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ABSTRACT: Recently, we used Helmholtz’s theorem to construct an unambiguous
exchange]correlation energy density for use in density functional theory. This energy
density requires only knowledge of the density dependence of the exchange]correlation
energy functional, E , for its calculation. We calculate this energy density for Hooke’sXC

Ž .atom in three different regimes: the high-density or weakly correlated limit; a moderate
density, comparable to that of the He atom; and a low density, in which the system is
strongly correlated. We compare the exact unambiguous energy density with approximate
energy densities found from approximate energy functionals. The exchange]correlation
energy can be deduced directly from the density in the highly correlated limit and a new
formula for the high-density limit of the correlation energy is given. Q 1998 John Wiley &
Sons, Inc. Int J Quant Chem 70: 583]589, 1998

Introduction

principal aim of quantum chemistry is theA calculation of ground-state electronic proper-
w xties in an accurate and reliable fashion 1 . Tradi-

tional approaches based on the wave function have
recently been complimented by those of density

w xfunctional theory 2 . Density functional calcula-
tions are typically much less expensive computa-
tionally and so become the method of choice for

w xlarger systems 3 . This advance has been made
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possible by the increase in accuracy of generalized
Ž . w x Žgradient approximations GGAs 4]9 and hy-

w x.brids of GGAs with exact exchange 10]14 over
Ž .the local density approximation LDA .

The only quantity which must be approximated
in a Kohn]Sham spin-density functional calcula-

w xtion 15 is the exchange]correlation energy as a
w xfunctional of the spin densities, E r , r , sinceXC a b

Ž . Ž .its functional derivative, v r s dE rdr r , isXC s XC s

the only unknown in the Kohn]Sham equations.
There are several popular approximations to E ,XC
including LDA, GGA, and hybrids. These approxi-
mations can be tested by calculation of the proper-
ties of the system, such as total energies, ionization
potentials, binding energies, bond lengths, vibra-
tional frequencies, and transition-state barriers and
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by comparing them either with more accurate cal-
w xculations or with experiment 16, 17 . However, all

these properties are determined entirely by E ,XC
evaluated on different densities, which is a quan-
tity integrated over the system. To better under-
stand how these approximate functionals work,
one would like to examine quantities other than
just E . If your energy in a given calculationXC
comes out poorly, where will you look to find out
why?

A simple choice might be to study the spin
densities themselves. However, many approximate

Ž .calculations Hartree]Fock, LDA, GGA, etc. yield
w xvery similar spin densities 18 , so it is not easy to

study an approximate density to determine the
error in the corresponding energy functional ap-
proximation. Furthermore, for stretched H , some2
approximate functionals can have quite incorrect
spin densities, while still yielding accurate total

w xenergies 19, 20 . Thus, the relation between the
self-consistent spin densities and the total energy
may be too subtle to easily learn about one from
the other.

Another feature which has been studied is the
exchange]correlation hole surrounding an electron

w xin the system 4, 6, 21]24 . One can consider the
LDA and GGA energy functionals as models for
the exact system-averaged exchange correlation
hole. Certain aspects of the exact hole are well

w xapproximated in LDA 25 , because the LDA en-
ergy functional replaces the hole by that of another
system: the uniform electron gas. Thus, various
sum-rules and nonpositivity conditions are shared

w xby the exact hole and its local approximation 26 .
This reasoning was extended by Perdew and

Žcoworkers to construct a sequence of GGAs PW86
w x w x w x.4, 5 , PW91 6 , and PBE 7 in which the gradient
expansion for the hole was corrected to include
these good features. However, only the system
and spherical average of these holes is accurately

w xreproduced 24, 26 and, even then, the complica-
tions of calculating these approximate holes mean

Žthat few systems have been tested. On the other
hand, the potential in LDA arises from an unspher-

w x .ical charge distribution 27 . Similar remarks are
w xtrue for the LYP correlation functional 9 , which is

based on the Colle]Salvetti approximations to the
w xpair correlation function 28, 29 .

Such comparisons as mentioned in the previous
paragraph suffer from the need for detailed knowl-
edge of the construction of a given approximation.
But an approximation might not carry with it a
derivation which suggests such a comparison. For

a practical calculation, all one really needs is an
approximate spin-density functional for E . ThisXC

Ž .naturally suggests study of v r itself. For theXC s

exact case, one needs only a highly accurate den-
sity, as several methods now exist for then solving

w xfor the Kohn]Sham potential and orbitals 30]34
and so deducing the exchange]correlation contri-
bution to the potential. Thus, comparison of ap-
proximate and exact potentials could be hoped to
yield insight into how approximate functionals
work.

w xUnfortunately 18, 35, 36 , potentials corre-
sponding to accurate functionals do not look much
like the exact potentials. Thus, the study of poten-
tials appears to provide little guidance for the
construction of approximate energy functionals.
There are several ways to rationalize how these
potentials can look so poor:

First, focusing on correlation alone ignores a
wealth of experience in functional approximations,
in which the exchange and correlation errors can-
cel. This can be understood simply in terms of the

w xspecific effects which occur for pure exchange 12 ,
which are not captured by LDA and GGA, but
which wash out when the Coulomb interaction
between electrons is included.

Next, as discussed above, system-averaging is
important in studying the behavior of density

w xfunctionals 37 . Many properties of approximate
functionals are incorrect in, for example, the

w xasymptotic limit far from a finite system 38 ,
but these have little effect on the total energy or
even on energy differences involving only valence
electrons.

Furthermore, approximate functionals which in-
corporate only the density and its gradient cannot
have any derivative discontinuities with respect to
particle number, which are known to occur in the

w xexact functional 39]42 . These discontinuities lead
to constants in the potential which are missed by
approximate functionals and so can make the cor-
responding potentials look poorer.

An alternative to studying the exchange]corre-
lation potential might be provided by the ex-
change]correlation energy density, that is, a func-
tion of r which, when integrated over all space,
yields the exchange]correlation energy. Unfortu-
nately, such a requirement does not uniquely spec-
ify which among an infinite number of choices, as
the addition of any function whose integral over
all space vanishes will produce another energy
density. In fact, several choices have been sug-
gested in the past. A popular one, especially for
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chemical purposes, is that of Baerends and Grit-
w xsenko 43 , who defined their energy density in

terms of the potential contribution to the ex-
change]correlation hole, plus the difference of the
kinetic energy density from the interacting and
noninteracting density matrices. While this energy
density can be extracted from an accurate wave-
function calculation, there is no reason why any of
the conventional approximate energy densities,
used to define the integrated energy, should look

w xmuch like this one. Indeed, the LYP functional 9
has been integrated by parts in order to remove

w xinconvenient Laplacian terms 44 . Similar argu-
ments apply to the definition in terms of the cou-
pling-constant integrated exchange]correlation

w xhole 26 .
wSimilarly, the work of Harbola and Sahni 45,

x w x46 and others 47 has led to an energy density in
terms of potential and kinetic exchange]correla-
tion fields. But the construction of, for example,
the potential fields, is based on the exchange]cor-

Ž .relation hole at full coupling strength , which is
modeled only in some GGAs. Comparisons of these
energy densities with exact ones can only be made
with those GGAs which provide a model for this

w xhole 46 .
The remainder of this article is devoted to the

construction of an unambiguous exchange]corre-
lation energy density, that is, one which is solely
determined by the density dependence of E .XC
The full details of the construction are given else-

w xwhere 49 , but a pedagogical derivation is given
Žhere. Results on the Hooke’s atom two electrons

.in an external oscillator potential are presented for
three cases: moderate correlation, strong correla-

Ž 2tion, and weak correlation. Atomic units e s " s
.m s 1 are used throughout.e

Construction of Unambiguous
Energy Density

In this section, we review the construction of
the unambiguous energy density. For simplicity,
we restrict ourselves to density functionals, but all
results are easily generalized to spin-density func-
tionals.

w xWe begin with the virial theorem 50 :

N

² < Ž . < : Ž .2T s C r ? = V r , . . . , r C , 1Ý i i 1 n
is1

where T is the kinetic energy; C, the ground-state
many-body wave function; N, the number of elec-
trons; and V, the potential energy. This may easily
be derived by uniformly scaling the coordinates of

w xthe wave function 51 . We apply this theorem to
both the physical system and the noninteracting
Kohn]Sham system. In the former case, V s V qee
V , where V is the electron]electron Coulombext ee
repulsion and V is the external potential. Thisext
yields

3 Ž . Ž . Ž .2T s yV q d r r r r ? =v r , 2Hee ext

since V is homogeneous of degree y1 in theee
coordinates. Similarly, for the noninteracting
Kohn]Sham system,

3 Ž . Ž .2T s d r r r r ? =v rHS s

3 Ž . Ž Ž . Ž .. Ž .s d r r r r ? = v r q v r y U, 3H ext XC

Ž .where v r is the Kohn]Sham potential and U iss
Ž .the Hartree energy. Subtraction of Eq. 3 from Eq.

Ž .2 yields

Ž . 3 Ž . Ž .2 T y T q V y U s y d r r r r ? =v r .HS ee XC

Ž .4

The second term on the left can be identified as the
potential contribution to E , so that the additionXC
of one factor of T s T y T , the kinetic contribu-C S
tion, yields E . Thus,XC

3 Ž . Ž . Ž .E q T s y d r r r r ? =v r . 5HXC C XC

This powerful result was proven for the exact
w xfunctional by Levy and Perdew 51 .

Ž .The integrand of Eq. 5 is an energy density
which is unambiguously determined by the den-
sity dependence of the exchange]correlation en-
ergy functional, via the potential, its derivative.
Unfortunately,

1. It is an energy density not for exchange]cor-
relation, but for exchange]correlation plus
kinetic]correlation.

2. Its value depends on the choice of origin. If
the origin is shifted, the energy density

Ž w x.changes see Fig. 8 of 52 .
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3. This energy density does not reduce to the
unifŽ Ž ..familiar e r r , the energy density of aXC

uniform gas, when vLDA is inserted on theXC
right.

The first of these shortcomings was easily
solved, using the adiabatic connection formula of

w xdensity functional theory 53 . A coupling-constant
l is introduced to multiply the electron]electron
repulsion and is varied while keeping the density
fixed. All quantities can then be considered func-

w xtions of l. In particular, Bass’ relation 54 relates
T to El, viaC C

dEl
Cl l Ž .T s E y l . 6C C dl

Ž .Using this on the generalization of Eq. 5 to arbi-
w xtrary l, we found 49 a virial for the exchange]

correlation energy itself:

3 Ž . Ž . Ž .E s y d r r r r ? =v r , 7˜HXC XC

where

` dl
lŽ . Ž . Ž .v r s v r 8˜ HXC XC3l1

is called the exchange]hypercorrelated potential,
as it includes contributions from l ) 1, at which
the system is more strongly correlated than at

w xl s 1. This potential can also be written as 55

dg1w x Ž . w x Ž . Ž .v r r s v r rrg , 9˜ HXC XC gg0

where

Ž . 3 Ž . Ž .r r s g r g r 10g

is a uniformly scaled density. Thus, the integrand
Ž .on the right of Eq. 7 forms an unambiguous

exchange]correlation energy density, as it is com-
pletely determined by the density dependence of
E itself, via its potential, evaluated on scaledXC
densities. In particular, it is very straightforward
to modify any approximate functional to calculate

Ž . Ž .v r instead of v r simply by scaling the den-˜XC XC
Ž .sity arguments, according to Eq. 9 .

To overcome the second two difficulties, we
w xgeneralized an argument of Levy and Perdew 51 ,

which they used to show that the virial theorem
was satisfied by LDA for a slowly varying electron
gas. This generalization amounts to making the

following exact identification:

Ž . Ž . Ž . Ž . Ž .3r r =v r s =e r q = = a r . 11˜XC XC XC

Ž . Ž .Insertion of Eq. 11 into Eq. 7 , followed by an
integration by parts, shows that the a term doesXC
not contribute to the energy, while the e term isXC
our unambiguous energy density. By use of the
Helmholtz theorem of vector calculus, we can write
an integral form for e :XC

3 1
X 3Ž . Ž . Ž . Ž .e r s d r r r =v r ? = . 12˜H XXC XC < <4p r y r

This is an exact energy density that depends solely
on the density dependence of the exchange]corre-
lation energy functional. Thus, unambiguous com-
parisons of exact and approximate results can be
made. Furthermore, if ELDA is used on the right,XC

unifŽ Ž ..e r r comes out on the left. Thus, all plots ofXC
unifŽ Ž ..e r r can be interpreted as approximate plotsXC

Ž .of the exact unambiguous e r .XC
Ž .The right-hand side of Eq. 12 contains the

exchange]hypercorrelated potential, that is, the
potential integrated over coupling constants

Ž .greater than 1, as defined in Eq. 8 . This is neces-
sary to produce the exchange]correlation energy
density on the left. Alternatively, if v s v ls1 isXC XC

Ž .inserted on the right, an energy density e r qXC
Ž .t r emerges on the left, as can be seen from Eq.C

Ž .5 . For any approximate functional, it is straight-
forward to calculate either quantity. However, for

Ž .the exact functional, we only have v r for a fewXC
model systems, where the exact density was eval-
uated by a highly accurate wave-function calcula-
tion and v calculated from it. Thus, for purposesXC
of comparison, it is more convenient to study
e q t . Ongoing studies of the adiabatic connec-XC C
tion should allow construction of v in the fu-˜XC
ture. We anticipate little difference in the qualita-
tive features of the comparison, as the hypercorre-
lated potential is a smooth distortion of the corre-

Ž w x.lated potential see Fig. 6 of 56 .

Results

To illustrate this energy density, we calculate it
for several values of the spring constant in Hooke’s
atom, which consists of two electrons in an exter-

w xnal oscillator potential 57, 58 . This model has
been used to study many density functional prop-

w xerties 36, 59, 60 .
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MODERATE CORRELATION

We begin with a moderately correlated exam-
< <ple, v s 1r2, in which E rE ; 7% and T r EC X C C

; 75%. In Figure 1, we plot the radial unambigu-
ous exchange]correlation plus kinetic]correlation
energy density, both exactly and within several
functional approximations. We see that, indeed,
the LDA curve underestimates the exact one al-
most everywhere, while the GGA curves reduce
the maximum error significantly. The best GGA

Žcurve in this case is BLYP but see real atoms in
w x.49 . Note that the decay of this energy density at

w xlarge distances is given in 49 and depends on the
ionization potential and is not captured by any
present-day approximate functionals.

STRONG CORRELATION

ŽNext, we consider the highly correlated or low-
. y4density limit. We choose v s 10 , at which value

the density is very close to semiclassical, that is, a
Gaussian centered on the classical electrostatic

w xequilibrium position 58 . At the maximum, r ;
10y8 or r ; 270. Values for the components of thes
energy are given in Table I, from which we see

< <that E rE ; 40% and T r E ; 4%. Thus, corre-C X C C
lation has become comparable to exchange and is
almost entirely static. In this extreme regime, we
do not expect too much from our approximate
functionals, and Figure 2 shows that the GGA
corrections to the LSD energy density do not show

FIGURE 1. Radial unambiguous exchange]correlation
plus kinetic]correlation energy density for v = 1 / 2

( )Hooke’s atom atomic units .

TABLE I
Energy components in milliHartrees for two extreme
values of v, evaluated on the exact densities.

Component Exact LSD PBE BLYP

y4v = 10

E y3.00 y2.90 y3.40 y3.54X
E y1.24 y2.29 y1.67 y0.55C
T 0.05 0.20 0.17 0.003C
E + T y1.19 y2.09 y1.50 y0.55C C

v = 100

E y7,923 y6,773 y7585 y7717X
E y49 y221 y77 y29C
T 48 164 72 33C
E + T y0.9 y 57 y 4 5C C

[ ]Values for v = 1 / 2 and 0.00189 are in 56 .

a pointwise improvement. In fact, in this regime,
the exact energy density appears more similar to
LSD than above.

An important question was raised by Morrison
w xand Parr 48 , which can be stated as follows:

Given the exact density of some N ) 1 electronic
problem, can you find the exact ground-state en-
ergy without solving an N ) 1 problem? Recently,
we pointed out that the answer is yes when N s 2

w xfor spin-unpolarized systems 56 , since the
asymptotic decay of the density determines the
ionization potential, so that one is left with a

FIGURE 2. Radial unambiguous exchange]correlation
plus kinetic]correlation energy density for v = 10y4

( )Hooke’s atom atomic units .
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one-electron problem to solve. Here, we point out
that it is also true in the extreme high-correlation
Ž .or low-density limit, since T ª 0, so that theC

virial of the exchange]correlation potential yields
the exchange]correlation energy.

WEAK CORRELATION

ŽFinally, we consider the weakly correlated or
.high-density limit, by studying v s 100. Now,

< <E rE ; 0.5%, while T r E ; 98%. In this limit,C X C C

it becomes appropriate to separate correlation from
exchange, since Gorling]Levy perturbation theory¨

w xapplies 61 . In Figure 3, we plot the radial unam-
biguous correlation plus kinetic correlation energy
densities and their functional approximations. We
now see a true limitation of LDA, in that its energy
density does not change sign, so that there is no
cancellation in the integral. The exact curve inte-
grates to zero in the v ª ` limit. The GGAs do
better, and this is reflected in their energies, al-
though the BLYP curve does not follow the shape
of the exact curve. Figure 3 also highlights an
undesirable feature of the new energy density. The
integrated quantity vanishes, so should not the
integrand vanish also? It would be preferable if the

Ženergy density never changed sign as, indeed, the
.uniform gas energy density does not , since then

the allocation of energy densities throughout the
system would be cumulative, and one could more

FIGURE 3. Radial unambiguous exchange-correlation
plus kinetic]correlation energy density for v = 100

( )Hooke’s atom atomic units .

easily define averages over the distribution. Since
the prescription described here does not uniquely
specify the choice of energy density, the question
of whether such a variation can be found remains
open.

The high-density limit also raises a slight co-
w x lnundrum: Using Levy scaling 62 , one finds v fC

l2 vŽ2., in the high-density limit, where vŽ2. is theC C
finite correlation potential when the density is

Ž2.Ž .scaled to the high-density limit, that is, v r sC
w xŽ .lim v r g r . Insertion of this l-dependenceg ª` C g

Ž .directly into Eq. 12 would cause the hypercorre-
lated potential to diverge everywhere. In reality,
this does not happen, because E ª yconstant,C
even in the low-density limit. This implies that

l Ž .v f O l as l ª `, and this change in behaviorC
Ž .always occurs for some l ; O r for any reals

system, making the integral converge. Thus, the
high-density limit cannot be taken before the cou-
pling-constant integration.

Ž .This raises an interesting point about Eq. 12 in
the high-density limit, since it yields the correla-
tion energy in terms of an integral which stretches

Ž .down to the low-density highly correlated limit.
For two-electron systems, one may show that the
virial theorem becomes

`
l1 dl d VeeŽ2. 3 Ž . Ž .E s y d r r r r ? = , 13H HC 2 Ž .2 dr rl1

where V l is the expectation value of the interelec-ee
tronic Coulomb repulsion evaluated on the wave
function at coupling-constant l, and E Ž2. sC

w xlim E r . One may, of course, apply theg ª` C g

Helmholtz construction to this expression also to
yield an origin-independent energy density as in

Ž .Eq. 12 .

Conclusions

To summarize, we have presented a new tool
for the exploration of density functionals. The un-
ambiguous energy density provides several inter-
esting advantages over earlier constructions, and
preliminary calculations of this energy density are

w xpromising 49 .

ACKNOWLEDGMENT

This work was supported by an award from the
Research Corp.

VOL. 70, NO. 4 / 5588



EXCHANGE]CORRELATION ENERGY DENSITY FOR HOOKE’S ATOM

References

1. P. Fulde, Electron Correlations in Molecules and Solids
Ž .Springer-Verlag, Berlin, 1991 .

2. J. M. Seminario and P. Politzer, Eds., Modern Density Func-
Žtional Theory: A Tool for Chemistry, Elsevier, Amsterdam,

.1995 .
3. P. Carloni, W. Andreoni, and M. Parrinello, Phys. Rev. Lett.

Ž .79, 761 1997 .
Ž .4. J. P. Perdew, Phys. Rev. B 33, 8822 1986 ; Ibid 34, 7406

Ž .1986 .
Ž .5. J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 1986 ; Ibid

Ž .40, 3399 1989 .
6. J. P. Perdew, in Electronic Structure of Solids ’91, P. Ziesche

Ž .and H. Eschrig, Eds. Akademie Verlag, Berlin, 1991 , p. 11.
7. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.

Ž . Ž .77, 3865 1996 ; Ibid. 78, 1396 1997 .
Ž .8. A. D. Becke, Phys. Rev. A 38, 3098 1988 .

Ž .9. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 1988 .
Ž .10. A. D. Becke, J. Chem. Phys. 98, 5648 1993 .

Ž .11. A. Becke, J. Chem. Phys. 104, 1040 1996 .
12. K. Burke, M. Ernzerhof, and J. P. Perdew, Chem. Phys. Lett.

Ž .265, 115 1997 .
13. J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys.

Ž .105, 9982 1996 .
Ž .14. M. Ernzerhof, Chem. Phys. Lett. 263, 499 1996 .

Ž .15. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 1965 .
16. A. Zupan, K. Burke, M. Ernzerhof, and J. P. Perdew, J.

Ž .Chem. Phys. 106, 10184 1997 .
17. J. P. Perdew, M. Ernzerhof, A. Zupan, and K. Burke, J.

Ž .Chem. Phys. 108, 1522 1998 .
18. C. Filippi, C. Umrigar, and X. Gonze, Phys. Rev. A 54, 4810

Ž .1996 .
19. J. P. Perdew, A. Savin, and K. Burke, Phys. Rev. A 51, 4531

Ž .1995
20. J. P. Perdew, M. Ernzerhof, K. Burke, and A. Savin, Int. J.

Ž .Quantum Chem. 61, 197 1997 .
21. J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533

Ž . Ž .1996 ; Ibid, 57, 14999 1998 .
22. K. Burke, J. P. Perdew, and Y. Wang, in Electronic Density

Functional Theory: Recent Progress and New Directions, J. F.
ŽDobson, G. Vignale, and M. P. Das, Eds. Plenum, New

.York, 1997 , p. 81.
23. K. Burke, in Electronic Density Functional Theory: Recent

Progress and New Directions, J. F. Dobson, G. Vignale, and
Ž .M. P. Das, Eds. Plenum, New York, 1997 , p. 19.

24. M. Ernzerhof and J. P. Perdew, J. Chem. Phys., submitted.
25. O. Gunnarsson, M. Jonson, and B. I. Lundqvist, Phys. Rev.

Ž .B 20, 3136 1979 .
26. M. Ernzerhof, J. P. Perdew, and K. Burke, in Density Func-

Žtional Theory, R. Nalewajski, Ed. Springer-Verlag, Berlin,
.1996 .

Ž .27. M. Slamet and V. Sahni, Phys. Rev. A, 51, 2815 1995 .
Ž .28. R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 1975 .

29. T. Grabo, T. Kreibich, S. Kurth, and E. K. U. Gross, in
Strong Coulomb Correlations in Electronic Structure: Beyond

Žthe Local Density Approximation, V. I. Anisimov, Ed. Gordon
.and Breach, Tokyo, 1998 .

Ž .30. Q. Zhao and R. G. Parr, Phys. Rev. A 46, 2337 1992 .
Ž .31. A. Gorling, Phys. Rev. A 46, 3753 1992 .¨

Ž .32. Y. Wang and R. G. Parr, Phys. Rev. A 47, R1591 1993 .
33. C. J. Umrigar and X. Gonze, in Proceedings of the Mardi Gras

Ž1993 Conference, D. A. Browne et al., Ed. World Scientific,
.Singapore, 1993 .

34. R. van Leenwen and E. J. Baerends, Phys. Rev. A 49, 2421
Ž .1994 .

Ž .35. C. J. Umrigar and X. Gonze, Phys. Rev. A 50, 3827 1994 .
36. C. Filippi, C. J. Umrigar, and M. Taut, J. Chem. Phys. 100,

Ž .1290 1994 .
37. K. Burke, J. P. Perdew, and M. Ernzerhof, J. Chem. Phys.,

accepted.
38. M. Ernzerhof, K. Burke, and J. P. Perdew, J. Chem. Phys.

Ž .105, 2798 1996 .
39. J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Jr., Phys.

Ž .Rev. Lett. 49, 1691 1982 .
40. J. P. Perdew, in Density Functional Methods in Physics, R. M.

ŽDreizler and J. da Providencia, Eds. Plenum, New York,
.1985 , p. 265.

Ž .41. L. Kleinman, Phys. Rev. B 56, 12042 1997 ; Ibid. 56, 16029
Ž .1997 .

Ž .42. J. P. Perdew and M. Levy, Phys. Rev. B 56, 16021 1997 .
43. E. J. Baerends and O. V. Gritsenko, J. Phys. Chem. A 101,

Ž .5383 1997 .
44. B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys.

Ž .Lett. 157, 200 1989 .
Ž .45. M. K. Harbola and V. Sahni, Phys. Rev. Lett. 62, 489 1989 .

Ž .46. V. Sahni, Phys. Rev. A. 55, 1846 1997 .
Ž .47. A. Holas and N. H. March, Phys. Rev. A 51, 2040 1995 .

48. R. C. Morrison and R. G. Parr, Phys. Rev. A 53, R2918
Ž .1996 .

49. K. Burke, F. G. Cruz, and K. C. Lam, J. Chem. Phys.,
accepted.

50. J. P. Perdew and S. Kurth, in Procedings of the Merensee
ŽSummer School, S.A., Jan. 1997, D. Joubert, Ed. Springer,

.Berlin, 1998 .
Ž .51. M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 1985 .

52. F. G. Cruz, K.C. Lam, and K. Burke, J. Phys. Chem. A,
accepted.

53. D. C. Langreth and J. P. Perdew, Solid State Commun. 17,
Ž .1425 1975 .

Ž .54. R. Bass, Phys. Rev. B 32, 2670 1985 .
55. R. van Leeuwen and E. J. Baerends, Phys. Rev. A 51, 170

Ž .1995 .
56. K. C. Lam, F. G. Cruz, and K. Burke, Int. J. Quantum

Ž .Chem., 69, 533 1998 .
Ž .57. N. R. Kesiner and O. Sinanoglu, Phys. Rev. 128, 2687 1962 .

Ž .58. M. Taut, J. Phys. A 27, 1045 1994 .
59. S. Kais, D. R. Herschbach, N. C. Handy, C. W. Murray, and

Ž .G. J. Laming, J. Chem. Phys. 99, 417 1993 .
60. K. Burke, J. P. Perdew, and D. C. Langreth, Phys. Rev. Lett.

Ž .73, 1283 1994 .
61. S. Ivanov, K. Burke, and M. Levy, Phys. Rev. A, in prepara-

tion.
62. M. Levy, in Recent Developments and Applications of Modern

ŽDensity Functional Theory, J. Seminario, Ed. Elsevier, Ams-
.terdam, 1996 .

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 589


	Introduction
	Construction of Unambiguous Energy Density
	Results
	FIGURE 1.
	TABLE I
	FIGURE 2.
	FIGURE 3.

	Conclusions
	References

