Tulane University | Department of Physics
and Engineering Physics

TO: Professor Kieran Burke
DEPT./CO.: Chemistry
DATE: March 17, 2008
TIME:
PHONE:

FROM: John Perlack
NO. OF PAGES: 28
PHONE:
FAX: 504-862-8702

MESSAGE:

2001 PERCIVAL STERN HALL
6400 FRERET STREET,
NEW ORLEANS, LA 70118
PHONE: (504) 865-5520
FAX: (504) 862-8702
BASICS OF GROUNDSTATE
DENSITY FUNCTIONAL THEORY

JOHN P. PERDEW
PHYSICS
TULANE UNIVERSITY
NEW ORLEANS
Electronic Structure Problem
For Atoms, Molecules, and Solids

What Atoms, Molecules, and Solids Can Exist, and With What Properties?

What Are the Groundstate Energies E and Electron Densities $n(r)$?

What Are the Bond Lengths and Angles?

What Are the Nuclear Vibrations?

How Much Energy Is Needed to Ionize the System, or to Break Bonds?
WAVEFUNCTION APPROACH

HAMILTONIAN FOR N ELECTRONS (i=1...N) IN THE PRESENCE OF EXTERNAL POTENTIAL \(u(x) \):
\[
\hat{H} = \hat{T} + \hat{V}_{ee} + \sum_{i} u(x_i)
\]
\[
\hat{T} = \frac{\hbar^2}{2m} \sum_{i} \nabla_i^2
\]
\[
\hat{V}_{ee} = \frac{1}{2} \sum_{i<j} \frac{\epsilon}{r_{ij}}
\]

OFTEN \(u(x) = \frac{\varepsilon}{\beta} \frac{-2}{|x-R|} \)

= ELECTRON-NUCLEUS ATTRACTION,

AND E INCLUDES ALSO
\[
\frac{1}{2} \sum_{i<j} \frac{Z_i Z_j}{\beta |x_i-x_j|^2}
\]

= NUCLEUS-NUCLEUS REPULSION.
Schrödinger Equation for Stationary States

\[\hat{H} \psi = E \psi \]

\[\psi = \psi \left(f_1, f_2, \ldots, f_n \right) \]

\(\psi \) is normalized: \(\langle \psi | \psi \rangle = 1 \), and antisymmetric:

\[\psi \left(\ldots, f_i, f_j, \ldots \right) = -\psi \left(\ldots, f_j, f_i, \ldots \right) \]

\(E \rightarrow \Delta E \)

\[n(f) = N \prod_{i} \int_{-\infty}^{\infty} \prod_{j \neq i} \int_{-\infty}^{\infty} \left| \psi \left(f_i, f_2, \ldots, f_n \right) \right|^2 \]
\[h[\psi] = \langle \psi | H | \psi \rangle \]

is a functional: a rule that assigns a number \(h \) to every function \(\psi \).

Wavefunction Variational Principle:

The extrema of \(h[\psi] \) are the stationary states, and the absolute minimum is the ground state.

Wavefunctions are never used for large electron number \(N \)!
WHY NOT MANY-ELECTRON WAVE FUNCTIONS?

IMAGINE A GRID OF M POINTS IN POSITION SPACE FOR EACH ELECTRON. WE MUST THEN COMPUTE Y STORE M^N VALUES OF \(\psi \). (KOHM)

LET M = 10^2 (NOT REALLY ENOUGH).

FOR N=2, M^N = 10^4 IS OK.

FOR N=10, M^N = 10^{20} IS NOT OK.

AVOIDING GRIDS, ONE CAN STUDY AT MOST (AND AT GREAT EXPENSE) 10 TO 100 ELECTRONS.

THE DENSITY N(\(\psi \)) HOWEVER WOULD REQUIRE COMPUTING & STORING ONLY M VALUES.
HOHENBERG-KOHN THEOREM 1964:
CENTRAL THEOREM OF DFT

(i) THERE EXISTS A FUNCTIONAL $F[n]$
of the electron density, such that
the GS energy and density for
n electrons in the presence of
external potential $v(\vec{r})$ is

$$E_{gs} = \min_n \left\{ F[n] + \int d^3 \nu(\vec{r}) n(\vec{r}) \right\}.$$

The minimum is taken over all
positive $\nu(\vec{r})$ such that $\int d^3 \nu(\vec{r}) = n$.

$F[n]$ is universal (independent of v).

The problem is to find (approximate
the functional $F[n]$).
(2) The external potential $\phi(\mathbf{r})$ and hence the Hamiltonian \hat{H} are determined to within an additive constant by ψ/\hbar.

Proof by Levy constrained search ψ:

$$E_{ee} = \min_{\psi} \langle \psi | \hat{H} + \hat{V}_{ee} + \phi(\mathbf{r}) \psi \rangle$$

$$= \min_{\psi} \min_{n} \sum_{\Psi_n} \langle \psi | \hat{H} + \hat{V}_{ee} \psi \rangle + S\delta_{\psi, \Psi_n}$$

$$= \min_{n} \sum_{\Psi_n} \langle \psi | \hat{H} + \hat{V}_{ee} \psi \rangle + S\delta_{\psi, \Psi_n}$$

$$F[n] = \min_{\psi} \langle \psi | \hat{H} + \hat{V}_{ee} \psi \rangle$$

$$= \langle \psi_n | \hat{H} + \hat{V}_{ee} \psi_n \rangle$$

Ψ_n is the wave function yielding density ψ_n that minimizes $\langle \hat{H} + \hat{V}_{ee} \rangle$.
Euler Equation for \(n(x) \):

\[
\delta \int \left[F[n] + Sd^2 n \right] dx - \mu Sd^2 n = 0
\]

\[
\delta \int F[n] + \mu (\delta n) - \mu = 0 \quad \text{for} \quad \text{GS} \quad n(x)
\]

\[\delta n(x) = \mu - \frac{\delta F}{\delta n(x)}\]

Functional derivative \(\frac{\delta F}{\delta n(x)} \):

\[
\delta F = Sd^2 \left(\frac{\delta F}{\delta n(x)} \right) \delta n(x)
\]

Example:

\[E_x^{\text{Lam}}[n] = -C Sd^2 n^{4/3}(x)\]

\[\delta E_x^{\text{Lam}}[n] = -C Sd^2 \frac{4}{3} n^{1/3}(x) \delta n(x)\]

\[\frac{\delta E_x^{\text{Lam}}}{\delta n(x)} = -\frac{4}{3} C n^{1/3}(x)\]
THE CONSTRAINED SEARCH IS FOR UNDERSTANDING, NOT FOR CALCULATING!

THE EXACT $F[n]$ REQUIRES A CONSTRAINED SEARCH OVER N-ELECTRON WAVEFUNCTIONS, WHICH IS IMPractical.

APPROXIMATIONS FOR $F[n]$ THAT ARE EXPLICIT FUNCTIONALS OF $\rho(\mathbf{r})$ ARE TOO CRUDE TO BE VERY USEFUL.

Kohn-Sham Non-Interacting System:

A fictional non-interacting ground state \(\Phi^* \) (usually a single Slater determinant) with the same density \(\rho^* \) and chemical potential as the physical interacting ground state \(\Phi_n \).

\[
H_s = \hat{T} + \sum_i V_s (\hat{\mathbf{P}}_i)
\]

\(s = \text{single particle} \)

\[
\hat{H}_s \Phi^*_n = E^*_s \Phi^*_n
\]

\(\Phi^*_n = \text{the non-interacting wave function yielding density } \rho^* \text{ and minimizing } \langle \hat{H} \rangle. \)
NON-INTERACTING KINETIC ENERGY

\[T_s [n] = \langle \Phi_n | \frac{\hbar^2}{2m} \Phi_n \rangle \]

\[E[n] = \langle \Phi_n | \hat{\mathbf{v}} + \hat{\mathbf{v}}_e | \Phi_n \rangle \]

\[= \langle \Phi_n | \hat{\mathbf{v}} + \hat{\mathbf{v}}_e | \Phi_n \rangle + E_c [n] \]

CORRELATION ENERGY

\[E_c [n] = \langle \Phi_n | \hat{\mathbf{v}}_e | \Phi_n \rangle - \langle \Phi_n | \hat{\mathbf{v}} | \Phi_n \rangle \leq 0 \]

\[\langle \Phi_n | \hat{\mathbf{v}}_e | \Phi_n \rangle = U[n] + E_x [n] \]

HARTREE ELECTROSTATIC ENERGY

\[U[n] = \frac{1}{2} \sum_{\pi \sigma} \sum_{\pi' \sigma'} \langle \pi \sigma | n \pi' \sigma' \rangle \langle n \pi' \sigma' | \pi \sigma \rangle \]

EXCHANGE ENERGY \[E_x [n] \]

\[F[n] = T_s [n] + U[n] + E_x [n] \]

TREATED EXACTLY

SOME APPROX. FOR \[E_x + E_c \]
EULER EQUATIONS
\[
\frac{\delta T_2}{\delta n(\vec{r})} + \nabla \cdot \vec{v}_2(\vec{r}) = \mu \\
\frac{\delta T_2}{\delta n(\vec{r})} + \frac{\delta u}{\delta n(\vec{r})} + \frac{\delta E_{xc}}{\delta n(\vec{r})} + \nabla (\vec{v}) = \mu \\
\text{SOLUTION}
\]
\[
\vec{v}_2(\vec{r}) = \vec{v}_1(\vec{r}) + \frac{\partial^2 n(\vec{r})}{\partial \vec{r}^2} + \vec{v}_x(\vec{r}_n, \vec{r})
\]
\[
\vec{v}_x(\vec{r}_n, \vec{r}) = \frac{\delta E_{xc}}{\delta n(\vec{r})}
\]

SELF-CONSISTENT Kohn-Sham SCHEME
\[
\begin{align*}
\left[-\frac{1}{2} \nabla^2 + V(\vec{r}) + \sum_{n' \neq n} \frac{n(\vec{r})}{\mid \vec{r} - \vec{r}_{n'} \mid} + V_x(\vec{r}, \vec{r}_n) \right] \psi_{n} = \epsilon_{n} \psi_{n} \\
n(\vec{r}) = \frac{\psi_{n}^* \psi_{n}}{2} \\
\mathcal{Z}(\vec{r}) = \frac{\psi_{n}^* \sum_{n' \neq n} \frac{n(\vec{r})}{\mid \vec{r} - \vec{r}_{n'} \mid} \psi_{n'}}{\psi_{n}^* \psi_{n}} \\
\text{THE Kohn-Sham ORBITALS } \psi_n(\vec{r}) \text{ ARE IMPLICIT FUNCTIONALS OF } n(\vec{r}).
\end{align*}
\]
COUPLING CONSTANT INTEGRAL FOR EXC

LANGRETH + PERDEW 1975

\[\hat{H}_2 = \hat{T} + 2 \hat{V}_{ee} + \frac{2}{\xi} \hat{v}_a(\hat{r}_1) \]

ADJUST \(\hat{v}_a(\hat{r}_1) \) TO HOLD THE GS DENSITY FIXED AT ITS \(\lambda = 1 \) VALUE.

\(\lambda = 1 \): REAL INTERACTING SYSTEM

\[\hat{v}_a(\hat{r}) = v(\hat{r}) \]

\(\lambda = 0 \): KOHN-SHAM NON-INTERACTING SYSTEM

\(\psi_n^2 = \) THAT WAVEFUNCTION YIELDING DEGREE \(\eta(\hat{r}) \) THAT MINIMIZES \(\langle \hat{T} + 2 \hat{V}_{ee} \rangle \)

\[\psi_n^2 = \psi_n \], \(\psi_n^0 = \Phi_n \)
$$E_{xc} \text{[eV]} = \left\langle \frac{\alpha^2}{2} + \alpha \left\langle \frac{\alpha^2}{2} \right\rangle \right\rangle - \left\langle \frac{\alpha^2}{2} \left\langle \frac{\alpha^2}{2} \right\rangle \right\rangle - \left\langle \frac{\alpha^2}{2} \left\langle \frac{\alpha^2}{2} \right\rangle \right\rangle$$

$$= \left\langle \frac{\alpha^2}{2} \left\langle \frac{\alpha^2}{2} \right\rangle \right\rangle - \left\langle \frac{\alpha^2}{2} \left\langle \frac{\alpha^2}{2} \right\rangle \right\rangle - \left\langle \frac{\alpha^2}{2} \left\langle \frac{\alpha^2}{2} \right\rangle \right\rangle$$

$$= \left\langle \frac{\alpha^2}{2} \left\langle \frac{\alpha^2}{2} \right\rangle \right\rangle - \left\langle \frac{\alpha^2}{2} \left\langle \frac{\alpha^2}{2} \right\rangle \right\rangle - \left\langle \frac{\alpha^2}{2} \left\langle \frac{\alpha^2}{2} \right\rangle \right\rangle$$

By HELLMAANN-FEYNMAN

$$\left\langle \frac{\alpha^2}{2} \left\langle \frac{\alpha^2}{2} \right\rangle \right\rangle = \frac{1}{2} \int d^3 \mathbf{r}_2 \frac{\rho_2(\mathbf{r}_2)}{\rho_2(\mathbf{r}_2)}$$

WHERE

$$\rho_2(\mathbf{r}_2) = N(N-1) \prod_{\alpha} \frac{\delta}{\delta v_{\alpha}} \delta v_{\alpha}...d^3 \mathbf{v}_{\alpha}$$

$$= \text{TWO-PARTICLE DENSITY MATRIX}$$
\[\rho_z(\vec{r}, \vec{r}') = \text{Joint probability density} \]
\[= n(\vec{r}) \left[n(\vec{r}') + \eta_{xc}(\vec{r}, \vec{r}') \right] \]
\[S_{\vec{r}} S_{\vec{r}'} \rho_z(\vec{r}, \vec{r}') = N/N' \]
\[S_{\vec{r}} S_{\vec{r}'} n(\vec{r}) n(\vec{r}') = N(N) \]
so \[S_{\vec{r}'} \eta_{xc}(\vec{r}, \vec{r}') = -1 \] sum rule
\[\eta_{xc}(\vec{r}, \vec{r}') = \text{Density at } \vec{r}' \text{ of the } \]
\[xc \text{ hole around an electron at } \vec{r}. \]
\[\text{Around an electron at } \vec{r}, \text{ one electron is missing from the } \]
\[\text{space } \vec{r}' \neq \vec{r}. \]
\[E_{xc} = \int S_{\vec{r}} d\vec{r} \frac{1}{2} S_{\vec{r}} S_{\vec{r}'} n(\vec{r}) n(\vec{r}') \eta_{xc}(\vec{r}, \vec{r}') \]
\[\text{per cell} \]
\(E_x \) can be expressed as a puck integral of occupied orbitals:

\[
\eta_x (F_x \Phi_{11}) = \eta_{xc}^{\alpha=0} (F_x \Phi_{11})
\]

\[
= - \frac{1}{\pi \hbar^2} \int \rho_x \Phi_{11} \Phi_{11}^2
\]

where

\[
\rho_x (F_x \Phi_{11}) = \frac{\Delta F_x}{\Delta \Phi_{11}} \Phi_{11}^2 (\Phi_1 \Phi_{11})
\]

= Kohn-Sham one-particle density matrix

Exact constraints: We know many exact constraints on the hole (such as the sum rule) or on the \(xc \) energy.
EX: UNIFORM DENSITY SCALING OF \(E_x [n] \)
LEVY + PEDDEL

FOR ANY POSITIVE SCALE PARAMETER \(a \),
DEFINE A SCALED DENSITY

\[
\eta_a (n) = n^3 \eta (n/a^3)
\]

\[
\frac{\eta_a (n)}{\eta (n)} \xrightarrow{a \to 1} \frac{n^3}{n} = n^2,
\]

\[
\frac{\eta_a (n)}{\eta (n)} \xrightarrow{a \to \infty} a^{-3/2} \frac{n^3}{n}
\]

\[
E_x [\eta_a] = a E_x [n]
\]

HIGH-DENSITY LIMIT: \(a \to 0^+ \)

\[
E_c [\eta_a] \to \text{CONSTANT (NOKS DETERMINISM)}
\]

\(E_x \) DOMINATES \(E_c \)
Many other exact constraints on \(\pi_{xc}^2(R,T,T') \) or \(E_{xc}[n] \) have been derived. These constraints have been used to construct approximations to \(E_{xc}[n] \), without (or with) fitting to data.

Fully nonempirical:

Local density approximation

PBE generalized gradient approximation

TPSS meta-generalized gradient approximation

PBE/skr: Monday afternoon

DFT Symposium
We can construct the exact $e_{x}(n)$ from Kohn-Sham orbitals (as in OEP), but bonds are described better when we make the same local or semi-local approximation for e_{x} and for e_{c}. That is because $n_{xc}^{2}(\mathbf{r},\mathbf{r}')$ is typically deeper, more short-ranged in $|\mathbf{r}'-\mathbf{r}|$, and thus more semi-local than is $n_{x}(\mathbf{r},\mathbf{r}')$.
SIMPLEST DENSITY FUNCTIONAL:
LOCAL DENSITY APPROXIMATION

\[\varepsilon_{xc}^{\text{LDA}}[n] = \sum_{n,m} n \rho(n) \varepsilon_{xc}^{\text{LDA}}(n,m) \]

\[\varepsilon_{xc}^{\text{LDA}}(n) = x_0 \text{ ENERGY PER ELECTRON} \]
FOR AN ELECTRON GAS OF UNIFORM DENSITY \(n \).

EXACT FOR A UNIFORM DENSITY.
CORRECTIONS FOR A SLOWLY-VARYING DENSITY \(\sim |d\rho|/\rho \).

\[\varepsilon_{xc}^{\text{LDA}}(n,\nabla \rho) = \eta_{xc}^{\text{LDA}}(n,\rho; |\nabla \rho|) \]
SATISFIES SUM RULE AND SEVERAL OTHER EXACT CONSTRAINTS,
INCLUDING SCALING FOR \(x_0 \).
Jacob's Ladder of Density Functional Approximations

\[E_{xc} = S(l^q + f(n, \rho_v, \pi, \ldots)) \]

\[\pi \psi \psi \frac{\hbar^2}{2m} \frac{1}{10} \chi_1 \frac{1}{2} = \text{Positve} \]

\[\chi \psi \psi \text{Density} \]

Heaven of Chemical Accuracy

- GGA
- HSE06A
- M06-6H
- GGA
- LDA

Hartree World

- Accurate
- Generalized RPA
- Hyper-DCA
- Meta-GGA
- GGA
- LDA