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A mathematical framework is constructed for the sum of the lowest N eigenvalues of a po-

tential. Exactness is illustrated on several one-dimensional systems (harmonic oscillator,

particle in a box, and Poschl-Teller well). Semiclassical expansion yields the leading cor-

rections for finite systems, identifying the error in common gradient expansions in density

functional theory. Some singularities can be avoided when evaluating the correction to the

leading term. Correcting the error in the gradient expansion greatly improves accuracy.

The relevance to practical density functional calculations is discussed.

1

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
02

28
7



Leading correction to the local density approximation of the kinetic energy in one dimension

In the tens of thousands of density functional calculations published annually1, most employ the

gradient of the density to estimate the exchange-correlation energy of the Kohn-Sham equations2.

Such approximations begin from the gradient expansion of a slowly-varying electron gas3, which

is then ‘generalized’ to an integral over an energy density with some function of the density

gradient4. The first such attempt came already in 1968 when Ma and Bruckner showed that se-

vere problems applying this gradient expansion approximation (GEA) for the correlation energy

to atoms could be overcome by this procedure5. Since then, a variety of procedures and philoso-

phies have been used to construct such generalized gradient approximations (GGAs)6 and other

more sophisticated constructions7. Some GGA’s are more accurate and popular in chemistry8,9,

while others work better for (weakly correlated) materials10. This diversity reflects the ambiguity

in their derivation. The older, simpler local density approximation2,11, is uniquely determined by

the energy of the uniform electron gas12,13.

Long ago, Lieb and Simon proved that, for any electronic system, the relative error in Thomas-

Fermi theory vanishes in a well-defined semiclassical limit in which the particle number tends

to infinity14–16. Much work since then studies corrections to this limit order-by-order, including

extensions of Thomas-Fermi theory17. Such work is sometimes limited to atoms where spheri-

cal symmetry simplifies the situation. Englert beautifully summarized work with Schwinger on

this subject17,18. However, this problem is complicated by the interaction between electrons, the

Coulomb attraction to nuclei, and the complexities of semiclassics in three dimensions.

The present work studies the origin of the errors in applying the gradient expansion in the sim-

plest relevant case, namely the kinetic energy of non-interacting electrons in one dimension. This

is not of quantitative relevance to realistic electronic structure calculations. The primary purpose

is the construction of a mathematical framework in which this question can be directly addressed,

and the errors of the gradient expansion explicitly identified and calculated in a systematic ex-

pansion in powers of h̄. We show that, for simple model cases, the formalism is exact, and also

calculate the order-by-order expansion, finding great quantitative improvements in energies when

the corrections are accounted for. We discuss the nature of these corrections and how they might

be incorporated in density functional approximations.

Consider a symmetric potential v(x), with zero chosen so that v(0) = 0, and which could tend to

D, the well-depth, at large x. Let ε j be the eigenvalues of the Schrödinger equation, using (Hartree)

atomic units (setting m = h̄ = 1), and let M be the highest bound state if there is one. The number
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Leading correction to the local density approximation of the kinetic energy in one dimension

staircase is

Ne(ε) =
M

∑
j=1

Θ(ε− ε j), (1)

where Θ(x) is the Heaviside step function, i.e., this is the number of states with ε j < ε . Next,

consider a smooth monotonic function I(ε) such that

I(ε j) = j̄ (2)

where j̄ = j− 1/2. The 1/2 comes from the Maslov index for two turning points19. As h̄→ 0,

a possible I(ε) is the classical action across the well, divided by π . We also define ε(y) as the

inverse of I, so that ε j = ε( j̄). Then

Ne(ε) = bI(ε)+
1
2
c, (3)

where bxc is the highest positive integer less than x, so N is the nearest integer to I. Next, define

the periodic function

〈x〉= x−bx+ 1
2
c, (4)

so that

Ne(ε) = I(ε)−〈I(ε)〉. (5)

To invert Ne(ε), we turn on a temperature that is much smaller than any energy or difference:

Nβ (ε) =
M

∑
j=1

f (β (ε− ε j)), (6)

where f−1(x) = 1 + exp(−x) and β is inversely proportional to temperature. We then define

µβ (N ) as the inverse of Nβ , N ∈ R. For any finite temperature, µβ (N ) exists and is well-

defined. We take β → ∞ at the end of the derivations and stop mentioning the temperature explic-

itly.

Fig. 1 illustrates these functions for a Poschl-Teller well with D = 5/2 (see below). The

smooth I(ε) generates the staircase Ne(ε), whose steps are rounded by the temperature, making it

invertible. The difference has a sawtooth shape, crossing zero at the eigenvalues, so that Ne = I

when both are (half)-integers.

We wish to develop an expression for the sum of the eigenvalues, which would be the total

energy of N same-spin fermions in the well. Define the energy staircase:

S(ε) =
M

∑
j=1

ε j Θ(ε− ε j), (7)
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Leading correction to the local density approximation of the kinetic energy in one dimension
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FIG. 1. Number staircase (black), smooth I(ε) (red), and their difference 〈I(ε)〉 (blue) for a Poschl-Teller

well binding two states, rounded by a temperature of 0.01.
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FIG. 2. Energy staircase as a function of N (black), the integer interpolation of Eq. (14) (cyan), continuous

contribution, N ε(N )− J(N ) (red), and discontinuous contribution Gdisc (blue) for the same system as

Fig. 1 (zero temperature).

i.e., the sum of eigenvalues with energy below ε . It will be especially useful to consider:

G(ε) =
∫

ε

−∞

dε
′Ne(ε

′) =
∫

ε

−∞

dε
′ bI(ε ′)+ 1

2
c, (8)

and a well-known semiclassical result is20

S(ε) = ε Ne(ε)−G(ε), (9)

i.e., Ne(ε) determines the energy staircase. But we really want S as a function of continuous

number, N , which is

S(N ) = S(µ(N )) = N µ(N )−G(µ(N )). (10)
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Leading correction to the local density approximation of the kinetic energy in one dimension

This expression is well-defined for continuous values of non-negative N (for non-zero temper-

ature). As the temperature goes to zero, it becomes piece-wise linear, with changes of slope at

integer values of N , so that knowledge at integer values is sufficient to determine the whole

function. Both µ(N ) and G(µ(N )) have step-like features, yielding

S(N ) = SN +(N −N)εN+1, N = bN c. (11)

Note that µ(N )= ε(N) for integers, where ε = I−1, i.e., the discontinuous contributions in µ(N )

vanish identically at integers, so they are not needed to find SN . Moreover, we change variables in

the integration in G. If y = I(ε), then

SN = Nε(N)−G(N), G(N) =
∫ N

0

dy
I′(y)

(y−〈y〉), (12)

where I′ = dI/dε and only the last term requires an integral over oscillations. Eq. (12) is a central

result, providing the machinery to construct the sum of the eigenvalues directly from I(ε), in

continuous and discontinuous contributions. We define the first continuous term in G as

J(ε) =
∫

ε

ε(0)
dε
′ I(ε ′), Gdisc(N) = J(N)−G(N). (13)

The value of ε(0), negative in Fig. 1, is irrelevant to G(N), as the step function vanishes for

arguments less than 1/2, but not to J(N) or Gdisc(N). Because J′ = I, SN is fully determined by

J(ε). Changing variables to ε(y) and integrating by parts yields the more succinct21

SII(N ) =
∫ N

0
dy
{

ε(y)+ ε
′(y)〈y〉

}
, (14)

where II denotes integer-interpolation, i.e., a quantity that matches S at integers, but may differ

inbetween. Fig. 2 plots quantities versus N for a PT well, showing that Eq. (14) agrees with

S(N ) only at (half)-integers.

A harmonic oscillator is instructive. Here I(ε) = ε/ω , so ε(y) = yω , I′ = 1/ω , J = ωN2/2,

and Gdisc vanishes because the average of 〈y〉 over one period vanishes if I′ is constant. For a

particle in an infinite well,

I(ε) =
L
√

2ε

π
− 1

2
. (15)

Then µ(N) = π2(N +1/2)2/(2L2) and 1/I′ = π2(y+1/2)/L2. Then J(N ) is trivial to integrate

but, because I′ varies, Gdisc does not vanish:

Gdisc(N) =
π2

L2

∫ N

0
dy(y+

1
2
)〈y〉 (16)
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Leading correction to the local density approximation of the kinetic energy in one dimension

The constant term gives no contribution, while the integral over y〈y〉 is −N/24, producing the

exact answer SN = π2N(N2+3N/2+1/2)/(6L2). A less trivial example is the Poschl-Teller well

of depth D:

v(x) = D−D/cosh2(x). (17)

Writing αe =
√

2D+1/4, then

I(ε) = αe−
√

2(D− ε), (18)

yielding the eigenvalues

ε j = D− (αe− j̄)2/2, j̄ < αe. (19)

The simple result I′ = 1/(αe− I) makes the calculation easy, using the same integral over 〈y〉 as

before, giving

SPT
N =

αe

2
N2− N3

6
− N

12
. (20)

So far, this result might be considered a simple tautology. Its real use comes when a semiclas-

sical expansion is performed. We multiply h̄ by a dimensionless number η , and consider the limit

as η → 0. Elementary analysis shows ε
(η)
j [v] = η2 ε j

[
v/η2] and, as η → 0,

I(η)[v](ε) = I
[

v
η2

](
ε

η2

)
=

I(0)[v]
η

+η ∆I(2)[v]+ ..., (21)

where the expansion is known from WKB theory22. Here

I(0)[v] =
∫

∞

−∞

dx
p(x)

π
(22)

is the classical action divided by π , p(x) is the real part of the local classical momentum,√
2(ε− v(x)), and yields the (zero-order) WKB eigenvalues. As ε(0)(0) = 0,

J(0)(ε) =
∫

∞

−∞

dx
p3(x)

3
. (23)

The WKB expansion is an expansion of individual eigenvalues in powers of η , keeping η j̄

fixed, but the expansion of S(η)(N ) keeps ηN fixed. One can both sum the WKB values to

compare with SN and also compare SN − SN−1 with the N-th WKB eigenvalue. In general, these

differ order-by-order (but infinite sums are identical). For example, summing WKB eigenvalues

for the PT well produces an additional N/24 relative to S(0)(N). For N > 1, we expect the expan-

sion of S(N) to outperform the sum of WKB eigenvalues to the same order, as the semiclassical

approximation is used only at N, and not at each individual j up to N, where it should be less

accurate.

6

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
02

28
7



Leading correction to the local density approximation of the kinetic energy in one dimension

The leading correction is trickier to evaluate, due to a singularity as the turning points are

approached. Define

B(ε,a) =
∫ b(ε)−a

0
dx

v′′

p3(ε,x)
(24)

where b(ε) is the turning point at energy ε , 0 < a < b(ε). As a→ 0, a singularity develops which

must be cancelled:

∆I(2)(ε,a) =
1

12π

(
B(ε,a)+

b′′

b′
√

2ab′

)
, (25)

and ∆I(2)(ε) is found by taking a→ 0. This cumbersome procedure can be elegantly avoided

by an integral over a contour surrounding the turning points22. Higher-order terms involve even

stronger singularities. For a harmonic oscillator, Dunham23 showed that all higher-order terms are

identically zero, so that WKB yields the exact answers. Likewise for a particle in a box, as all

derivatives of v vanish, but ∆I(2) = 1/(8
√

2D) for PT.

But we can instead evaluate the expansion for J(ε) and perform the energy integration before

the spatial integral24. Consider

Aδ (ε) =
∫

ε

δ

dε
′
∫ b(ε ′−δ )

−b(ε ′−δ )
dx

v′′(x)
p3(ε ′,x)

, (26)

where b(ε) is the turning point at energy ε . For positive δ , this has no singularities and the order

of integration can be reversed. As δ → 0, a singular term appears (of order 1/
√

δ ) which cancels

that of Eq. (25). Thus

∆J(2)(ε) = lim
δ→0

∫
ε

δ

dε
′
∆I(2)(ε ′,v′(b)δ ) =− 1

12π

∫ b

0
dx

v′′

p
. (27)

Because of the oscillation, Gdisc is already of higher-order than the continuous terms. Thus

G(2)
disc(N) =

∫ N

0
dy〈y〉 dε(0)

dy
(28)

Because of the periodicity of 〈y〉, only the endpoints contribute to the integral as η → 0, yielding

G(2)
disc(N) =− 1

24
dε(0)

dy

∣∣∣N
0
. (29)

Expanding ε(N) to second order in J(0) yields

∆S(2)N =−∆J(2)(ε(0)(N))+G(2)
disc(N) (30)

which is N2/(16(
√

2D))−N/12 for the PT well.
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Leading correction to the local density approximation of the kinetic energy in one dimension

Finally, we are ready to connect with density functional theory (DFT). For 1d same-spin non-

interacting fermions in a slowly-varying potential in an extended system, there is a well-known

expansion of both the density n(x) and kinetic energy T in gradients of the potential25:

n(0)(x) =
pF(x)

π
, ∆n(2)(x) =

v′′(x)
12π p3

F(x)
, (31)

and

T (0) =
∫

dx
p3

F(x)
6π

, ∆T (2) =
∫

dx
v′′(x)

8π pF(x)
, (32)

where pF(x) = p(εF,x) and
∫

dxn(x) = N determines εF. Zero-order is Thomas-Fermi (TF) the-

ory and 2nd order is the gradient expansion. The combination N εF(N )− S(N ) yields T (0)−

2∆T (2)/3, agreeing with the semiclassical expansion of J, showing

S(2)[v] = SGEA[v]+G(2)
disc[v], (33)

where GEA denotes (2nd-order) gradient expansion approximation. The semiclassical expansion

for SN reduces to the gradient expansion for extended systems, where the sawtooth contribution

vanishes. But G(2)
disc produces the exact leading-order correction to the local approximation for

finite systems.

TABLE I. Energy sums for a PT well of D = 9.555 and errors of DFT approximations in milliHartree on

left; errors in eigenvalues on the right. TF is the leading order, GEA is 2nd-order without discontinuous

contributions, 2nd includes them, and 4th-order does also. WKB agrees with SN at 2nd-order.

Error x 1000 Error x 1000

N SN TF GEA 2nd 4th εN WKB ∆TF ∆2nd

1 1.95 69 -42 0.0 -0.000 1.95 111 69 0.0

2 7.30 110 -83 0.2 -0.001 5.35 82 41 0.1

3 15.05 122 -125 0.4 -0.003 7.75 54 12 0.2

4 24.20 105 -166 0.7 -0.005 9.15 25 -16 0.3

Some results for a generic Poschl-Teller well with αe = 4.4 are given in Table I. The left side

gives errors for the sum of eigenvalues, the right for the individual levels. The 2nd column of

errors on the left shows the result of the 2nd-order GEA, which sometimes worsens results relative

to TF theory. But inclusion of the correction reduces those errors by two orders of magnitude. Ad-

dition of the next order reduces the errors to the microHartree range. Deeper wells are even more

8

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
02

28
7



Leading correction to the local density approximation of the kinetic energy in one dimension

favorable. Switching to the right side, for this well even the eigenvalues are better approximated

by differences in the sums within TF theory, but comparison of their second-order contributions

shows that, in the asymptotic limit, WKB will have smaller errors than ∆TF for the top 1/6 th of

the levels. Table II repeats this calculation for D = 1, which binds one particle with energy −1/2

TABLE II. Same as Table I, but with D = 1.

Error x 1000 Error x 1000

N SN TF GEA 2nd 4th εN WKB ∆TF ∆2nd

1 0.50 40 -40 1 -0.08 0.50 82 40 1

2 1.50 -5 -78 5 -0.32 1.00 -4 -45 4

relative to the outside, and has a second level right at threshold, far from the semiclassical limit.

The trends are the same, but errors are greater, and WKB does better for the eigenvalue at the top

of the well.

Lastly, consider density functionals. Simply invert Eq. (31) and insert the result into Eq. (32)

to find26

T GEA[n] =
π2

6

∫
dxn3(x)− 1

24

∫
dx

n′(x)2

n
. (34)

It is straightforward to convert Eq. (29) into a functional of the TF density for the present circum-

stances. For potentials with a parabolic minimum at the origin:

G(2)
disc[n

(0)] =
1

24

(
π2

C
−π

√
n(0)(0) |n(0)′′(0)|

)
, (35)

where

C =
∫

∞

−∞

dx
n(0)(x)

. (36)

Thus G(2)
disc contains both highly local and non-local contributions (integrals over local functionals).

Inserting the TF density for the PT well correctly yields N/24. Eq. (35) looks like no local

correction currently in the literature; it has been derived, not devised.

The local density approximation applies to almost all situations. The potential functional cor-

rection to GEA of Eq. (29) applies to many circumstances, such as semi-infinite systems with

surfaces, where the Maslov index differs, but must be generalized for e.g., multiple wells. On the

other hand, when converted to a density functional, Eq. (35), the form of the functional depends

even further on the general class of problem. For example the form differs from Eq. (35) for

v(x) = |x|.
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Leading correction to the local density approximation of the kinetic energy in one dimension

No general prescription was given for finding I(ε). For the DFT results, one needs only its

well-defined asymptotic expansion. For simple model systems, the formulas used here suffice.

But adding any other function that vanishes at the eigenvalues generates equally viable candidates.

Different I(ε) yield different continuous and discontinuous contributions, but still yield the exact

sums.

Many phenomena in DFT have a simple analog within this 1d world, as shown by two ex-

amples. The first is the well-known inaccuracy of functional derivatives of reasonably accurate

semilocal approximations for the energy27. This infamous misbehavior of the LDA XC potential

leads to highly inaccurate KS orbital eigenvalues. The analog here is N-particle density

ρ(x) =
δSN [v]
δv(x)

. (37)

The archetype in 1d is the harmonic oscillator in TF theory, which yields the exact eigenenergies

(and their sums), but whose density is highly inaccurate. The local approximation is exact for the

harmonic potential, but not when small point-wise changes are made, as in Eq. (37). Only smooth

changes in the potential should be expected to be correct in a local theory (the first four moments

(0-3) of the TF density of the oscillator are exact!). Including the second-order correction yields

densities that are singular at the turning points. This simply reflects the incompatibility of the

order of limits, by expanding in h̄ before differentiating.

The second is the well-known difficulty of semilocal functionals when bonds are stretched, a

specific type of strong correlation28. Their failure has been traced to a delocalization error, and

related to curvatures of E versus N . The same error shows up more strongly for the 1d kinetic

energy. For one particle in two well-separated identical potentials, half the density ends up in each,

leading to a factor of 4 reduction in the kinetic energy relative to the one-well result. However, a

model for the double well is

Idouble(ε)≈ Isingle(ε)+
M

∑
j=1

Θβ (ε− ε j) (38)

where β is now a fixed large number, chosen to mimic the energy splitting between even and odd

levels. The local approximation is much smoother

I(0)double(ε) = 2 I(0)single(ε) (39)

and produces a huge overestimate for j = 1. In fact, the equivalence of TF and WKB approxima-

tions breaks down, as there are now four turning points, leading to ambiguities analogous to the

symmetry dilemma29 for stretched H2.
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Leading correction to the local density approximation of the kinetic energy in one dimension

The expansion considered here is the analog of the standard Lieb-Simon (or Thomas-Fermi)

expansion as Z→ ∞ of neutral atoms17. (Interacting) TF theory yields the dominant term, just as

here, but the next two terms (Scott correction and Z5/3 contribution) differ, due to the Coulomb

potential, Coulomb interaction, and three dimensions. However, like those terms, one contribution

to the leading correction is given by the gradient expansion, and the other involves a difference

between a term evaluated at the highest occupied level and at the bottom of the well.

The present work represents a culmination of a series of earlier works30–32 which focused on

finding the density as a functional of the potential, but failed to yield systematically improved

kinetic energies33. The earlier results should prove useful when understood in the present context.

While model results are not directly relevant to realistic calculations, the understanding achieved

from previous studies has already had significant practical impact: the derivation of the parameter

in the B88 functional34, an exact condition in PBEsol35 three exact conditions in the SCAN meta-

GGA7, and the recently improved GGA correlation energy36.

This paper is aimed at the implications of this framework for DFT. Related work focuses on

higher-order asymptotics of these sum formulas21. The power of modern asymptotic analysis has

recently been demonstrated37 on v = |x|, finding contributions that are beyond all finite powers

in the semiclassical expansion, with errors of 0.1 mH for just the 2nd level. It is of tremendous

interest to apply this machinery in three dimensions and to interacting systems.
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