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ABSTRACT: A simple approximate solution to the linear response equations of
time-dependent density functional theory (TDDFT) is given. This extends the single-pole
approximation (SPA) to two strongly coupled poles. The analysis provides both an
illustration of how TDDFT works when strong exchange-correlation effects are present and
insight into such corrections. For example, interaction can cause a transition to vanish
entirely from the optical spectrum. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem 106:
2840–2847, 2006
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1. Introduction

G round-state density functional theory (DFT)
has been very successful for atoms, molecules,

and solids [1,2]. Similar success is now being enjoyed
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by time-dependent DFT (TDDFT) [3,4], because of its
combination of accuracy combined with low compu-
tational cost [5]. While TDDFT has a huge variety of
applications [6], it is low-lying photo-excitations of
molecules that has seen its greatest use [5].

In the present work, we restrict our discussion
to linear response of a nondegenerate ground state.
Just as in ground-state DFT, all many-body effects,
i.e., exchange and correlation (XC), are contained
in a well-defined functional, the XC kernel [7]. In
any practical calculation, this functional must be
approximated. In most calculations, an adiabatic
approximation is made, and the static limit of the
kernel is applied. Typical approximations are the
adiabatic local density approximation (ALDA) [7]
or generalized gradient approximation, or exact
exchange [8–10]. The reliability and accuracy of
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these approximations to TDDFT is much less well
understood than it is in ground-state DFT.

One can do many calculations on many systems,
in order to gain insight into the accuracy and reli-
ability of theory, but it can be much more effective
to develop simple approximations to the solution of
the TDDFT response problem [11]. A classic example
is the single-pole approximation [12], within which
TDDFT yields a simple correction to the KS transi-
tion frequencies which is just the expectation value
of the Hartree–XC kernel on the transition orbitals.
While usually accurate [11], the most important fea-
ture of this approximation is the insight it yields into
the workings of TDDFT. It yields a first approxima-
tion to TDDFT effects with almost no extra effort
beyond a ground-state calculation, and gives a sim-
ple picture for such effects [13]. It has also been
shown [11] that, if a transition is only weakly coupled
to others in the system, one can use this to estimate
the XC kernel itself. Unfortunately, this is rarely the
case in practice.

In the present work, we generalize the SPA to
a double-pole approximation (DPA), in which we
explicitly solve the TDDFT response equations for
exactly two transitions. This produces a variety
of results beyond that of SPA. Most importantly,
one can study TDDFT XC corrections to KS lev-
els when there is strong coupling between levels.
But one can also see when SPA fails, and recover
Görling–Levy perturbation theory [14] results for the
coupling-constant expansion of excited states [11].
DPA has recently been applied successfully to core–
hole interaction in the x-ray absorption spectroscopy
of three-dimensional (3D) transition metals [15].

2. Double-Pole Approximation

In the matrix formulation of the TDDFT response
equation within the adiabatic approximation, the
exact eigenvalues and oscillator strengths can be
obtained from the solution of the following eigen-
value problem [16]:∑

q′
Wqq′(�) vq′ = �2 vq, (1)

where the matrix W is given by

Wqq′(�) = ω2
q δqq′ + 4

√
ωq ωq′ Mqq′(�) (2)

and

Mqq′(�) =
∫

d3r
∫

d3r′ �∗
q(r) K(rr′�) �q′(r′). (3)

Here ωi is the Kohn–Sham transition frequency,
and for single-particle transitions q (q ≡ k → j)
the shorthand �q(r) := ϕk(r)ϕ∗

j (r) has been intro-
duced. The kernel K(r, r ′, ω) consists of the bare
Coulomb interaction and the approximate XC kernel
fXC(r, r′, ω):

K(r, r′, ω) = 1
|r − r′| + fXC(r, r′, ω). (4)

Atomic units (e2 = � = m = 1) are used throughout.
We now solve these equations exactly for a 2 × 2

system, i.e., ignoring coupling to all other tran-
sitions. To simplify the discussion, we assume a
frequency independent kernel and real orbitals, i.e.
Mqq′ = Mq′q. Thus, the relation between matrix ele-
ments of Casida’s equation and the kernel is

Wii = ω2
i + 4 ωi Mii, W12 = 4

√
ω1ω2 M12. (5)

Next define the average

W = 1
2

(W11 + W22) (6)

and difference

�W = W22 − W11 (7)

of the diagonal elements. We define a mixing angle
by:

tan θ = 2 W12

�W
, (8)

choosing the branch between 0 and π . The eigenval-
ues can then be written succinctly as

�2
± = W ± 1

2
�W
cos θ

, (9)

while the normalized eigenvectors are

�v+ =
(

sin θ

2

cos θ

2

)
, �v− =

(− cos θ

2

sin θ

2

)
. (10)

The physical oscillator strength can be obtained from
the following expression [16]

f± = 2
3

|�xT S− 1
2 �v±|2, (11)

where

S− 1
2 =

(√
ω1 0
0

√
ω2

)
, �x =

(
xKS

1

xKS
2

)
, (12)
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and the xKS
j denote dipole matrix elements of KS

orbitals. Given that there are only two transitions, we
give a geometric meaning to the oscillator strengths.
Writing

f KS
1 = sin2 αKS, f KS

2 = cos2 αKS (13)

and

f− = sin2 α, f+ = cos2 α, (14)

we find

α = αKS − θ/2, (15)

i.e., the oscillator strengths are represented by a
unit vector in 2D space, and the coupling merely
rotates this vector. Note that the Thomas–Reiche–
Kuhn (TRK) sum rule (sum of the oscillator strengths
is 1) is obviously preserved.

3. Single-Pole Approximation

As mentioned above, the single-pole approxima-
tion is a useful approximation to TDDFT results.
We recover SPA results by inserting θ = 0 in our
formulas. Thus

�SPA
± =

√
W ± �W

2
(16)

and the oscillator strengths reduce to their KS values.
We can now study the leading corrections to SPA

produced by DPA when the coupling between poles
is weak. Writing η = W12/�W, and assuming η � 1,
for the eigenvalues, we find

�± = �SPA
± ± W12

2 �SPA±
η + O(η2), (17)

while for the oscillator strengths, we have

f+ = f KS
2 + 2η

√
f KS
1 f KS

2 + O(η2),

f− = f KS
1 − 2η

√
f KS
2 f KS

1 + O(η2). (18)

Note that the corrections to the peak positions are
second order in W12, while the corrections to

√
f± are

first order. Thus SPA is expected to be much better
for peak positions than for peak heights.

Last, we point out that this expansion was
deduced for the general case in Ref. [11], and used
(among other things) to identify coefficients in the

Görling–Levy expansion of excited-state energies.
Our results here agree with those, but in the spe-
cial case of transitions to which DPA applies, yield
results that include a resummation of all orders in
the adiabatic coupling constant of DFT.

4. High-Frequency Limit

So far we have given exact results for the double-
pole approximation. However, in many cases where
DPA applies, there is a further simplification. Usu-
ally the two transitions are closer to each other than
any others that couple to the pair. If in addition
their frequency difference is small relative to their
mean frequency, for both the interacting and KS
systems, i.e.,

�, ω � ��, �ω, (19)

we find much simpler results, which are very useful
for interpretation.

The SPA discussed above reduces to

�SPA
± = ωi + 2 Mii, (i = 1, 2). (20)

In fact, the original SPA was applied for just a for-
ward transition, yielding exactly this result [12]. In
general, the symmetric result (sometimes called the
small-matrix approximation [17, 18]) is preferable.
We use the term SPA to mean the symmetric result
throughout this paper.

The mixing angle is given by

tan θ = 4M12

��SPA
, (21)

i.e., it is the ratio of the off-diagonal matrix elements
of the kernel on the scale of the separation in SPA
that matters. We find

�± = �SPA ± ��SPA

2 cos θ
. (22)

SPA yields the correct average position of the two
lines, but their splitting is greater than SPA predicts
(level repulsion).

5. Illustrations

To illustrate our results, consider a weak lower-
frequency transition (ω1 = 9 eV, f KS

1 = 1/10) and a
strong higher-frequency transition (ω2 = 12 eV, f KS

2 =
9/10). We imagine these have significant diagonal

2842 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 106, NO. 14



DOUBLE-POLE APPROXIMATION IN TDDFT

FIGURE 1. Interacting and Kohn–Sham spectra as
function of frequency (ω1 = 9 eV, M12 = 0.2 eV).

kernel matrix elements M11 = 3 eV, M22 = 2 eV,
but are not strongly coupled to one another, M12 =
0.2 eV. We have plotted the interacting and KS
spectra in Figure 1. The peaks are Lorentzians of
width 0.2, mimicking a measurement of finite reso-
lution. Because the coupling is weak, the single-pole
approximation is excellent and accurately predicts
the large shifts in positions. However, SPA wrongly
predicts no variation in oscillator strength. In fact,
one can see from the figure that the first peak has
actually lost intensity relative to its KS value.

In the rest of this section, we explore what hap-
pens in the DPA model of TDDFT. To emphasize
that it is not the absolute magnitude of the off-
diagonal matrix element that is significant, but rather
its strength relative to the separation between the
peaks, we now consider all the same parameters,
but imagine increasing ω1. Figure 2, plots the mixing

FIGURE 2. Scaled coupling angle θ/π as function of
the position of the lower transition.

angle as a function of ω1. At ωc = 2 (−3 + √
69) eV

≈ 10.61 eV, the diagonal matrix elements Wii match,
so that �W = 0 and θ = π/2. At that point, the
peaks are a 50:50 mixture of the two KS levels. In that
region, the levels are strongly coupled, and the spec-
trum distorts mightily from its KS shape. The width
of the transition region can be defined as the change
in frequency needed to bring θ from π/4 to 3π/4,
and, from Eq. (21) in the high-frequency limit, is seen
to be 4M12 = 0.8 eV here, i.e., proportional to the
off-diagonal element, but quite a bit larger. More sig-
nificantly, there are tails in the transition that decay
extremely slowly with pole separation. On the con-
trary, SPAyields a function that steps from 0 to 1 at ωc.

To see this, in Figure 3, we plot the interacting lev-
els �± as a function of ω1, and observe the avoided
crossing. Note that straight line plots, extrapolated
from the limits where ω1 is either far above or far
below ωc, yield extremely accurate results almost
everywhere. This is the SPA result. In fact, from Eqs.
(9) and (16), we see that the crossover point is exactly
given by SPA. Moreover, in the high-frequency limit,
Eqs. (20)–(22) yield

|��|2 = |��SPA|2 + 16 |M12|2. (23)

So if the off-diagonal matrix elements are small rela-
tive to the SPA separation, the true separation is not
much greater; the closest the two levels come is a
separation of 4 |M12|, i.e., they never cross.

But in Figure 4, we plot the associated oscilla-
tor strengths. The effect of coupling is extremely
dramatic. Note first that, for ω1 below the strong cou-
pling region, the bigger peak is enhanced above its
KS value, and the smaller one reduced. This is pole

FIGURE 3. Interacting and Kohn–Sham excitation
energies as function of ω1.
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FIGURE 4. Oscillator strengths as function of ω1.

repulsion, and it is even considered very far from the
strong coupling region. This effect is entirely miss-
ing from SPA. Next we see that there is even a critical
value ωd (d for dark) at which f− = 0 exactly. This
means the lower peak disappears entirely, and all
strength is in the upper peak (Fig. 5). From Eqs. (15)
and (21), we find

��SPA = g(αKS) |M12| (f1 = 0), (24)

where g(α) = 4/ tan 2α = 16/3 for f KS
1 = 0.1, as is

the case here. This yields 8.93 eV, whereas the exact
result is 9.90 eV.

By increasing ω1 just a little more, we come to the
position of the avoided crossing ωc (c for crossing),
where θ = π/2. In fact, Eqs. (13)–(15) yield here

f± = 1
2

± 〈f KS〉, (25)

FIGURE 5. Interacting and Kohn–Sham spectra at the
critical value ω1 = ωd ≈ 9.90 eV. All intensity is in the
upper transition.

FIGURE 6. Interacting and Kohn–Sham spectra for
ω1 = ωc ≈ 10.61 eV.

where 〈f KS〉 denotes the geometric mean,
√

f KS
1 f KS

2 .
In our case, this yields f− = 0.2 and f+ = 0.8,
respectively, giving the lower peak double its KS
weight. Figure 6 shows the spectrum for ω1 = ωc,
and observe how much it differs from its KS dop-
pelganger. There appears to be only one peak, but
in fact there are still two, although the broadening
obscures this. They are very close together.

The final interesting point is ωe (e for equal), where
the interacting oscillator strengths equal, i.e., both
are 1/2. At the equality point, α = π/4, and so θ =
π/2 − 2αKS. Again using the high-frequency limit,
Eq. (21), yields

��SPA = −4 M12 cot(2αKS), (26)

i.e., the same distance above the crossing point, as
the amount the point f− = 0 is below. This yields

FIGURE 7. Interacting and Kohn–Sham spectra for
ω1 = ωe ≈ 11.02 eV, producing equal interacting
oscillator strengths.
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FIGURE 8. Interacting and Kohn–Sham spectra for
ω1 = 13 eV.

12.29 eV, whereas the exact number is 11.02 eV
(Fig. 7).

Finally, in Figure 8, we consider ω1 = 13 eV. Now
the oscillator strengths have returned (almost) to
their KS values, but + and − have been reversed.
Lastly, we demonstrate the dependence of these
results on the strength of M12 relative to the diag-
onal elements. We have so far presented only the
case M12 � Mii. But we have argued that it is only
the ratio |M12|/��SPA that matters. Thus, increas-
ing M12 does not change the shape of the curves
(around the turnover point), but only changes the
scale on which the action takes place. In Figure 9, we
change M12 to 1 eV and 2.5 eV, and see this occur.
Since the turnover occurs on a scale of about 4|M12|,
almost the entire region has strong coupling for
M12 = 2.5 eV.

FIGURE 9. Scaled coupling angle θ/π as function of
ω1. The plot compares three different regimes for the
off-diagonal matrix element M12.

FIGURE 10. Same as Fig. 4, but for the case
M12 = 1.0 eV.

Lastly, we examine this behavior as a function
of M12. In Figures 10 and 11, we repeat the plot of
oscillator strengths versus ω1 for this system, but
now with M12 = 1 eV and M12 = 2.5 eV, respectively.
We see that the larger values lead to qualitatively
similar behavior, but over a broader frequency scale.

6. Inversion

The above sections present the TDDFT response
equations in the usual manner. First solve the
ground-state KS problem, finding occupied and
unoccupied levels, then calculate matrix elements
of the kernel (with some functional approxima-
tion), and calculate the true transitions and oscil-
lator strengths of your system. However, we are

FIGURE 11. Same as Fig. 4, but for the case
M12 = 2.5 eV.
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motivated to gain insight into the excitations, and so
we ask the reverse question: Given the experimen-
tal spectrum, what can we learn about the kernel?
Inverting our equations to solve for θ yields

θ = 2 (α − αKS). (27)

Thus, knowledge of the KS oscillator strengths,
combined only with the experimental oscillator
strengths, yields the mixing angle, which measures
how strongly the transitions are mixed. No knowl-
edge of the positions of transitions is needed.

Solving for the diagonal matrix elements we
arrive at

W11 = �2 − (��2/2) cos θ ,

W22 = �2 + (��2/2) cos θ , (28)

where �2 is the average of �2 and ��2 is the
difference, while the off-diagonal matrix element is

W12 = (��2/2) sin θ . (29)

Again, the experimental positions combined with
the mixing angle are sufficient to determine the ele-
ments of the matrix W. The kernel matrix elements
themselves are then found simply, by using the KS
transition frequencies:

Mjj = Wjj

4 ωj
− ωj

4
(30)

and

M12 = ��2 sin θ

8
√

ω1ω2
. (31)

These equations provide an exact way to recover
the matrix elements Wij of the original matrix and
therefore the matrix elements Mij of the kernel K
solely from the knowledge of the eigenvalues and
the angle θ .

While the above formulas are completely general,
in practice strong coupling tends to occur between
neighboring transitions. In those cases, the differ-
ences between the two transition frequencies are
often much smaller than the transition frequencies
themselves. Thus we expand in the small parameter
��/�, to find

W11 = � (� − �� cos θ),

W22 = � (� + �� cos θ),

W12 = � �� sin θ . (32)

To further extract the matrix elements of the ker-
nel, we assume the KS transitions satisfy the same
requirement, i.e., that the experimental transitions
are close to the KS transitions on the scale of the
average transition. This yields

M11 = (� − �� cos θ)/4 − ω1/4,

M22 = (� + �� cos θ)/4 − ω1/4,

M12 = (��/4) sin θ . (33)

These simple expressions give the matrix elements
directly, once the KS and experimental information is
known. The mixing angle is determined completely
by the oscillator strengths, as in Eq. (27). These
expressions were used to analyze x-ray absorption
spectra in Ref. [15].

7. Conclusions

To summarize, we have presented the exact for-
mulas that arise from a double-pole approximate
solution to the TDDFT linear response equations.
We have shown how these reduce to the single-pole
approximation when the coupling between transi-
tions is weak, and derived the leading terms in this
expansion, finding results consistent with those of
Ref. [11]. However, with DPA, we can go beyond
that work, by considering strong coupling. We also
derive simpler expressions that are valid when the
transitions are of much higher frequency than the
splittings. We illustrated our results, finding that
(i) the oscillator strengths can deviate significantly
from their KS values, even when the coupling is
very weak; (ii) the scale to compare the off-diagonal
matrix element to is the splitting in the single-
pole approximation, and (iii) the weaker peak even
vanishes at a special value of the coupling.
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