek, co)—

(A3)

(A4)

is the analog of Eq. (31) for this model. Note that in Eq.
(A 1) we have already excluded the relaxation terms in
G' ', which are of the form a a in the oscillator opera-
tors. Then,

(P[G"'] ~P) =(2g+1)(k,
~
A 3 t~k, . ), (A5)

arid

(Pl[G"']'/@) =2(q+-,')'(k, /aa'/k, ) .

B«( k; I
& a 'I k, ) is just g, so that the error made by the

EBA is approximated as
1/2

q+-,'
~EBA (A7)g(x, hcoo/E, ),

where

g ( x, %coo/E, ) =P 1 V(E;;coo co)—
2 7TCO

X V( E; + coo co; coo +co )

(A8)

and P indicates a principal value integral. Note that the
upper limit in the integration is due to the vanishing of
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the first matrix element for energy losses greater than the
initial energy. This last expression for g ( tr, ficoo /E, )

comes from shifting the origin of the frequency integral
in Eq. (A3) by coo, and then using detailed balance on the
matrix elements (which are real, because the scattering
states are)

2 2
~tot + ~EBA+ arel (Alo)

To estimate the relative error, we simply use the error

V(E;co)= V(E+to; —co)

in the second half of the commutator in Eq. (A4).
To estimate the errors in the distorted-wave Born ap-

proximation and the TA, we assume the total error is the
root square sum of the error made by the EBA and the
error made relative to the EBA i.e.,

Q2
rel

~EBA 9approx

IEBA
(A 1 1)

Note that, for the DWBA, the Debye-Wailer exponent
may be deduced from Aux conservation to be

t)DWBA ln( 1 9 ) (A12)

as g, which is given after Eq. (45) is the text and
represents the total probability of inelastic scattering in
this approximation. These formulas were used to esti-
mate the errors in the figures.

made in the value of the Debye-Wailer exponent, as this
is a measure of the strength of the scattering, and com-
pletely characterizes the final distribution in this model in
the EBA. We write
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