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Abstract 

Sums of the N lowest energy levels for quantum particles bound by potentials 
are calculated, emphasising the semiclassical regime N>>1. Euler-Maclaurin 
summation, together with a regularisation, gives a formula for these energy 
sums, involving only the levels N+1, N+2…For the harmonic oscillator and the 
particle in box, the formula is exact. For wells where the levels are known 
approximately (e.g. as a WKB series), with the higher levels being more 
accurate, the formula improves accuracy by avoiding the lower levels. For a 
linear potential, the formula gives the first Airy zero with an error of order 10-7. 
For the Pöschl-Teller potential, regularisation is not immediately applicable but 
the energy sum can be calculated exactly; its semiclassical approximation 
depends on how N and the well depth are linked.  In more dimensions, the 
Euler-Maclaurin technique is applied to give an analytical formula for the 
energy sum for a free particle on a torus, using levels determined by the 
smoothed spectral staircase plus some oscillatory corrections from short 
periodic orbits.  
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1. Introduction 

This is a study of sums of the first N energies E1, E2... of quantum systems with 

discrete spectra, that is 

,                (1.1) 

concentrating on the asymptotics for large N. This work was motivated by 

applications in density-functional theory [1, 2]. A sufficiently accurate and 

robust approximation to the sum of the lowest N levels of a potential could 

avoid the need to solve the Kohn-Sham equations, thereby increasing the  

number of electrons that can be treated.  An independent interest is the 

combination of techniques we employ.   

The sum S(N) is a function of the discrete index N. We will need to 

represent it for continuous N. One way is simply to interpolate linearly between 

the integers, i.e.  

.          (1.2) 

This function is continuous but not smooth: its slope is discontinuous at integers 

N. Our aim here is to find formulas for S(N) that are smooth, while still 

coinciding with, or being close to, the exact or approximate S(N) at integers. 

Figure 1 displays the difference between the integer, linearly interpolated, and 

smooth functions S(N). 

S N( ) = En
1

N

∑

S N( ) = Θ N +1− n( )
1

∞

∑ N +1− n( ) En − En−1( ) E0 = 0( )
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Figure 1. Discrete sum (dots), linearly interpolated sum (red online), and smooth energy sum 
(dashed curve) for a particle in a box (see section 4) 

Our technique, which works when all states are bound, is explained in 

section 2. A regularisation procedure enables the sum of the first N  energies to 

be replaced by the sum of levels N+1, N+2.... In the usual cases, where the 

levels are known only approximately, with the levels below N being less 

accurate than those above, this has the advantage of avoiding contamination of 

the sum by the lower energies.  

Sections 3, 4 and 5 describe preliminary examples: simple cases where 

the levels are known and S(N) can be evaluated analytically. We include the 

harmonic oscillator (section 3), and the particle in a one-dimensional box 

(section 4), simply to illustrate the general technique. For the Pöschl-Teller 

potential (section 5), whose depth is finite and which binds a finite number of 

levels, the technique is not obviously applicable; the reason for including this 

additional exactly solvable case is because the potential contains a parameter 

(its depth), whose asymptotics interact interestingly with N.  

The heart of the paper is section 6, where S(N) is calculated for the odd 

energies of the linear potential |x|; these are the zeros of the Airy function [3, 4]. 

This is an explicit example where the approximate evaluation of S(N) yields 

extraordinary accuracy when the individual levels are given, by WKB theory, in 

the form of a divergent series.  
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In more than one dimension, the energies fluctuate pseudo-randomly 

about those of a smoothed spectrum. This is the case whether the classical 

motion is integrable (level fluctuations Poissonian [5]) or chaotic (levels 

distributed according to random-matrix theory [6-8]). Then S(N) can still be 

evaluated using the method of section 2, with the energies being those of the 

fully or partially smoothed spectrum. In section 7 we illustrate this for particles 

on a 2-torus.  

In a complementary study [9], the statistics of the energy sum (1.1) has 

been calculated using random-matrix theory; we thank a referee for bringing 

this paper to our attention. 

Although some of our approximations are semiclassical, we will save 

writing by setting Planck’s constant . In the examples we treat,  can be 

eliminated by scaling; when this is not immediately obvious, it will be 

explained. 

2. General method 

The lower levels in S(N) can be eliminated by writing the sum in (1.1) formally 

as the difference of two infinite divergent sums: 

  .               (2.1) 

Both sums must be regularised by analytic continuation. For , which 

contributes a constant to S(N), we accomplish this via the partition function [10] 

(also called the propagator for the heat equation, i.e. heat kernel); for a 

Hamiltonian H, this is 

 

! = 1 !

S N( ) = S ∞( )− En
N+1

∞

∑

S ∞( )
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 .            (2.2) 

Usually this diverges as ,  but its Laurent expansion may include a term 

proportional to t; hence the regularisation   

 .             (2.3) 

(Equivalently,  is the spectral zeta function  [10], evaluated 

at s=-1.) 

 For the infinite sum over N+1≤n<¥, we use the Euler-Maclaurin formula 

[3]. In this, the discrete energies En are represented by any interpolation for 

continuous n , and the discrete sum is expressed as an integral over continuous 

n, corrected by derivatives at the summation limit. Thus our theoretical 

expression for the energy sum is 

 .          (2.4) 

B2k are the Bernoulli numbers [3], expressed in terms of the Riemann zeta 

function z(s) for even integers: 

           (2.5) 

The formally divergent integral over n must also be interpreted by the same 

regularisation. This is accomplished by the continuous-variable counterpart of 

the partition function procedure. In all cases we encounter, En involves 

monomials, whose interpretation, intuitively clear but explained in detail in 

appendix 1, is  

K t( ) = Tr exp −Ht( )⎡⎣ ⎤⎦ = exp −Ent( )
1

∞

∑

t→ 0

S ∞( ) = −coefficient of t  in K t( )

S ∞( ) Z s( ) = En
− s

1

∞∑

Sth N;K( ) = S ∞( )− dnEn
N+1

∞

∫ − 1
2 EN+1 +

B2k
2k( )!1

K

∑ ∂N
2k−1EN+1

B2k =
2 2k( )! −1( )k+1ζ 2k( )

2π( )2k
:B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 ,!
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  .              (2.6) 

In a few cases, described in the next two sections, the series involving k in (2.4) 

terminates, and Euler-Maclaurin is exact. More generally, as in the case 

described in section 6, the series over k is semiconvergent: it is an asymptotic 

series, whose terms get smaller and then increase [11].  

 An alternative representation of S(N) follows from transforming the sum 

(1.1) using the Poisson summation formula [12]. This yields a series of integrals 

over n that are then approximated by expanding about their endpoints n=N. But 

this is simply a complicated way of reproducing the result of the Euler-

Maclaurin representation (2.4). Poisson summation will however play a role in 

section 7, not in calculating the energy sum but in calculating the energies En 

involved in the sum, which will include some oscillatory contributions to the 

level counting function [13, 14] (spectral staircase). A different alternative 

would be to regularise not by using  but demanding S(0)=0; this makes no 

difference for the examples in sections 3, 4 and 5 and negligible difference in 

sections 6 and 7.    

3. Harmonic oscillator 

The energies, and the sum (1.1), are  

 .              (3.1) 

To interpret this in terms of the Euler-Maclaurin representation (2.4), we need 

the regularised sum over all n, in terms of the partition function (2.2) and (2.3). 

For this case, K(t), and its Laurent expansion, can be evaluated explicitly: 

− dn n − µ( )ν
N+1

∞

∫ =
N +1− µ( )ν+1

ν +1

S ∞( )

En = n − 1
2 ⇒ S N( ) = 1

2 N
2
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            (3.2) 

In the theoretical expression (2.4), we need (2.6) to interpret the infinite 

integral, leading to contributions that add to reproduce the exact energy sum: 

 .           (3.3) 

 An interesting minor variant is the spectrum without the zero-point 

energy (or, equivalently, the positive eigenvalues of an angular-momentum 

component), where S(N) is the sum is over the positive integers: 

 .              (3.4) 

The constant is , discussed in recreational mathematics 

[15]. The regularisation (2.2) gives one interpretation of the old result in terms 

of the Riemann zeta function z(s), i.e. :     

 .    (3.5) 

Thus (2.4) gives 

 .          (3.6) 

4. 1D box 

For a free particle in the space 0≤x≤p between hard walls, the energies (with 

), and the energy sum, are 

 .             (4.1) 

K t( ) = exp − n − 1
2( )t( )

1

∞

∑ = 1
2sinh 1

2 t( )
= t −1 − 1

24 t + 7
5760 t

3 +!  ⇒ S ∞( ) = 1
24 .

Sth N;1( ) = 1
24 + 1

2 N + 1
2( )2 − 1

2 N + 1
2( )+ 1

12 = 1
2 N

2

En = n⇒ S N( ) = 1
2 N N +1( )

S ∞( ) = 1+ 2 + 3+!

S ∞( ) = ζ −1( ) = − 1
12

K t( ) = 1
exp t −1

= t −1 − 1
2 + 1

12 t − 1
720 t

3 +!  ⇒ S ∞( ) = ζ −1( ) = − 1
12

Sth N;1( ) = − 1
12 + 1

2 N +1( )2 − 1
2 N +1( )+ 1

12 = 1
2 N N +1( )

! = 2 ×mass = 1

En = n
2 ⇒ S N( ) = 1

3 N
3 + 1

2 N
2 + 1

6 N
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For this case, the partition function is a theta function q3 [3], whose Poisson 

transformation shows that its expansion contains no term proportional to t, so 

the sum over all energies is zero: 

                    (4.2) 

Again, Euler-Maclaurin representation reproduces the exact S(N): 

 .    (4.3) 

5. Pöschl-Teller potential  

This exactly solvable potential, with finite depth D supporting discrete energy 

levels between E=0 and E=D, is 

  .               (5.1) 

The energies (with ), and the energy sum, are [16] 

             (5.2) 

For this potential, the number of bound states is finite, so the regularisation 

technique of section 2 is not immediately applicable – and regularisation would 

bring no advantage, because the system is exactly solvable. The Euler-

Maclaurin formula can be applied in its conventional form [3], involving the 

lower limit n=1 of (1.1), and is easily confirmed to reproduce the exact S(N). 

K t( ) = exp −n2t( )
1

∞

∑ = 1
2 θ3 0,exp −t( )( )−1( )  

= 1
2 −1+ π

t
⎛

⎝
⎜

⎞

⎠
⎟  + π

t
exp − m

2π 2

t
⎛
⎝⎜

⎞
⎠⎟1

∞

∑ ⇒ S ∞( ) = 0.

Sth N;1( ) = 0 + 1
3 N +1( )3 − 1

2 N +1( )2 + 1
6 N +1( ) = 1

3 N
3 + 1

2 N
2 + 1

6 N

V x( ) = D 1− 1
cosh2 x

⎛
⎝⎜

⎞
⎠⎟

! = mass=1

En D( ) = − 1
2 n − 1

2( )2 + n − 1
2( ) 2D + 1

4 − 1
8 ,

S N;D( ) = − 1
6 N

3 + 1
2 N

2 2D + 1
4 − 1

12 N .
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Temporarily reinstating , it is clear from the Schrödinger equation that 

it can be eliminated by the scaling  (and corresponding scalings for 

En and S(N)). Thus the semiclassical regime (  small) is D>>1. We are 

interested only in the bound states, so the total number nmax(D) of energies in 

the sum (1.1), and the corresponding maximum value Smax(D) of the energy 

sum, and their leading-order large D approximations, are  

           (5.3) 

 For this exactly solvable potential, large D approximations do not lead to 

divergent series, as for the WKB approximations for general potentials [11] (an 

example is explored in the following section). Instead, the series is convergent, 

and associated with the expansion  There are 

many ways to implement the large D (semiclassical) approximation of S(N;D), 

depending on whether and how N is incorporated by linking it to D. With no 

linkage, i.e. approximating S(N;D) with N fixed, all energies below N lie in the 

range 0<E<O(√D), that is, near the bottom of the well.  More natural is to scale 

N with the total number of bound states, and S with its maximum value. Again 

this can be done in several ways, depending on whether the scalings are done 

with nmax and Smax or nmax0 and Smax0 in (5.3). The scalings nmax0 and Smax0 lead to 

simpler and faster-converging large D approximations. Therefore we represent 

the level indices and the Pöschl-Teller energy sum in the form 

 .                    (5.4) 

!

D→ D / !

!

En D( ) = D⇒ n = nmax D( ) = 2D + 1
4 + 1

2 ≈ 2D ≡ nmax0 D( ),
S nmax;D( ) = Smax D( ) = 2

3 D 2D + 1
4 + 3

4( ) ≈ 8
3 D

3/2 ≡ Smax0 D( ).

2D + 1
4 = 2D +1/ 8 2D( )+!

ν ≡ N
nmax0

, Ssc ν;D( ) ≡ S νnmax0 D( );D( )
Smax0 D( )
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With these scalings, the ranges of the level indices and the sum are 0<n<1 

and 0<Ssc<1, and the semiclassical regime corresponds to D large, n fixed. 

Explicitly, 

  .          (5.5) 

This large D expansion is extraordinarily accurate, even for D=1, as figure 2 

illustrates. (The alternative scaling, using nmax and Smax, introduces additional 

terms, of order D1/2, D–1/2, D–3/2...).  

 

Figure 2. Energy sums for Pöschl-Teller potential for D=1. (a) The full red curve (colour 
online) is the exact scaled sum Ssc from (5.3) and (5.4); the full black curve is the leading 

approximation Ssc0 in (5.5), and the dashed black curve (visually indistinguishable from the 
exact sum) is the next approximation Ssc1. (b) Errors Ssc–Ssc, approx, where Ssc, approx =Ssc0 (full 

curve), Ssc, approx =Ssc1 (dashed curve), and Ssc, approx =Ssc2 (dot-dashed curve)  

Ssc ν;D( ) = ν 2

2
3−ν( )

Ssc 0 ν( )
! "# $#

−
ν 4 − 3ν( )
32D

Ssc1 ν ;D( )
! "### $###

− 3ν 2

1024D2

Ssc 2 ν ;D( )
! "###### $######

+O 1
D3

⎛
⎝⎜

⎞
⎠⎟

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

-8

-6

-4

-2

ν

ν

a

b

Ssc(ν;1)

log10|Ssc(ν;1)-Ssc,approx(ν;1)|
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 The case N=1 is interesting. Since S(1)=E1, the energy sum is an 

alternative way of approximating the ground-state energy, to be compared with 

the direct large D expansion  

 .          (5.6) 

The first three approximations differ by half-integer powers of D, in contrast to 

the energy sum (5.5), whose approximations differ by integer powers of D. 

Therefore, as Table I illustrates, the early terms of the energy sum provide a 

more efficient way of approximating E1: Ssc1 and Ssc2 give the same 

approximation as E12  and E13.  

 

Table 1. Ground state energies E1 for Pöschl-Teller well depths D=1, 2, 3, calculated directly 
from the expansion (5.6), and from the scaled energy sum (5.5)    

  

 

E1 D( ) = 1
2 2D + 1

4 − 1
4

= 1
2 D

E1,0 D( )
! − 1

4

E1,1 D( )
!"# $#

+ 1
16 2 D

−1/2

E1,2 D( )
! "### $###

+ 1
512 2 D

−3/2

E1,3 D( )
! "##### $#####

+O D−5/2( )

D 1 2 3
E1 D( ) 0.5 0.78078 1

E1,0 D( ) 0.70710 1 1.22474

E1,1 D( ) 0.45711 0.75 0.97475

E1,2 D( ) 0.50130 0.78125 1.00026

E1,3 D( ) 0.49992 0.78076 0.99999

Ssc0 ν1;D( ) 0.54044 0.83333 1.05808

Ssc1 ν1;D( ) 0.50130 0.78125 1.00026

Ssc2 ν1;D( ) 0.49992 0.78076 0.99999
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6. Hard-wall linear potential 

General one-dimensional potential wells are not exactly solvable, and 

semiclassical approximations, in terms of series in powers of , are given by 

the WKB approximation [17, 18]. These explicit series take the form of a 

‘quantum action’ , where I(E;0) is the classical action. The energies En 

that must be summed to obtain S(N) are determined implicitly by a quantum 

condition , where µ (a Keller-Maslov index [19]) depends on 

boundary conditions. Getting the energies En requires reversion of the 

semiclassical series. We illustrate the essential features of approximations to the 

energy sum with the levels of a linear potential, about which much is known 

[4]. 

The potential is V(x)=|x|, whose wavefunction y(x) is the Airy function 

[3], and the odd and even energy levels (with ) are given by the 

zeros an and  of the Airy function and its derivative. We consider just the odd 

levels, corresponding to a linear potential on the half-line x>0 and a hard wall at 

x=0: 

 .          (6.1) 

The similar formalism for the even levels, and the totality of even and odd 

levels, is described at the end of Appendix 2. By elementary  scaling, the 

semiclassical approximation corresponds to n>>1. 

 For the nth zero, the approximation of order M is given [3, 20] by 

!

I E;!( )

I En;!( ) = n − µ

! = 2 ×mass = 1

′an

V x( ) =
x x ≥ 0( )
∞ x ≤ 0( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
⇒ψ x( ) = Ai x − E( )⇒ En = −an

!
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              (6.2) 

In the literature [20], the coefficients T0 to T9 are listed. We needed many more; 

Appendix 2 describes the way we calculated them, and lists T0 to T20. The 

asymptotics of the coefficients is given in (A.14), indicating that the terms in 

the series (6.2) have the generic ‘factorial/power’ form [11]. Therefore the 

smallest term is near 

 ,               (6.3) 

in which   denotes the floor function (integer part of ...). To illustrate the 

accuracy of the asymptotics (A.14) for Tm for the terms in (6.2), the ratio 

approximate term/ exact term for M=M* is 0.992 for n=5, 0.9988 for n=10, and 

0.99996 for n=50. 

 For the energy sum, we use the Euler-Maclaurin representation (2.4). 

This will extend the cases considered in sections 3 and 4, where Euler-

Maclaurin summation is exact because the sums over m and k terminate, to the 

present situation, in which the energies are known only approximately. We 

require the regularised sum , whose value is known [4, 21] to be zero. We 

apply (2.4) to the sum of contributions m in (6.2), using (2.6) for the regularised 

integrals over n, and explicitly evaluate the elementary derivatives with respect 

to n, and collect terms of the same order in 1/N. Thus 

En M( ) = Tm 3
2 π n − 1

4( )( )2/3−2m

0

M

∑
T0 = 1,  T1 = 5

48 ,  T2 = − 5
36 ,  T3 = 77125

82944 ,  !

M = M * n( ) = πn⎢⎣ ⎥⎦

...⎢⎣ ⎥⎦

S ∞( )
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                    (6.4) 

The first few terms of the series are 

.        (6.5) 

Figure 3 illustrates the accuracy of the formula (6.4) for different values 

of the truncation M, for N=5. The least term occurs near . 

Naive optimal truncation simply neglects all the terms with M>Mopt(N). But for 

the series (6.4), whose terms alternate in sign, an intuitive way to increase the 

accuracy by several orders of magnitude is simply to add half of the next term, 

i.e. the term with M= Mopt(N)+1. This procedure (which can be justified by 

Borel Summation of the divergent tail of the series over M) corresponds to 

calculating 

.           (6.6) 

 Table 2 shows the optimal errors for different N, calculated in this way. 

Even for relatively small values of N the accuracy is extraordinary, and the 

fractional error agrees well with the elementary asymptotic estimate exp(–

2p(N+3/4))/( 2p(N+3/4))3/2 obtained from the leading terms in (6.4), the 

estimate (A.14) for Tm, and Stirling’s formula. 

Sth N ;M( ) = 3
2π N + 3

4( )( )5/3 2
3π ×

1
3
2π N + 3

4( )( )2m
Tm

1
5 / 3− 2m

− 1
2 N + 3

4( )
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢m=0

M

∑ −

        3
2π( )2m 2m− 8

3( )!
TkB2 m−k( )

3
2π( )−2k

2k − 5
3( )! 2 m− k( )( )!k=0

m−1

∑
⎤

⎦

⎥
⎥
⎥
.

Sth N;3( ) = 3π
2( )2/3 3

5 N + 3
4( )5/3 − 1

2 N + 3
4( )2/3 + 1

36π 2 2π
2 − 5( ) N + 3

4( )−1/3( )

M opt N( ) = π N + 3
4( )⎢⎣ ⎥⎦

Sopt N( ) = 1
2 Sth N;M opt N( )+1( )+ Sth N;M opt N( )( )( )
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Figure 3. Errors of the approximation Sth (equation (6.4)) for the sum of odd energies (Airy 
zeros) for the potential |x|, for N=5, as a function of the Euler-Maclaurin truncation index M. 

 

 

Table 2. Energy sums S(N) for the potential |x|, and asymptotically optimal errors of the 
approximation Sopt(N) (equation (6.6))  

Note in particular the optimal error for S1=E1 in Table 2. Its magnitude, of 

order 10–7  should be compared with the errors in the ground-state energy 

0 10 20 30

-15

-10

-5

0

40M

log10|Sth(5;M)-S(5)|

N S N( ) Sopt N( )− S N( ) π N + 3
4( )⎢⎣ ⎥⎦

1 2.33811 8.7007 ×10−8 5
2 6.42606 −1.5273×10−10 8
3 11.9466 2.8647 ×10−13 11
4 18.7333 −5.4150 ×10−16 14
5 26.6775 1.6617 ×10−19 18
6 35.7001 −1.6626 ×10−23 21
7 45.7403 −4.0013×10−25 24
8 56.7488 1.4039 ×10−27 27
9 68.6848 −3.6505 ×10−30 30
10 81.5136 8.4660 ×10−33 33
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calculated directly from the series (6.2) for the Airy zeros, also terminated by 

adding half the smallest term.. Table 3 shows the comparison, indicating that 

the large N series for S(N), when applied to N=1, outperforms the direct WKB 

eigenvalue asymptotics (6.2). The reason is that the energy sum for N=1, when 

evaluated by the method of section 2, involves the energies E2, E3, ..., whose 

WKB approximations are more accurate than that for E1. 

 

Table 3. Errors in the approximations (6.2) and (6.6) for the lowest odd energy (smallest Airy 
zero) for the potential |x|; smallest errors bold 

 

7. Towards more dimensons: quantum particle on a torus 

The Euler-Maclaurin representation (2.4) for the energy sum requires the 

energies En to be represented analytically in terms of a monotonic function of 

continuous n. Achieving this in d>1 dimensions is problematic, because the 

successive energies fluctuate pseudo-randomly. For separable d-dimensional 

Hamiltonians, the energies can be represented (exactly or approximately) in 

terms of a set of d quantum numbers, but the successive energies usually 

involve very different numbers in the set, and the statistics of the fluctuations is 

Poissonian [5]. For general nonseparable Hamiltonians (e.g. when the classical 

trajectories are chaotic), there are no quantum numbers, no explicit expressions 

are available for the individual energies En in increasing order, and the statistics 

are those of random-matrix theory [6, 7]. 

However, it is always possible to represent the spectrum in terms of a 

level counting function (spectral staircase) N(E), that is the sum of two 

M 0 1 2 3 4 5 6 7

E1 − E1(M + 1) + E1(M( ) / 2 0.008 4.6 × 10
−4

-1.9 × 10
-5

−2.1 × 10
−4

9.1 × 10
−4

−4.7 × 10
−3

−0.032 −0.29

S 1( )− Sth 1;M+1( )+Sth 1;M( )( )/2 −0.046 2.4×10−4 −1.5×10−5 2.3×10−6 -5.3×10−7 8.7×10-8 1.7×10−7 −5.7×10−7
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contributions [14]. These are determined uniquely within semiclassical 

approximation schemes: a series of terms that are smooth functions of energy 

(monomials in ), arising from gross features of the classical phase space; and 

a series of terms that are oscillatory in , arising from classical periodic orbits 

[13, 22] and representing fluctuations about the smoothed staircase. Thus, with 

Q denoting the unit step, the staircase is 

,                   (7.1) 

With the natural convention Q(0)=1/2, the exact levels are determined by the 

values of N(E) halfway up the steps, i.e. 

 .                (7.2) 

Key to using the representation (7.1) to calculate the energy sum is the 

observation that the two contributions depend differently on : 

,         (7.3) 

in which [14] W(E) is the phase space volume enclosed by the energy surface E, 

Sj(E) is the action of the periodic orbit labelled j, the amplitude Aj(E) depends 

on the stability of the orbit, and the exponent µ is a rational fraction between 0 

(for chaotic dynamics) and (d–1)/2 (for completely integrable dynamics). The 

quantum condition (7.2) must be a monotonic function of E, so the derivative 

 (i.e. the level density) must be positive. The contribution Nsm(E) is 

always positive and , and this must dominate the contributions to 

Nosc(E), which are , in which Tj is the period of the orbit j. 

!

!

N E( ) = Θ E − En( ) =
1

∞

∑ N sm E( )+N osc E( )

N En( ) = n − 1
2

!

N sm E( ) ≈ Ω E( )
!d

, N osc E( ) ≈ Aj E( )
!µperiodic orbits j

∑ exp
iSj E( )
!

⎛
⎝⎜

⎞
⎠⎟

∂N / ∂E

O !−d( )
O Tj E( )!− µ+1( )( )
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Since µ+1<d, the desired monotonicity will hold for orbits whose period is not 

too long, that is, whose periods are smaller than . Therefore in 

calculating the energy sum using (2.4) we can use approximate energy levels 

incorporating these short orbits in the semiclassical representation of N(E). 

(The long orbits, excluded here, play the crucial role of generating the sharp 

steps in N(E).) 

To illustrate this, we employ the simplest nontrivial example: a quantum 

particle moving freely on a 2-torus, that is a rectangle of side lengths 2p and 

2pa with opposite sides identified, or, equivalently, the periodised plane with 

the rectangle as unit cell. The exact energies are  

.                      (7.4) 

These are easy to compute and arrange in order, to give the sequence En. This 

case is particularly challenging for semiclassical approximations because there 

are many degeneracies (e.g. ±l, ±m exchanging l and m), so the spectral 

fluctuations are large. Its simplicity has the advantage of avoiding 

complications, irrelevant for our purpose here, from perimeters, curvatures, and 

corners [23], that occur for ‘quantum billiards’ with boundaries.  

 For this system, the spectral staircase function, in the form (7.1) can be 

calculated exactly using the Poisson summation formula: 

O !d−µ−1( )

El ,m = l2 + m
2

α 2 −∞ < l, m < +∞( )
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           (7.5) 

in which  Nsm(E)=paE comes from the term j=k=0 in the sum, and in Nosc(E), 

involving the Bessel functions,  

                 (7.6) 

is the length of the periodic orbit labelled j,k. (These orbits form continuous 

families, each consisting of paths in the periodised plane from points x, y in the 

rectangle to points x+2pj, y+2pak.) Figure 4 shows the emergence of the steps 

as increasing numbers of periodic orbits are included, with the concomitant loss 

of monotonicity, arising from the fact that although the strengths of the 

contributions from the longer orbits decrease, they also oscillate faster. 

N E( ) = Θ E − l2 − m
2

α 2

⎛
⎝⎜

⎞
⎠⎟l ,m=−∞

+∞

∑

= dl
−∞

∞

∫ dm
−∞

∞

∫ Θ E − l2 − m
2

α 2

⎛
⎝⎜

⎞
⎠⎟j ,k=−∞

+∞

∑ exp 2π i jl + km( )( )

= παE + 2πα E
J1 ELjk( )
Ljkj ,k=−∞

j=k≠0

+∞

∑ ,

Ljk = 2π j2 +α 2k2
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Figure 4. Staircase function (7.5) for a=1/21/4, including periodic orbits with |j|,|k|≤K, where 
(a) K=0, (b) K=1, (c) K=2, (d) K=20; stepped curves (red online): exact stair; black curves: 

approximate stairs 

 To determine the ordered energies En, it is necessary to invert the 

quantization condition (7.2), incorporating a number of periodic orbits small 

enough to ensure that the staircase is monotonic. We accomplish this 

approximately, using the fact that the oscillatory contributions are smaller than 

the smooth contributions. We start with the zero-order energies E0,n, i.e. 

 ,             (7.7) 

and include the oscillatory contributions, with a finite number of periodic orbits, 

by solving (7.2) iteratively. The first iteration suffices, yielding the approximate 

energies 

 .            (7.8) 
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 These are the energies to be included in the Euler-Maclaurin formula 

(2.4). We also require ; this is zero, because the partition function is the 

product of two factors of the one-dimensional form (4.2). We have confirmed 

numerically that at the present level of approximation, it is not necessary to 

include the derivative terms in (2.4). Thus the energy sum, including periodic 

orbits with |j|,|k|≤K, is  

             (7.9) 

 Figure 5 shows the exact and approximate energy sums for N≤15. Even 

for these small values of N, the curves are hard to distinguish, even for K=0, i.e. 

when no periodic orbits are included. Figure 6 shows the errors over a much 

larger range; as described below, these increase with N, because of the 

fluctuations, but are much smaller when periodic orbits are included. The errors 

are larger than the mean spacing between adjacent energies, which is constant 

(~1/pa=0.379), but are always very small compared with the value of 

S(N)~N2/2pa: e.g. S(5000)~4.73x106. Figure 7 shows magnified regions of 

figures 6, illustrating how the scale of the fluctuations gets smaller as more 

orbits are included. These calculations are for side ratio a2=1/√2. For different 

a, other calculations (not shown) give similar results.  

 We can estimate the increase of the fluctuations with N by calculating the 

r.m.s. error sK(N), where the variance sK(N)2 is calculated by averaging over the 

oscillations in SK(N). Thus, using asymptotics of the Bessel functions, using 

S ∞( )

SK N( ) = N 2

2πα
− 4παE0,N+1

J2 E0,N+1Ljk( )
Lj ,k
2

j ,k=−K
j=k≠0

+K

∑

+ E0,N+1

J1 E0,N+1Ljk( )
Lj ,kj ,k=−K

j=k≠0

+K

∑ .
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(7.7) for E0,n, and noting that a similar calculation shows that the second sum in 

(7.9) grows more slowly with  N, 

      (7.10) 

where the sum is over all j, k excluded by the square of side K in (7.9); this sum 

converges, and is O((K+1)–3). Thus SK(N) grows as N3/4, consistent with the 

calculations illustrated in figures 6. From the argument of the Bessel functions, 

the oscillation frequency as N increases scales as (K+1)2. 

 As a check of (7.9), we also calculated the sum energy directly from the 

individual approximate levels given by (7.8). The results are indistinguishable 

in every detail from figures 6 and 7, probably because any improvement is 

masked by the fluctuations.  The close similarity indicates the effectiveness of  

the analytical sum (7.9), generated from the Euler-Maclaurin procedure.  

 

σ K N( )2 = SK N( )− S N( )( )2
≈16 N + 1

2( )2
J2 E0,N+1Ljk( )2

Lj ,k
4

excluded K( )
∑

≈ 1
2

α
π11 N + 1

2( )3/2 1
j2 +α 2k2( )5/2

excluded K( )
∑ ,
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Figure 5. energy sums (7.9) for a=1/21/4, including periodic orbits  (a) K=0 (no periodic 
orbits), (b) K=1 (8 periodic orbits) 

 

Figure 6. Errors in the energy sum calculated from (7.9) for a=1/21/4, including periodic 
orbits with j|,|k|≤K, where (a) K=0 (no periodic orbits), (b) K=1 (8 periodic orbits), (c) K=2 

(24 Periodic orbits), (d) K=3 (48 periodic orbits) 
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Figure 7. Magnifications of central regions of figures 6 

 The numerical values in Table 4 show the energy sum, and the errors for 

increasing periodic-orbit truncation K, for small values of N. All errors (except 

one) are small in comparison with the mean level spacing, but for such small N 

it is hard to see a consistent picture, though there is a tendency for the errors to 

decrease with increasing K.  

   

Table 4. Exact sums, and errors for periodic-orbit truncations K, for 2-torus levels with 
a=1/21/4  

 

8. Concluding remarks 

We have shown that the technique of section 2, in which regularisation is 

combined with Euler-Maclaurin summation, is a widely applicable and effective 
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N S N( ) S0 N( )− S N( ) S1 N( )− S N( ) S2 N( )− S N( ) S3 N( )− S N( )
1 0 0.189 −0.086 −0.074 −0.041
2 1 −0.243 −0.133 −0.209 −0.221
3 2 −0.297 −0.020 0.113 0.074
4 3.414 −0.386 −0.129 −0.187 −0.098
5 4.828 −0.097 0.153 0.040 −0.074



 25 

way to evaluate the energy sum S(N) defined by (1.1). In some cases (sections 3 

and 4) it is exact, and for one-dimensional potentials where the energies are 

approximately known it can give the semiclassical energy sum with high 

accuracy, as illustrated (section 6) for the Airy zeros. In more dimensions, the 

method is effective for the energy sum of levels of the partially smoothed 

spectrum, when some periodic orbits are included, as illustrated (section 7) for 

the particle on a 2-torus. For finite-depth wells, unregularised Euler-Maclaurin 

works, at least for the exactly solvable Pöschl-Teller potential; for this case the 

natural semiclassical expansion parameter is a combination of N and the well 

depth. 

 Our preliminary analysis suggests several avenues for further research.     

• Extending the linear-potential analysis of section 6 to general infinite potential 

wells, by applying the known [24] WKB series for the quantization condition 

analogous to (A.10), thus building on the leading-order correction alrerady 

obtained [25], where some of the formulas were obtained by elementary means. 

This would incorporate the regularised sums  for general potentials [10, 

18, 26, 27]. 

• For finite-depth wells, going beyond the Pöschl-Teller example of section 5 to 

include WKB-generated energies for potentials that are not exactly solvable. In 

cases where the sum of all the bound states (the counterpart of ) is not 

known, this would require application of the Euler-Maclaurin formula directly 

to (1.1) in its familiar (i.e not regularised) form, possibly incorporating the 

requirement S(0)=0. 

•  Where WKB is applied, further increasing the accuracy of the summations 

beyond that illustrated in section 5, by employing asymptotic techniques [11, 

28-31] involving resummation of the divergent tail of the relevant series beyond 

their smallest terms. 

S ∞( )

S ∞( )
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•  For nonanalytic potentials, for example a smooth well truncated at finite 

depth, summing the energies would require modification of (6.4), incorporating 

techniques recently developed elsewhere [32]. 

• For higher-dimensional potential wells more general than the particle on a 2-

torus, incorporating multidimensional semiclassical techniques [33] to get 

explicit formulas for the correction terms (‘Weyl series’) in the series for the 

smoothed spectrum Nsm(E) and the periodic-orbit terms Nosc(E). 
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Appendix 1. Derivation of the regularisation (2.6) 

By analogy with the partition function procedure (2.2) and (2.3), we define the 

integral in (2.6) as  

  .           (A.1) 

Thus we require the small t expansion of the following integral, where N+1 is 

replaced by N to save writing, and we make elementary changes of variable: 

        (A.2) 

Next, we use the expansion 

I = −coefficient of t  in dn
N+1

∞

∫ exp −t n + µ( )ν( )

J = − dx
N

∞

∫ exp −t n + µ( )ν( )

= − 1
tν

N + µ( )1−ν exp −t N + µ( )ν( ) dyexp −y( ) 1+ y
t N + µ( )ν

⎛

⎝⎜
⎞

⎠⎟

1/ν−1

0

∞

⌠

⌡
⎮⎮ .
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  .          (A.3) 

Thus 

 ,         (A.4) 

and J can be written as a double sum:  

 .        (A.5) 

 The coefficient of t in (A.1) is the contribution with m=n+2, so, using the 

contour integral in (A.3), 

                (A.6) 

Two integrations by parts eliminates the logarithm, enabling the contour integal 

to be evaluated by the residue at x=0. Its value is n/(n+1), completing the 

derivation of (2.6). This way of getting what seems an intuitively obvious result 

seems complicated; perhaps there is a simpler one. 

Appendix 2. Calculation of Tm coefficients in (6.2) 

1+ξ( )1/ν−1 = cnξ
n

0

∞

∑ → cn =
1
2π i

dξ
ξ n+1 1+ξ( )1/ν−1!⌠⌡⎮

dyexp −y( ) 1+ y
t N + µ( )ν

⎛

⎝⎜
⎞

⎠⎟

1/ν−1

0

∞

⌠

⌡
⎮⎮ = cn

0

∞

∑ n!
t n N + µ( )νn

J = − 1
tν

N + µ( )1−ν −1( )m
m!m=0

∞

∑ t m N + µ( )mν cn
0

∞

∑ n!
t n N + µ( )νn

I = − 1
ν
N + µ( )1+ν −1( )n cn

n + 2( ) n +1( )0

∞

∑

= − 1
ν
N + µ( )1+ν 1

2π i
dξ 1+ξ( )1/ν−1 −1( )n

ξ n+1 n + 2( ) n +1( )0

∞

∑!
⌠

⌡
⎮

= 1
ν
N + µ( )1+ν 1

2π i
dξ 1+ξ( )1/ν−1 1− 1+ξ( )log 1+ 1

ξ
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟!

⌠

⌡
⎮ .
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This follows and extends the discussion in [20].We start from the following 

combination of the standard asymptotic series [3, 4] for the Airy functions Ai 

and Bi: 

,    (A.7) 

where SM denotes the formal asymptotic series to Mth order 

.        (A.8) 

The ‘quantum condition’ determining the levels (Airy zeros) implicitly is thus 

               (A.9) 

From Stirling’s approximation, the large m ‘asymptotics of the 

asymptotics’ in the sum (A.8) is    

 ,          (A.10) 

Therefore the series for z has the form 

,          (A.11) 

in which ... and ... are separated by the asymptotic (k>>1) approximation for the 

terms. Inverting this expression, to get the energies En explicitly as functions of 

continuous n,  requires reversion of series [20], for which the asymptotics of a 

function (here the inverse) of a function that is itself given as an asymptotic 

series [34], leads to  

BiM −E( )+ iAiM −E( ) =
exp i z E( )+ 1

4π( )( )
π E1/4

∑M z E( )( ) z E( ) ≡ 2
3 E

3/2( )

ΣM z( ) = 1
2π

m− 1
6( )! m− 5

6( )!
m!

−i
2z

⎛
⎝⎜

⎞
⎠⎟

m

0

M

∑ = 1− 5i
72z

− 385
10368z2

+!

z En( )+ Im log ΣM z En M( )( )( )( )⎡
⎣⎢

⎤
⎦⎥
= n− 1

4( )π

m − 1
6( )! m − 5

6( )!
m!

≈ m −1( )! m >>1( )

z +!−
−1( )k 2k( )!
2π 2z( )2k+1

+!= n − 1
4( )π
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 ,       (A.12) 

and hence, by further asymptotics of the 2/3 power function, to the desired form 

(6.2), with the coefficients Tm: 

.      (A.13) 

With computer algebra (e.g. Mathematica’s InverseSeries function), it is 

not difficult to calculate hundreds of coefficients. As m increases, the Tm are 

represented by ratios of integers that increase very rapidly; Table 5 shows T1 to 

T20 . 

2
3 En

3/2 = n − 1
4( )π 1+!+ −1( )k 2k( )!

π 2π n − 1
4( )( )2k+2

+!
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

En = 3π
2 n − 1

4( )( )2/3 1+!+ −1( )k 2 2k( )!
3π 2π n − 1

4( )( )2k+2
+!

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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Table 5. Coefficients Tm 

 The asymptotic form (A.11) implies the following asymptotics for the 

corefficients Tm: 

 .         (A.14) 

m Tm
0 1
1 5/48
2 -5/36
3 77125/82944
4 -108056875/6967296
5 162375596875/334430208
6 -1622671914671875/66217181184
7 150126478779573265625/82639042117632
8 -644932726927939889453125/3470839768940544
9 13042116997445589075044921875/520200964553048064
10 -569789860268573944980176052734375/132083753999696658432
11 257161958835087358239821956396181640625/278960888447359342608384

12
-4260043450658439625615850895889732425107421875/

17785430403849842247340130304

13
9069017047957395268381316695903125939513916015625/

121957237054970346838903750656

14
-1810271277633586533592120646709512524415775650634765625/

66588651432013809374041447858176

15
378176119842183032100868306594392061376826060531219482421875/

32714612750598784464234951324205056

16
-711648403435208294973403353161261661386380028791186370849609375/

125805540306954522926009019260731392

17
62687608118894897882751404696979680139068607307155385234970977783203125/

19861172259339524443374895888730186317824

18
-(69911957089253968456621705249528952113510249160843277605394821664657

5927734375)/(350976705580918406201099472697695487515426816)

19
(3705168766255820572465799901653132418902404579482382848874578957745462

83721923828125)/(262456685941773090279222174109939867716799168512)

20
-(55190338929835374170110562512840865287647115028796165130794916225525

906328777313232421875)/(49433146239120044656069150358446065519529304260608)

Tm ≈ −1( )m+1 2π
3( ) 2m− 2( )! 3

4( )2m m >>1( )
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 For the even levels in the potential |x|, the energy levels En,even are given 

by the zeros  of . Again using standard Airy asymptotics, replacing 

(A.7-A.10) are 

      (A.15) 

 ,    (A.16) 

 .        (A.17) 

The reversion of series, and evaluation of the energy sum, are essentially the 

same as for the odd states. A formal combined quantum condition, including 

both cases, is 

   (A.18) 

in which n=1,2,3..., with even n giving the odd levels and odd n giving the even 

levels. 
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Figure and table captions 

Figure 1. Discrete sum (dots), linearly interpolated sum (red online), and 

smooth energy sum (dashed curve) for a particle in a box (see section 4) 

Figure 2. Energy sums for Pöschl-Teller potential for D=1. (a) The full red 

curve  (colour online) is the exact scaled sum Ssc from (5.3) and (5.4); the full 

black curve is the leading approximation Ssc0 in (5.5), and the dashed black 

curve (visually indistinguishable from the exact sum) is the next approximation 
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Ssc1. (b) Errors Ssc–Ssc, approx, where Ssc, approx =Ssc0 (full curve), Ssc, approx =Ssc1 

(dashed curve), and Ssc, approx =Ssc2 (dot-dashed curve). 

Figure 3. Errors of the approximation Sth (equation (6.4)) for the sum of odd 

energies (Airy zeros) for the potential |x|, for N=5, as a function of the Euler-

Maclaurin truncation index M. 

Figure 4. Staircase function (7.5) for a=1/21/4, including periodic orbits with 

|j|,|k|≤K, where (a) K=0, (b) K=1, (c) K=2, (d) K=20; stepped curves (red 

online): exact stair; black curves: approximate stairs 

Figure 5. energy sums (7.9) for a=1/21/4, including periodic orbits  (a) K=0 (no 

periodic orbits), (b) K=1 (8 periodic orbits) 

Figure 6. Figure 6. Errors in the energy sum calculated from (7.9) for a=1/21/4, 
including periodic orbits with j|,|k|≤K, where (a) K=0 (no periodic orbits), (b) 
K=1 (8 periodic orbits), (c) K=2 24 Periodic orbits), (d) K=3 (48 periodic orbits) 

Figure 7. Magnifications of central regions of figures 6 

 

Table 1. Ground state energies E1 for Pöschl-Teller well depths D=1, 2, 3, 

calculated directly from the expansion (5.6), and from the scaled energy sum 

(5.5). 

Table 2. Energy sums S(N) for the potential |x|, and optimal errors of the 

approximation Sopt(N) (equation (6.6)). 

Table 3. Errors in the approximations (6.2) and (6.6) for the lowest odd energy 

(smallest Airy zero) for the potential |x|; smallest errors bold 

Table 4. Exact sums, and errors for periodic-orbit truncations K, for 2-torus 
levels with a=1/21/4  
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Table 5. Coefficients Tm 

 

 


