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Validity of the extended electron-electron cusp condition
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The extended cusp condition asserts that h(u)—ao dh(u)/du > 0, where ao is the Bohr radius, u is
the interelectronic spacing, and h(u) is the angle-averaged pair density in the ground state. We prove
that this inequality is obeyed by Hooke’s atom for any value of the spring constant. However, we
also show that this condition is violated by the uniform electron gas of high density. We explain the
qualitative difference between these two systems by subtracting a long-range contribution from h(u),
leaving a short-range contribution which is amenable to a local density approximation. Thus the
extended cusp condition is not a universal property of the ground state of inhomogeneous electronic

systems.

PACS number(s): 31.10.+z, 71.10.+x, 31.20.Sy, 31.90.+s

I. INTRODUCTION

The problem of finding the ground state of N(> 1)
electrons, interacting via Coulomb repulsion in a given
external potential, is crucial to the study of atoms,
molecules, clusters, surfaces, and bulk solids [1]. In
most cases of interest, exact solutions are impractical,
and many approximate treatments of this problem have
been devised [2]. Unfortunately, the errors made by such
treatments are usually difficult to estimate in an ab initio
fashion.

However, if the exact solution is known to obey some
condition, then how well an approximate solution obeys
this condition can be a guide to how good such a solution
is. Indeed, such properties often suggest improvements
on approximate schemes. For example, the total electron
number of the exchange-correlation hole is —1, both ex-
actly and in the local-spin-density (LSD) approximation
of density-functional theory, and many improvements on
the LSD are designed to retain this property [3].

Another important example is the electron-electron
cusp condition. To state this condition precisely, we de-
fine the electron pair (or intracule) density in terms of
the many-particle wave function by

I(u) = E(NZ—_Qﬁ;M/drl---/drN

2

x 0(ry —rz +u), (1)

¥(r,01,...,FNON)

where r;o; are the spatial and spin coordinates of the
ith electron and u is the interelectronic separation. For
simplicity, we work with the angle average of the pair
density
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h(u) = % / dQ.I(u). (2)

We observe that

/°° du 4muh(u) = N—(%_—Q (3)

is the number of distinct electron pairs, and that
4mu?h(u) du is the average number of pairs having inter-
electronic separation between u and u + du. Manifestly,
h(u) > 0. Figure 1 displays h(u) for the ground state of
H~. The radial intracule density 4wu?h(u) has recently
proven useful in a study of the first-row hydrides [4].

In terms of h(u), and using atomic units (e = A=m =
1), the cusp condition is written as

h(0) = 1'(0), (4)

where h'(u) = dh(u)/du. This condition is true for all
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FIG. 1. The solid line is h(u), the dashed line h'(u), and
the dotted-dashed line h(u) — h'(u) for H™, calculated using
a 204-term Hylleraas-type wave function, as described in Ref.

9.
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electronic systems, being a consequence of the u~! singu-
larity of the Coulomb interaction between electrons [5,6].
It is not obeyed by some popular approximations, e.g.,
the random phase approximation [7,8].

Recently, an extension of this cusp condition has been
found to be true numerically, in a Hylleraas-type frame-
work, for certain two-electron ions [9]. This extended
cusp condition is simply stated as

h(u) — B (u) > 0 (5)

for all values of u. The above expression becomes an
equality for v = 0, which corresponds to the usual cusp
condition. This property, along with the unimodality
of h(u) [10] (see Sec. II for details), has been used to
generate exact bounds [11] on the central pair density
h(0), the location umq, of the maximum of hA(u), and
various expectation values (u®) [9,10,12]. Other related
results have been obtained by means of variational pro-
cedures [13] or from the study of the logarithmic convex-
ity of h(u) [14]. This naturally leads to the question of
whether or not h(u) obeys the extended cusp condition
for the ground state of all electronic systems, the answer
to which is the focus of this paper.

We may also write h(u) in terms of the pair distribution
function for the system, g(r,r’), defined by

() ) s =)
9nr) = ) @

where 7(r) is the density operator at point r, and n(r) =

(A(r)) [15]. Then

(6)

h(u) = %/dar n(r) / ‘%" n(r +u) g(r,r +u). (7)

Note that there is no coupling-constant average here, so
we are not dealing with the exchange-correlation hole of
density-functional theory [16].

However, we can still apply the ideas of density-
functional theory to analyze h(u). For large values of
u, g(r,r+u) — 1, so that h(u) is typically a long-ranged
function of u. We may separate out a reasonably short-
ranged contribution, in the spirit of the LSD approxima-
tion. We write

h(u) = hg(u) + hi(u), (8)

where

her(u) = %/dar n(r) / dijr" n(r +u)[g(r,r +u) — 1]
9)

and vanishes for large u, while

hie(u) = %/dar n(r) / % n(r + u). (10)

Note that since hi(u) = hir(0) + O(u?) for small val-
ues of u, it has no cusp, and integrates to N?2/2, while
her(u) contains the cusp, and integrates to —N/2. Now
the expectation value of the electron-electron repulsion

operator is
N © 2 1
(Vee) = du 4mu® h(u) —, (11)
0 u

where the long-range (Ir) part is the “direct classical
Coulomb energy,” treated exactly in Hartree, Hartree-
Fock, and density-functional theories [17], while the
short-range (sr) part is amenable to a local-spin-density
approximation, like the exchange-correlation energy [17]
which is its average over coupling constant [18,19].
[More precisely, the coupling-constant average of hg(u)
is N/2 times the system-averaged exchange-correlation
hole [20].]

In Sec. II we study a particular two-electron system,
the Hooke’s atom, where we prove the extended cusp con-
dition given by Eq. (5) and unimodality for the ground
state for all values of the spring constant. Section III
is a study of h(u) for the uniform electron gas, where
it is proportional to the pair distribution function, g(u),
which is well-known for this system. Here, we find A, (u)
is a constant, independent of u, so that all the u depen-
dence in h comes from hg (u). We find that the extended
cusp condition is violated at high densities, and give an
argument which does not depend on the details of any
particular parametrization for g(u). In Sec. IV we ex-
plain how the high density limit for the uniform electron
gas, in which the extended cusp condition is violated,
is related to the high-density limit of the Hooke’s atom,
in which the extended cusp condition is obeyed. We also
consider how well the LSD approximation does for hs (u).
Section V gives our conclusions and their implications.

II. HOOKE’S ATOM

It is not easy to find a quantum many-body system for
which the Schrodinger equation may be solved analyti-
cally. However, a useful example is provided by the prob-
lem of two electrons in an external harmonic-oscillator
potential, called the Hooke’s atom [21-24]. The Hamil-
tonian for this system is

1 , 1
=5 (V24 93) 4 ghti i)+ (12)

[rz — |’
where V; = 8/9r;. In center-of-mass and relative coor-
dinates, this becomes

_ 1o 2 2 Ez l
H_—(ZVR+VH)+I¢R +4u +u, (13)

where R = (r; + r2)/2 and u = rp — ry. For spin singlet
states, the total wave function may therefore be sepa-
rated:

¥(r101,1202) = p(u) {(R) x(01,02), (14)

where x(01,02) is the singlet spin wave function. The
motion in R is simply that of a three-dimensional har-
monic oscillator with mass 2 and force constant 2k. From
Eq. (1) we obtain the electron-pair density
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I(u) = |p(u)|?, (15)

by choosing our normalization so that [ d3u|p(u)|?> = 1.
It is possible to separate the angular and radial contri-
butions as

o = 10%, (0. (16)

From Eq. (13), this yields a second-order differential
equation for the interelectronic function f(u), namely

(l+1)
2u + 2u?

[1::12 1 1

T2 di2 + nguz + f(u) = %f(’u,), (17)

where w = V/k is the oscillator frequency and e is the con-
tribution to the total energy due to the relative motion
of the electrons.

For any value of the force constant k, at most a sin-
gle differential equation needs to be solved to find the
ground state of this system. This has been done numer-
ically [21] for many values of k. More recently, Kais [22]
and co-workers have studied the special case of k = 1/4,
for which an analytic solution exists, while Taut [23] has
shown that analytic solutions exist for an infinite, dis-
crete set of oscillator frequencies, including both ground
and excited states. Those corresponding to extremely
low densities have been studied in some detail [24].

We prove here some general properties of the ground
state, for which [ = 0, which apply for all values of the
spring constant. Taking into account Egs. (2), (15), and
(16), and the fact that f(u) has no nodes for the ground
state [23] (i.e., h(u) > 0), we rewrite Eq. (17) in terms of
the electron-pair density h(u):

wh'(u) K(w) u [h'(lt)]2 =l — w1 (18)

2 h(u) ' h(u) 4 |h(w)] 4

This equation may be simplified by introducing the log-
arithmic derivative

H(u) =dlnh(u)/du = h'(u)/h(u). (19)
Inserting this definition in Eq. (18), we find
uH?(u) + 4[H (u) — 1] + 2uH’(u) = u(w?u® — 4¢).  (20)

Note that H(u) has no singularities for the ground state,
because h(u) is strictly positive everywhere.

From Eq. (20), we are going to prove (a) the usual cusp
condition h'(0) = h(0), (b) the extended cusp condition
h'(u) < h(u), and (c) the unimodality of h(u), i.e., that
h(u) has precisely one maximum. In terms of the function
H(u), these properties are written as (a) H(0) = 1, (b)
H(u) <1, and (c) H(u) = 0 once and only once.

A. Cusp condition

The cusp condition at the origin, Eq. (4), follows di-
rectly from Eq. (20), by taking v — 0. Furthermore, by
dividing Eq. (20) first by u and taking the same limit,
one obtains

4
H(0) = —“(; €. (21)
Since € > 0, this implies that H(u) is less than 1 for small
values of u.

B. Extended cusp condition

For large values of u, the electron-pair density h(u) of
a finite system monotonically decreases, or, equivalently,
H(u) < 0 for large u. Let us consider the situation of
Fig. 2, in which the extended cusp condition is violated,
i.e., H(u) > 1 in some region. But, differentiating Eq.
(20), we obtain

H?(u) + 2uH (u)H'(u) + 6H'(u)
+ 2uH" (u) = 3w?u? — 4e. (22)

Multiplication of Eq. (22) by u and subtraction of Eq.
(20) leads to

w?H (u)H' (u) + 2uH'(uv) + v?*H" (u)
+2[1 — H(u)] = w?u®. (23)

At the maximum uo, we have H(uo) > 1 and H'(uo) = 0.
Taking into account that H'(uo) = 0, it follows that

u2H" (uo) = w?ud + 2[H(uo) — 1]. (24)

Since H(up) >1, Eq. (24) implies that H" (ug) > 0, which
contradicts our original assumption that uy is a maxi-
mum. Thus no maximum can occur, and the extended
cusp condition holds for the ground-state Hooke’s atom.

C. Unimodality of h(u)

In this section we prove that H(u) = 0 exactly once.
First we note that, since H(0) > 0 and llm H(u) <0,
u—00

H(u) must vanish at least once.

H(u)

|
|
|
|
|
|
|
|

0.0 u, u

FIG. 2. Schematic of how the function H(u) would behave
if the extended cusp condition were violated.
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Next suppose that H(u) = 0 more than once, as shown
in the hypothetical schematic of Fig. 3. We will show, by
contradiction, that this situation is impossible.

We begin with the last zero of H(u), which is labeled
uc. At uc, H(uc) = 0, so that Eq. (20) yields

2ucH' (uc) = w?ud — deuc + 4. (25)

But H'(uc) < 0, so that w?u? — 4¢ < —4/uc. Since
uc > 0, this means that
uc < 2—\/5 (26)
w
So, we have proven that H(u) has no zeros [i.e., that
h(u) is monotonically decreasing] beyond the point u =
2\/e€/w.

Next we consider other possible roots of H(u) = 0.
For the moment, we assume that H'(uc) < 0, and we
address the case H'(uc) = 0 later. In that case, H(u) is
positive and rising as a function of uc — u for u close to,
but smaller than, uc. To produce another zero between
0 and uc, H(u) must turn back down toward the axis,
so that there must be a point up at which there is a
maximum in H(u), i.e., H'(ug) = 0. At such a point,
Eq. (24) holds, and may be rearranged to yield

wiud — 2 =w?H"(u) — 2H(u). (27)

This result is valid for any extremum of H(uw). In the
present case, H(ug) > 0, while H”(ug) < 0, so that

up < (2/w?)Y/3. (28)

Now, for H(u) to have another zero, the function must
either touch or cross the axis, and then turn back up
again as a function of up — u, in order to satisfy the
cusp condition at the origin, H(0) = 1. We denote this
minimum by u 4, and apply Eq. (27). Since H(ua) < 0,
and H"(ua) > 0, we find

ug > (2/w?)Y3, (29)

But ug > u4 by construction, and u4 = up is impossi-

1.0
H(u)
u ! u
o0 IA IIJB C\
i
I
I
-1.0

u

FIG. 3. Schematic of how H(u) might behave if unimodal-
ity were violated.

ble, as H(up) > 0, while H(u4) < 0. Thus there can be
no more zeros of H(u) for u < uc, assuming H'(uc) # 0.

Lastly, we show that H'(uc) = 0 also leads to a con-
tradiction. This would be the case if ug were merged
into uc in Fig. 3. If that were true, then Eq. (27) would
also apply to uc. But H(uc) =0 and H”(uc) < 0, since
H (u) approaches 0 from below as u — uc. Thus

uc < (2/w?)'/3. (30)

For some value of u < u¢, there must be a point like u 4 in
the figure, which obeys Eq. (29), and therefore produces
a contradiction. Thus we have shown both that h(u) is
unimodal, and that its only extremum is for u < 2v/¢/w.

III. UNIFORM ELECTRON GAS

In this section, we discuss the extended cusp condition
[Eq. (5)] for the case of a uniform electron gas. Because
the system is translationally invariant, Eq. (7) becomes

hw) = 5 7 N g(re,,u), (31)

where n is the (uniform) density of the system, and
g(rs,C,u) is the pair distribution function in a uniform
gas of density n = 3/(4wr?) and relative spin polarization
{, at separation u. This function has been the subject of
intense study for many years, as it leads to the correlation
energy per particle of the uniform gas, a key ingredient in
constructing the local density approximation of density-
functional theory. A recent accurate parametrization for
g(7s,¢, u) has been given by Perdew and Wang [25], and
encoded by He [26], based on known limits and scaling
relations; it agrees well with existing Monte Carlo data
[27-30).

We first note that unimodality is not obeyed by the
uniform gas. This is because g(u) contains Friedel os-
cillations at large values of u, due to the presence of a
Fermi surface. These oscillations have wave vector equal
to 2kp, where kp = (3772n)1/3 is the Fermi wave vector.
Note that the parametrization of Perdew and Wang used
here does not include these oscillations, which are usu-
ally insignificant in determining the exchange-correlation
energy, and are irrelevant to the discussion given below.

Next we consider the extended cusp condition. In Fig.
4, we plot the function g(u)—g'(u) for various values of r,,
with ¢ = 0. We see that, for sufficiently low densities, i.e.,
large 7, the extended cusp condition Eq. (5) is satisfied,
but for high densities, it is violated. In Fig. 5, we keep
r, = 0.5, and plot g(u) — g’(u) for various values of (.
We find violations of Eq. (5) for all spin polarizations.

To understand why the extended cusp condition is vio-
lated at high densities, we separate g(u) into its exchange
and correlation contributions,

9(u) = gz (u) + ge(u). (32)

In the high density limit, g.(u) dominates. Now g (u)
varies between 1/2 and 1 on a length scale of order
1/(2kr), and so g.(u) ~ O(2kp). We also know g (u)
must be positive for some value of u. Thus, as kg — oo,
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g(u)—g'(u)

FIG. 4. Plots of g(u) — g'(u) with ( = 0 and v, = 0.5
(lowest line), 7, = 1.0 (middle line), or r, = 5.0 (upper line)
for the uniform gas.

g.(u) becomes very large and positive, while g, (u) = 1,
so that the extended cusp condition is violated. It is
straightforward to check explicitly the well-known for-
mula for g, (u) for the uniform gas [25] to see that it has
these properties.

Note that such considerations do not apply to the cusp
condition at the origin, which the uniform gas does obey.
This is because g,(u) has no cusp at the origin, i.e.,
g-(0) = 0. Here the correlation contribution becomes
significant, and in fact must suffice to fulfill the cusp
condition. Since it is known that, as r, — 0,

9(0) = 3(1-ary), (33)

where a = 2(4/97)'/3 (7% +6In2—3)/(57) for the uniform
electron gas [31,32], and is generally system dependent
[33], we deduce that, for u € 7, K 1,

—ars + u(l — ary) +0(u?) (39)

ge(u) =

2

in the high density limit.

g(u)—g'(u)

FIG. 5. Plots of g(u) — g'(u) with r, = 0.5 and ¢ = 0
(smallest dip), ¢ = 0.5 (middle dip), or ¢ = 1.0 (largest dip)
for the uniform gas.

IV. LONG- AND SHORT-RANGE
CONTRIBUTIONS TO h(u)

The preceding two sections suggest a possible contra-
diction. In Sec. III we showed that, at high densities,
the uniform gas violates the extended cusp condition,
and gave a compelling argument for this result. How-
ever, in Sec. II, we showed that the Hooke’s atom obeys
the extended cusp condition for all values of the spring
force constant, including large values which produce a
very high density. We discuss in the present section a
qualitative difference between these two systems which
explains why one violates the extended cusp condition,
while the other does not.

Recall the separation in Sec. I of h(u) into short- and
long-ranged contributions. Consider how these separate
contributions behave in the high-density limit of a two-
electron system. Again, exchange dominates, but now
9z(u) = 1/2 everywhere. Thus we find, from Egs. (7)-
(10),

h(u) = %hlr(u) = —ho(u). (35)

Clearly, if h(u) then obeys the extended cusp condition,
so also does hy(u); but hg(u)—hl (u) < 0for all w. In the
particular case of the Hooke’s atom, the high density (or
noninteracting) limit is just a pair of three-dimensional
harmonic oscillators. The ground-state wave functions
are simple Gaussians, yielding a density

2 (2\*? 2, 2

n(r)=—| = exp(—2 r*/ug), (36)
3\

where ug = (4/k)'/* is a measure of the radius of the

system. Equation (10) then yields

e (0) = (%)3/2 exp(—u?/ud). (37)

Ug

Now, for u finite (and nonzero) on the scale of uo, we
find h{ (u)/hi:(0) = O(1/uo), which becomes very large
and negative for small uo. But from Eq. (35), he(u) =
—hy(u)/2. Thus the extended cusp condition is obeyed
by the total h(u), but he(u) alone contains an extreme
violation of the extended cusp condition.

We note in passing that, just as in the uniform gas,
the exchange contribution alone violates the exact cusp
condition at the origin, where its derivative vanishes. In
the Appendix we give the details of a perturbation calcu-
lation, in which the Coulomb repulsion is treated to first
order, and show that the leading correlation contribution
restores the cusp condition at the origin, again just as in
the case of the uniform gas.

To compare this high density behavior with that of
the uniform gas, note that the short-range hs (u) behaves
quite similarly in both systems, while k) (u) is very dif-
ferent. In fact, we can make an LSD approximation to
hgr(u) for nonuniform systems, by defining

HEP () = 5 [ nt@)la(ra @), <0~ 1), (38)
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where g[r,(r),{(r), u] is the uniform gas pair distribution
function, r,(r) = [47n(r)/3]~'/3, and {(r) is the relative
spin polarization at r. In Fig. 6, we plot both kg (u) and
hLSD(y) for the high density limit of the Hooke’s atom,
where the density is given by Eq. (36), ¢ = 0, hs(u) is
given by Egs. (35) and (37), and g appearing in Eq. (38)
contains only the exchange contribution. We see that
the LSD approximation is generally good, especially in
regions where h, (u) is large. One of the reasons for its
success is that ASP (u) integrates to —1, just as the exact
her(u) does. Furthermore, for high densities, g(r,,{ =
0,u = 0) = 1/2, so that hLSP(u = 0) = hy (u = 0). (At
lower densities, the LSD value at the origin is expected to
be approximately correct [8].) Note that, while the decay
in hg(u) is due entirely to the falloff in density of the
Hooke’s atom, as its pair distribution function g = 1/2
everywhere, the decay in hLXSP(u) is due to the decay in
the uniform gas value of g — 1.

The above analysis explains why the uniform gas be-
haves so differently from the Hooke’s atom in the high
density limit. In both systems, ks (u) behaves very simi-
larly, developing a large, positive derivative for finite u as
n — oo. However, the Hooke’s atom h'(u) also contains
contributions from h{ (u) due to the density gradient,
which have no analog in the uniform electron gas. These
are sufficient to cancel the contributions from h (u), so
that the extended cusp condition remains valid for this
system.

Another useful separation which highlights the devia-
tions from behavior similar to the uniform gas, and which
may be applied to any system, is

h(w) = ho(w) + ha(u), (39)

where

1 4 aQ,
ho(u) = 3 /d r n(r)/ i n(r + u)[g(r,r + u) — 1]
+%/d3r n(r), (40)

and

FIG. 6. Comparison of he(u) (solid line) and hLSP(u)
(dashed line) for the high-density Hooke’s atom.

ha(w) = & [ @ n) [ B2 [nr +u) - n(@)]. (1)
2 4T

Within the LSD approximation of Eq. (38),
REP(w) = 5 / & n3(x) glra(r),C(r),u]  (42)

is a system average of the uniform gas h(u), which vio-
lates the extended cusp condition Eq. (5) for sufficiently
high densities, and hy(u) is an inhomogeneity correction.
Taylor expansion of n(r + u) to second order in u, and
subsequent integration by parts, gives

ha(u) — kb (w) = -'é/d3r|vn|2 >0, (43)

to first order in u. Thus the ha(u) term by itself satisfies
the extended cusp condition for small u, and so helps h(u)
to satisfy this condition at small u for a rapidly varying
n(r).

Although both hi(r) and ha(r) satisfy the extended
cusp condition for small u, they can still violate it at
large u. For example, consider a system composed of
two fragments, each of radius R, with centers separated
by a distance a >> 2R. If the density of each fragment
vanishes outside its own radius, then hj.(u) vanishes for
2R < u < a — 2R, but rises again as u exceeds a — 2R,
making hy(u) — b (u) < 0 for v =~ a — 2R.

V. CONCLUSIONS

Clearly, the most important conclusion from this work
is that the extended cusp condition is not true for the
ground state of all inhomogeneous systems. It may be
true in more limited cases, e.g., for all two-electron sys-
tems, or perhaps for all atoms and ions. We can ex-
pect violations of the extended cusp condition in sys-
tems which have sufficiently large and slowly varying
densities. This is not the case for the high-density limit
of few-electron ions, where the density never becomes
nearly uniform. For the Hooke’s atom discussed here, Eq.
(36) shows that the density always varies on the length
scale ug, the “radius” of the atom. We also showed that
unimodality is trivially not obeyed by the uniform gas.
These examples illustrate the danger of assuming that
conditions which are obeyed by specific classes of sys-
tems can be transferred to all inhomogeneous electron
systems.
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APPENDIX

In this Appendix, we show how the leading corrections
to the high-density limit of the Hooke’s atom ensure that
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h(u) obeys the cusp condition at the origin. We treat
the Coulomb repulsion as a weak perturbation on the
noninteracting system, and write

h(u) = KO () + RO () + -, (A1)
where the superscripts label powers of e2. By expanding
the definition of h(u), Egs. (1) and (2), we find

where the subscripts label the particular eigenstate, e.g.,
0 labels the ground state, and R = (ry + r2)/2 is the
center-of-mass coordinate. The leading correction to the
ground-state wave function may be expanded in terms of
the excited states of the unperturbed system in the usual
way:

/ &R 2Re[T"" (u, R)T (u, R))],

(A2)

oV (u,R) = Y e, ¥ (u,R), (A3)

v#0

where v labels all the noninteracting system eigenstates,
and

- 2
= / d*u / d*R ¥\ (u, R)%\I:f}‘)(u, R)/(Eo — E,),
(A4)

where E, is the eigenvalue of the vth noninteracting
state. Since both the potential e?/u and the ground
state are spherically symmetric in u, and the potential
is independent of R, the only nonzero values of ¢, are
those corresponding to spherically symmetric states in
u, and the ground state in R. We label these nonzero
coeflicients with the u radial quantum number n. Then
Ey— E, =3w/2 - (2n + 3/2)w = —2nw, and

2 [e <]
o= -2 A du u 63(u) én(u), (A5)

where the state ¢,(u) is the nth spherically symmetric
eigenstate of a three dimensional oscillator with reduced
mass g = 1/2, and is given by [34]

(1/2) u? —u?/2u2
¢n(u) = b, L, (E) e o, (AS)

0

where L/ 2)(93) is the associated Laguerre polynomial

of order 1/2 [35], and the normalization constant by, is
given by b, = [n!/(27T(n + 3/2)ul)] Y2 The integral
appearing in Eq. (A5) may be easily evaluated using the
generating function for these polynomials [35], and we
find

0o v(2n+1)!/x

n (2n + 1) 2n+1’

Cn=—

(A7)

Inserting this result in Eq. (A2), we find that the first
correction to the angle-averaged pair density has the form
—ug b (u) f(u/uo),

A0 (u) = (A8)

where

1 LY/ (:c )
fle) = N Z @n+1)

The individual Laguerre polynomials in the sum in Eq.
(A9) each have a well-defined Taylor expansion about the
origin. However, the sum does not, as may be seen by
performing the expansion, and finding that the coefficient
of z2 is a diverging sum. We may still extract the cusp
contribution by use of the following identity:

(A9)

2 e LS),I/Z) 2
2 @)

VT = 1—4n? ’

which can be proven using the generating function [35].
Note that the coefficients in this sum decay as (—1/2n?)
for large n, the same behavior as in f(z). We can there-
fore deduce that f(x) indeed contains a term linear in
z, and can find its contribution analytically by subtract-
ing z and adding the sum on the right-hand side of Eq.
(A10). This yields

(A10)

fa)= L _po Ly @)
a2 n(n—1/2)

(A11)

Because the coefficients in the sum now fall off more
rapidly for large n, that term in Eq. (A11) contains no
linear contribution.

Finally, we insert this form of f(z) into Eq. (A8) and
consider small values of u. Since df /de = —1 at z = 0,
we find that the cusp condition at the origin, Eq. (4), is
indeed obeyed to leading order in .
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