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Density Functional Theory of the Electrical Conductivity of Molecular Devices
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Time-dependent density functional theory is extended to include dissipative systems evolving under a
master equation, providing a Hamiltonian treatment for molecular electronics. For weak electric fields, the
isothermal conductivity is shown to match the adiabatic conductivity, thereby recovering the Landauer

result.
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Much recent interest has focused on using single mole-
cules as transistors for a new breed of computers [1]. The
complex nature of these devices, especially the leads,
suggests that their properties can be sensitive to chemical
details. Thus we wish to model the transport characteristics
of such devices with first-principles electronic structure
methods, such as density functional theory (DFT).
However, the traditional theorems of DFT do not apply
to extended systems carrying current in finite homogene-
ous electric fields.

Valid applications of DFT are derived from exact prin-
ciples of quantum mechanics. These involve proofs of a
one-to-one correspondence between densities and poten-
tials, i.e., that a given one-electron density can only be
produced by at most a single one-body potential, under a
given set of restrictions. Ground-state DFT was established
by Hohenberg and Kohn [2] by proving that, for interacting
electrons, a given ground-state density can be produced by
at most one ground-state one-body potential. The one-body
potential, and hence all other properties, is a functional of
the ground-state density. Similarly, Runge and Gross (RG)
showed [3] that, for interacting electrons in a given initial
state, a given evolution of the one-body density can be
produced by at most one time-dependent one-body poten-
tial, thus establishing the validity of time-dependent den-
sity functional theory (TDDFT). TDDFT has become very
popular as a method for calculating electronic transition
frequencies [4] and for atoms and molecules in intense
laser fields [5].

On the other hand, transport problems are usually
handled within the Landauer formalism [6]. The molecule
and contacts are placed between two infinite reservoirs at
chemical potentials that differ by the voltage drop across
the molecule. A standard integral over the Green’s function
and coupling to the reservoirs then yields the current, and
thus the conductance. This can be made exact by using
nonequilibrium Keldysh Green’s functions [7]. In a mod-
ern DFT calculation [8,9], a self-consistent Kohn-Sham
(KS) calculation is performed and the scattering states
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are inserted into the (two-terminal) Landauer formula to
calculate the conductance. At finite fields, the KS Green’s
function is significantly distorted from its zero-field value.
As is well recognized [9], use of the ground-state KS
Green’s function in place of the exact nonequilibrium
Green’s function is an unjustified approximation. For ex-
ample, the poles of this Green’s function, representing
resonances of the molecule, are at the KS orbital energy
differences, not the true excitations of the system.

Acknowledging such limitations, there have been sev-
eral recent attempts to go beyond this picture [10-12], but
always in terms of the electrons alone. In this Letter, we
prove a new density functional theorem that encompasses
transport at finite electric fields by including dissipation to
phonons via a master equation. We derive the associated
KS master equation. The new exchange-correlation (XC)
potential reduces to that of TDDFT in the limit of zero
dissipation. The new formalism is naturally suited to peri-
odic boundary condition codes, and we show how all the
ingredients for a realistic calculation can be constructed.
Finally, we show how the Kubo response is recovered in
the limit of weak bias.

We consider only symmetric leads. To avoid the use of
reservoirs, put the entire system on a long thin ring and
thread through the center a solenoidal magnetic field. This
produces a spatially uniform electric field throughout the
entire system, and is equivalent to a change of gauge [13].
The system is finite, and nowhere are there two different
chemical potentials. However, an important difficulty
arises when the field is finite. For a purely electronic
system, the electrons will accelerate indefinitely and the
current will grow infinitely. In nature, there is dissipation
due to scattering with phonons that brings the system to
equilibrium. This phenomenon is described by the quan-
tum Liouville equation for the density matrix of the entire
system of electrons and phonons, S;:

dStot/dt = _i[Htotr Stot(t)]' (1)

(We use atomic units, so e> = m = /i = 1). In the case of
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bulk transport, Kohn and Luttinger [14] showed how, for
scattering from dilute impurities in weak fields, Eq. (1)
recovers the Boltzmann equation, identifying the diagonal
elements of the electronic density matrix with the distri-
bution function.

In the quantum mechanics of dissipative systems, there
is a well-established procedure for incorporating the ef-
fects of inelastic scattering with a reservoir into the long-
time evolution of a system. In our case, the total
Hamiltonian consists of the system Hamiltonian H (the
electrons) and a reservoir Hamiltonian R (the phonons),
coupled by K. The system Hamiltonian contains N inter-
acting electrons. The coupling is linear in the phonon
coordinates, and involves only one-body forces on the
system. Before an initial time (¢ = 0), both electrons and
phonons are in thermal equilibrium at temperature 7. The
exact system density matrix S(= tr S, where tr denotes a
trace over the reservoir alone) satisfies

dS(t)/dt = —i[H(t), S(t)] — itr [K, Sioe () ]. 2)

To derive a master equation for S, we coarse grain over a
time scale At that is long compared to electronic transi-
tions and phonon correlations, but short compared to the
relaxation time [15], i.e., the time scale on which the
electrons are losing energy to the reservoir. This yields a
master equation for S, the coarse-grained S,

dS/dt = —i[H, §(1)] + C[S(1)], 3)

where C is a superoperator, found by applying Fermi’s
golden rule to the scattering process, and determined by the
coupling K and the reservoir spectral density. It is usually
written in a basis of eigenstates of the time-independent
(many-body) Hamiltonian, H|A) = E4|A):

C[S]1= —ZFA—»B(LABLBAS + SLagLga — 2LpaSLyp),
AP

4

where the operators L, represent a transition from state A
to state B, with transition probability:

T _ { D(wap)lyapl*([iwyp) + 1)
A8 D(wpa)lyapl*i(wps)

E > Ep

in terms of the electron-phonon coupling elements vy 43,
where D(w) is the density of states of phonons with
frequency @ (w,3 = E, — Ep), and ii(w) = 1/(e®/* —
1) is the thermal occupation factor. Detailed balance re-
quires:

exp(—E,/kgT)l y_p = exp(—Eg/kgT)5_4,  (6)

so that the steady-state solution of Eq. (3) yields the
thermal equilibrium density matrix of H. No matter what
the initial density matrix, the steady-state solution is al-
ways the same. Thus the master equation couples statistical
mechanics to quantum mechanics and, by including only
secular contributions, builds in irreversibility.

In the prototype of the radiative lifetime of a two-level
atom coupled to the electrodynamic continuum [15], the
range of frequencies of photons includes the transition
frequency. Although electronic transitions are much higher
than phonons, the metal of the leads means there is no gap
in our band structure, producing transitions all the way
down to zero frequency. Thus the reservoir can slowly
drain energy from the system. As long as the coupling to
the reservoir is weak, the rate at which the system relaxes
back to equilibrium (the relaxation time) will be much
longer than all other scales, and the master equation ap-
plies. While there is much discussion about the validity of
the master equation [15] and what physics it contains, we
take Eq. (3) as given and show how to map the system to an
effective single-particle system.

Our goal is describe a many-electron system, evolving
under a master equation, by a collection of noninteracting
electrons. In the usual derivation of a master equation, the
system Hamiltonian is time independent and any time
dependence is generated by, e.g., starting in a nonequilib-
rium density matrix. For our purposes, we allow the one-
body potential of H to be time dependent. This breaks the
connection between C and H, since the final H might have
an external electric field turned on, but the initial H might
not. We now show that, for fixed electron-electron inter-
action and superoperator C, and for a given initial density
matrix Sy, no two one-body potentials can give rise to the
same time-dependent density n(rz). We assume that the
potentials are Taylor-series expandable around ¢ = 0, and
that some coefficient in the expansion is not uniform in
space. The equation of motion is:

di) _ o[4S
i _TT[J(I')E}

= —iTe[jO)[H, ST+ Te[JCES)L (D

where j(r) = 3> ,6(r — r;)p; + p;6(r — ;) is the current-
density operator. Since cyclic permutation does not alter
the trace, the first term on the right is iTr ((H, j(r)]S), the
usual contribution from evolution under a Hamiltonian.
Evaluating everything at + = 0, and considering two sys-
tems with possibly different potentials but the same initial
density matrix and coupling, we find

BUD |y = —nga Vo =0, ®
just as in RG. Thus two potentials that differ at t = 0 give
rise to two different currents.

For two systems whose initial Hamiltonians are the
same, and two operators that are identical initially but
whose time evolution differs,

dA(A)
dt

within the master equation, because both the commutator
and C are identical in both systems at 7 = 0. Applying this

AA
d } ©)

o = Te| G 1050)
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result to the equation of motion for the kth derivative of the
currents,

951 Aj(re) = —no(r) VoAU (r), (10)

where 9§ = (9%/3t*)|,—. Thus, any difference in any de-
rivative of the potentials (other than a constant) produces
two different currents. This establishes a one-to-one cor-
respondence between densities and currents.

We could stop here, as it is TD current DFT that is more
natural for the optical response of extended systems [16]
and for transport calculations [17]. But, for generality, we
also wish to establish a density functional theory. The
equation of motion for n(rz) is

d<f:l(tf)> l—o = —Tr(Vj®)3(0)) + Tr (n(x)CISO)]) (11)

and the last term is the same in both systems. The usual
arguments about the vanishing of the potentials sufficiently
rapidly at large distances then suffice for finite systems
[18], or single-valuedness for periodic systems [16].
Breakdown of continuity in the master equation occurs
because, in Eq. (11), the superoperator provides a correc-
tion to the usual statement under Hamiltonian evolution;
i.e., some momentum is transferred to the reservoir. But
use of Eq. (11) restores continuity, and the correction can
even be written in terms of a current [19].

We have established that the potential is a functional of
the time-dependent current density for a given interaction,
statistics, initial density matrix, and coupling. In principle,
we can apply the same argument with the interaction set to
zero to produce a set of time-dependent KS equations
whose one-body potential, vg[n, S5(0), C](rz), is defined
to yield the exact n(rf) when evolved under the master
equation. By subtracting the external potential and Hartree
contribution, we find an XC potential that has the same
dependencies as the KS potential, but also depends on the
initial density matrix of the interacting system. Fortunately,
we can subsume all dependence on the initial density
matrices into the functional itself by beginning in an
equilibrium distribution for both the interacting and non-
interacting systems. In that case, the Mermin functional,
which is just a functional of the initial density, determines
the initial density matrix [20].

Constructed this way, the KS system has certain pathol-
ogies. The superoperator in the many-body master equa-
tion is guaranteed to vanish only on the many-body
equilibrium density matrix, not its KS doppelganger. To
compensate for this, the corresponding KS potential might
need to evolve forever, even after the KS system has settled
into a steady state [21]. Nevertheless, we can construct a
practical KS scheme by constructing a KS superoperator,
Cs. To do so, we define vg(T)(r) as the KS potential in the
Mermin functional at temperature 7, i.e., the potential that,
when thermally occupied with noninteracting electrons,
reproduces the exact one-electron density at thermal equi-

librium. We apply perturbation theory for a weak interac-
tion between noninteracting electrons in this potential and
the phonons in the reservoir, yielding the analogs to
Egs. (5) above:

r. . = { D(w;)ly;l*(iw;) +1) € >¢€;
=/ D(w)lyil*i(w;;) € <€

where €; are the eigenvalues of —V?/2 + vg(T)(r). The
matrix elements y;; are now evaluated for the interaction
between the KS system and the bath. To find the KS master
equation itself, we reduce the many-body Eq. (3) to a
single-particle form by tracing out all other degrees of
freedom, and using a Hartree-style approximation for the
two-particle correlation functions appearing in C[S]. In the
basis of the single-particle KS orbitals, we find [22]:

dsum/dt = =i (RupSpm = Spphpm)
p

(12)

+ (anm - Snm)Z(rp—m + Fp—»m)spp
p
- san(rn—m + rm—vp)(l - Spp)' (13)
p

In this KS master equation, the steady-state equilibrium
has a static potential. The approach rate, determined by I',
might not match that of the true system, but such effects are
absorbed in the XC potential. The important point is that, if
such a KS system exists, it is unique for the given coupling
by the theorem proven above.

Next we discuss the XC functional, which depends on
the coupling to the reservoir. One could imagine perform-
ing accurate wave function calculations for a uniform gas
on a ring, with the given coupling, to produce a local
density approximation for the master equation. But we
argue that the usual TDDFT approximations, such as the
adiabatic local density approximation, are likely to suffice,
because the KS master equation includes dissipation and
drives the system to the thermodynamic steady state. The
effect of dissipation on XC should be small, and might
even vanish in the limit of weak coupling to the reservoir.
The important XC effects are to correct the electronic
transition frequencies into the true transitions, and this is
captured exactly by such an approximation.

The dissipative matrix elements of the KS master equa-
tion, defined in Egs. (12), depend only on phonon frequen-
cies w, densities of state D(w), and coupling matrix
elements vy,,,. All these quantities can be extracted from
first-principles density functional linear response calcula-
tions [23]. This allows for a fully consistent DFT imple-
mentation of the dissipative dynamics by making minor
modifications to existing plane-wave codes.

Next, we discuss the limit of weak bias. For a given
master equation, assume the density matrix has evolved
into its steady state, S, so that

[Ho, So] = —iC(S’O) =0. (14)
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If C has been constructed to thermalize the eigenstates of
H,, both sides of this equation vanish. Now imagine per-
turbing the system with a weak time-dependent potential
AV, which becomes constant after a finite time. Allow the
system to relax back to its new steady state, with density
matrix S, + AS. Equating equal powers in the perturba-
tion:

[H(), AS] + l?’][gg] N AS = _[AV, gg], (15)

where 7 is the first derivative of Cg. Expanding all quan-
tities in eigenstates of H and solving, we find
_ JaAVap — [3AVps

AS.p = s 16
B T By inag (10

where Sy = 3 |A)f4(Al; i.e., f4 is the Fermi occupation
factor of |A). Calculating the density change by tracing the
density operator with AS, we find it related to the pertur-
bation by the usual Kubo density-density response function
[24]. The same derivation applies to the KS master equa-
tion, yielding the noninteracting KS response function, and
the usual Dyson-like equation at the heart of TDDFT linear
response follows.

To understand what this means, consider a KS master
equation with weak dissipation (7;; < w;;) on an infinite
ring. Turn on a small but finite electric field, and evolve the
system into a steady state. The ratio of the current to the
voltage drop across the system is the isothermal conduc-
tivity [14], found from the steady-state solution for the
electrons coupled to the phonons. The derivation above
shows that, in the zero-field limit, this reduces to the
adiabatic conductivity as given by the usual Kubo response
formula. This agrees with the Landauer formula for non-
interacting electrons [25], and the KS version of this is
under study [17].

Although we introduce dissipation in our formalism and
are currently performing realistic calculations with finite
couplings [26], we can imagine running the calculation for
even smaller (but always finite) I" (after taking limits of
infinite ring size, zero temperature, etc.) for finite bias. The
steady-state solution(s) of our KS master equation should
become independent of the strength of the dissipation,
yielding predictions for the conductance that do not depend
on any details of the reservoir (just that it exists). This is
analogous to the weak bias limit treated above. An inter-
esting question is how this compares with the present
standard nonequilibrium Green’s function calculations
based on the Landauer formalism, or other formulations
of the problem [11,12].
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